
Role of Performance

Introduction

• Performance dictates the effectiveness of an entire system, including hardware and software

• Performance measurement is one of the most important and difficult problems in computers

– Consider the code to initialize a million integers using a loop vs using a system call

• Different aspects of performance may require different performance metrics

• Our goal for understanding performance

– Effect of software on performance (see the above example)

– Effect of instruction set architecture

– Hardware features

• Defining performance

– Needs and desires, buying a car

– Response time

– Execution time

– Clock time is dependent on computer load, I/O wait, and OS overhead

– Throughput

– For our purpose,
Performance =

c

Execution time
where c is a constant

– For two machines, performance (pi) and execution time (ei) obey the relation

pi
pj

=
ej
ei

= n

and we say that machine i is n times faster than machine j

Measuring performance

• Amount of work and amount of time

• Simplest time definition is the real clock time

– System time, user time, I/O time, overhead

• System performance – Elapsed time on unloaded system

• cpu performance – cpu time

• Clock cycles

– Constant time interval for the clock within the system

– Dictates how fast a cpu can execute each instruction

• Clock rate

– Inverse of clock cycle



Role of Performance 2

– 500 mhz

– Clock cycle for 500 mhz is 2ns

Performance metrics

• cpu execution time is given by the product of cpu clock cycles for program and clock cycle time

• It can also be measured by
cpu clock cycles for program

Clock rate

• Improving performance

– Current system

∗ Execution time – 10 sec
∗ Clock speed – 400 mhz

– New system

∗ Execution time – 6 sec
∗ Clock speed – ?
∗ Number of clock cycles – 1.2 times current system

– Compute the number of clock cycles for current system

∗

cpu time =
cpu clock cycles for program

Clock rate

10sec =
cpu clock cycles for program

400× 106cps

∗ cpu clock cycles for program = 4000× 106

– Compute the clock speed for new system

∗

cpu time =
cpu clock cycles for program

Clock rate

6sec =
1.2× 4000× 106

Clock rate
∗

Clock rate =
1.2× 4000× 106

6
= 800× 106

= 800mhz

• Clock cycles per instruction, or cpi

– Average number of cycles for all instructions for the program being executed

– cpu clock cycles is given by the product of number of instrcutions and cpi

• Using performance equation

– Two implementations of the same isa – machines Ma and Mb

– Ma clock cycle time 1ns and cpi 2.0 for some code p

– Mb clock cycle time 2ns and cpi 1.2 for p



Role of Performance 3

– Identify faster machine

∗ Let total clock cycles for the program on respective machines be ca and cb, and number of instructions
be I
∗

ca = T × 2.0
cb = T × 1.2

∗ cpu time t = cpu clock cycles × Clock cycle time
∗ ta = I × 2.0× 1 = 2I ns
∗ tb = I × 1.2× 2 = 2.4I ns
∗ Machine ma is faster; since performance is inversely proportional to time, the performance gain is

given by
tb
ta

=
2.4
2

= 1.2

• Basic performance equation

cpu time = Instruction count × cpi × Clock cycle time

or
cpu time =

Instruction count× cpi

Clock rate

• Measuring the performance factors

– Measure cpu time by actually running the program

– Clock cycle time is usually available as part of documentation

– Instruction count and cpi are more difficult to obtain

– Instruction count can be measured by using profiling tools, for example, gprof(1) in Unix

$ gcc -pg -o foobar foobar.c
$ foobar
$ gprof > foobar.profile

– cpi can be obtained by detailed simulation of an implementation or by combining hardware counters and
simulation

– You may be able to compute cpu clock cycles by looking at different types of instructions and using their
individual clock cycle counts

cpu clock cycles =
n∑
i=1

(cpii × Ci)

∗ Ci is the number of instructions of class i
∗ cpii is the average number of cycles per instruction for class i
∗ n is the number of instruction classes

• Comparing code segments – deciding ow to write efficient code for a given machine by selecting a set of
instructions

– Instruction classes

Instruction class cpi

A 1
B 2
C 3

– Instruction count for different code sequences



Role of Performance 4

Code Number of
sequence instructions

A B C
c1 2 1 2
c2 4 1 1

– Find out the number of instructions for each code sequence, the faster code sequence, and cpi for each
code sequence

∗ Number of instructions in sequence c1 = 2 + 1 + 2 = 5
∗ Number of instructions in sequence c2 = 4 + 1 + 1 = 6
∗ Obviously, sequence c1 executes fewer instructions
∗ cpu clock cycles1 = (2× 1) + (1× 2) + (2× 3) = 2 + 2 + 6 = 10
∗ cpu clock cycles2 = (4× 1) + (1× 2) + (1× 3) = 4 + 2 + 3 = 9
∗ Code sequence c2 is faster

∗ cpi = cpu clock cycles
Instruction count

∗ cpi1 = 10
5 = 2

∗ cpi2 = 9
6 = 1.5

Benchmarks for performance evaluation

• Workload

– Typical set of programs run in day-to-day work

– Compare the execution time of workload on two computers to evaluate their relative performance

– Not always feasible for real world

∗ Too expensive (taking machines to prospective buyers’ sites)
∗ Proprietory issues (sending code and data to vendor sites)

• Benchmarks

– Programs specifically chosen to simulate the actual workload performance

– Selection of programs based on expected usage environment

– Compiler optimization to beat benchmarks

∗ Compiler may beat the benchmark but not guaranteed to produce correct working code at similar
performance level
∗ Code optimization to beat benchmark, especially if the benchmark is skewed towards some code

– Benchmarks are used for

∗ Easy coding and simulation
∗ Simplicity
∗ More easily standardized than large code

