Machine Language Instructions

Introduction

Instruction set — Vocabulary of the machine

Instructions — Words of a language understood by machine

Current goal: to relate a high level language to instruction set of a machine

Machine language vs. human language (restricted programming language)

— Most machines speak similar languages, or dialect of the same language

— Similar operations in a formal language (arithmetic, comparison)

— Close to like learning to drive one car

— Used by NEC, Nintendo, Silicon Graphics, and Sony

MIPS instruction set

— Designed since the early 1980s

Hardware operations

e Arithmetic

Equivalent C statement: a

MIPS assembly language instruction

=Db + c;

add

a, b, c

— Too rigid in nature; to perform a = b + ¢ + d + e; you have to do the following:

add a,
add a,
add a,

b, c
a, d
a, e

#a=b+c

a
a

b+c+d
b+c+d+ e

— Each line can contain only one instruction, and the instruction does not achieve much more than a primitive

operation

— Comments terminate at the end of line

— Same number of operands for each instruction (three above)

x Keeping number of operands constant keeps hardware simple
Design Principle 1 Simplicity favors regularity.

— Compiling a simple C program into MIPS assembly

— Compiling a slightly complex C program into MIPS assembly

C Program Assembly
a=b+c; |add a, b, c
d=a-e; |sub d, a, e
C Program Assembly
f=(g+h)-(Ci+3j)|add t0, g, h
add t1, i, j
sub f, t0, t1

Somehow, the compiler needs to know to perform both additions before performing subtraction, and to

use temporary variables

Machine Language Instructions 2

Hardware operands

e Registers

Required operands of arithmetic instructions

Replace memory variables

32-bits per register in the MIPS ISA

Since 32-bits occur frequently, and is the size of each operand, it is given the name word
Only a limited number available in a machine

* Typically 32 in the current machine, including the MIPS ISA

* MIPS registers are numbered from 0 to 31

x Contrast this with number of variables in programming languages, or a typical program

* The three operands in the MIPS arithmetic instruction must be chosen from these 32 registers

The reason for a small number of registers is
Design Principle 2 Smaller is faster.

A large number of registers will slow down the signal, increasing clock cycle time
Convention

* MIPS registers corresponding to C variables will be called $s0, $s1, ...

* MIPS registers corresponding to temporary variables will be called $t0, $t1, ...
Compiling a C program using registers
Assume variables f, g, h, i, and j correspond to registers $s0, ..., $s4, respectively

C Program Assembly

f=(g+h)-(Ci+3j)|add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

e Data transfer instructions

Data structures in programming languages can contain more than one variable (arrays and structures)
x Complex data structures are kept in memory and brought into registers as needed

Memory words are accessed by an address

Memory can be treated as a 1D array, with the address providing an index into the array, starting at 0

Instruction load

* Used to transfer data from memory to register (load data into register)

* Format is name of instruction followed by the register to be loaded, then a constant, and then, a
register containing memory address

* Memory address in second register is called base address or starting address for the array, and the
constant is called an offset with respect to base address

* Actual memory address is formed by taking the sum of offset and base address
* MIPS name is 1w for load word

Compiling a C program with data in memory

C Program Assembly
g=h +A[8] | lw $t0, 8($s3)
add $s1, $s2, $t0

Instruction store

* Complementary to load

Machine Language Instructions 3

* Transfer data from register to memory
* MIPS uses the instruction sw (store word)
x Uses the same format as 1w

e Hardware/software interface

Compiler associates variables with registers, and allocates complex data structures to locations in memory
Most architectures address individual bytes, and address of a word matches 4 bytes
Addresses of sequential words differ by 4
Alignment restriction
* MIPS words must always start at an address that is a multiple of 4
Some machines may use the address of leftmost byte as the word address; called big endian
* MIPS, PowerPC, and SPARC are big endian
* Data is laid over as
[0]1]2[3]
Other machines may use the address of rightmost byte as the word address; called little endian
* Pentium is little endian
* Data is laid over as
(3[2[1]0]
Addresses are still in terms of bytes
x Addressing of A[8]
x Offset to be added should be 8 x 4 = 32

Compiling C program with load and store (fixing the bug of byte offset)

C Program Assembly

A[12] = h + A[8] | 1w $t0, 32($s3)
add $t0, $s2, $t0O
sw $t0, 48($s3)

Compiling C program with variable array index

C Program Assembly
g =h + A[i] | add $t1, $s4, $s4 # $t1 =2 x i
add $t1, $t1, $t1 # $t1 =4 * 1

add $t1, $t1, $s3 # Address of A
1w $t0, 0($t1)
add $s1, $s2, $tO

— Optimizations

* Number of variables may be far more than the number of registers
*x Keep frequently used variables in registers
x Spilling registers
- Using load/store combinations to bring the less frequently used variables into memory and then,
putting them back

— Index register

* Register to hold the base address in memory

Representing instructions

e Represented as binary numbers inside the computer (opcode)

Machine Language Instructions 4

e Registers are part of every instruction

— Registers $s0 to $s7 map onto registers 16 to 23
— Registers $t0 to $t7 map onto registers 8 to 15

e Translating a MIPS assembly instruction into machine language

— Consider the instruction add $t0, $s1, $s2

— Decimal representation

0 17 18 8 0 32
+ | $s1 | $s2 | $t0 | unused | +

Six fields, with field 0 and 5 indicating the operation to be performed, field 4 unused, and other fields
indicating the registers to be used

— Binary representation in 32-bits

000000 | 10001 | 10010 | 01000 | 00000 | 100000
6 bits | 5 bits | 5 bits | 5 bits | 5 bits | 6 bits
op s Tt rd shamt | funct

x Layout of instruction is called instruction format
- All MIPS instructions are 32-bit long
* Numeric version is called machine instruction

* Sequence of machine instructions is called machine code
e MIPS fields — Six fields are identified as

op Basic operation, or opcode, described in 6 bits
rs First register source operand
rt Second register source operand
rd Register destination
shamt Shift amount, used in shift instructions

funct Function; specific variant of operation in op field, also called function code

— Problem

x 1w specifies two registers and a constant

x Limiting constant to 5