• Reproducibility

– Most important component of a benchmark

– Contains everything required to simulate a benchmark

Comparing and summarizing performance

• Summarizing implies loss of information but ease of understanding



Role of Performance 5

– Should not cause confusion with contradictory but true statements

∗ Machine A is 10 times faster than machine B for program 1
∗ Machine B is 10 times faster than machine A for program 2

• Total execution time

– Compare total execution time of a set of programs taken together

– If Pi is performance of machine i and Ei is execution time of machine i, then,

Pa
Pb

=
Eb
Ea

=
1001
110

= 9.1

• Average execution time

– Computed over a number of small benchmarks

– Arithmetic mean AM = 1
n

∑n
i=1Ei

– Smaller mean implies smaller execution time

• Weighted average execution time

– Applies a weight to each task such that sum of all weights wi is 1

– Weighted arithmetic mean WAM = 1
n

∑n
i=1 wi × Ei, with the condition that

∑n
i=1 wi = 1

SPEC95 Benchmark

• SPEC – System Performance Evaluation Cooperative

• Most comprehensive and popular set of cpu benchmarks

• 8 integer programs written in C and 10 floating point programs written in Fortran 77

• Separate time measurement for each set

– Measurement normalized by dividing the execution time of a Sun sparcstation 10/40 by the execution
time on measured machine, yielding spec ratio

– SPECint95 or SPECfp95 – Summary measurement by taking the geometric mean of the SPEC ratios

• For a given isa, performance improvement comes from

1. Increase in clock rate

2. Improvements in processor organization to lower the cpi

3. Compiler enhancements to lower the instruction count, or generate instructions with a lower average cpi

• In Figure 2.7, we see that Pentium Pro is 1.4 to 1.5 times faster on specint95 and 1.6 to 1.7 times faster on
specfp95, at the same clock rate

• Increasing clock speed (Figure 2.8) does not increase the spec performance by the same level because of memory
speed bottleneck

Fallacies and pitfalls

Pitfall 1 Expecting the improvement of one aspect of a machine to increase performance by an amount proportional
to the size of the improvement.



Role of Performance 6

• A program runs in 100 sec on a machine, with multiply operations taking up 80 seconds of this time. How
much does the speed of multiplication need to improve to get a five-fold increase in code execution?

Execution time after improvement =
Execution time affected by improvement

Amount of improvement
+ Execution time unaffected

100
5

=
80
n

+ (100− 80)

20 =
80
n

+ 20

0 =
80
n

There is no amount by which we can improve the performance of multiply to realize a five-fold increase in
overall performance

– This is Amdahl’s Law in computing, or the law of diminishing returns in everyday life

– Opportunity of improvement is affected by how many time the event occurs

• Common theme (Corollary of Amdahl’s law) – make the common case fast

Fallacy 1 Hardware-independent metrics predict performance.

• Code size as a measure of speed

• isa with smallest instruction set is the fastest

Pitfall 2 Using MIPS as a performance metric.

• mips = Instruction count
Execution time×106

• Intuitive, as more mips implies faster execution

• Problems

1. mips does not account for capabilities of instructions

2. A machine cannot have same mips rating for all programs

3. mips can vary inversely with performance

• Consider the machine with three instruction classes and cpi measurements as follows:

– Instruction classes

Instruction class cpi

A 1
B 2
C 3

– Instruction count (in billions of instructions for each class) for same program from two different compilers

Code Instruction
from count

A B C
Compiler 1 5 1 1
Compiler 2 10 1 1

– Machine clock rate – 500 mhz

– Which code sequence executes faster according to mips? According to execution time?



Role of Performance 7

• Solution

– Find the execution time on each compiler using the equation

Execution time =
cpu clock cycles

Clock rate

– If Ci is the number of instructions of class i executed

cpu clock cycles =
n∑
i=1

(cpii × Ci)

cpu clock cycles1 = (5× 1 + 1× 2 + 1× 3)× 109 = 10× 109

cpu clock cycles2 = (10× 1 + 1× 2 + 1× 3)× 109 = 15× 109

– Execution time for two compilers

Execution time1 =
10× 109

500× 106
= 20s

Execution time2 =
15× 109

500× 106
= 30s

– mips rate

mips =
Instruction count

Execution time× 106

mips1 =
(5 + 1 + 1)× 109

20× 106
= 350

mips2 =
(10 + 1 + 1)× 109

30× 106
= 400

• Conclusion – Code from compiler 1 runs faster but code from compiler 2 has higher mips

Fallacy 2 Synthetic benchmarks predict performance.

• Goal to create a benchmark where execution frequency of a synthetic benchmark matches the characteristics
of a large set of programs

• Most popular synthetic benchmarks – Whetstone and Dhrystone

• Whetstone – Measurement of Algol programs in a scientific/engineering environment (converted to Fortran)

• Dhrystone – Systems programming environments, originally in Ada and later converted to C

Pitfall 3 Using arithmetic mean of normalized execution times to predict performance.

• Normalized arithmetic mean is dependent on the machine used for normalization

• Better way is to use geometric mean given by

n

√√√√ n∏
i=1

Execution time ratioi

where Execution time ratioi is the execution time, normalized to the reference machine, for the ith program of
a total of n in the total workload



Role of Performance 8

• Geometric mean is independent of the data series used for normalization because of the property

Geometric mean(Xi)
Geometric mean(Yi)

= Geometric mean
(
Xi

Yi

)
implying that mean of ratios, or ratio of means, is equal

Fallacy 3 The geometric mean of execution time ratios is proportional to total execution time.

• Geometric mean does not predict execution time


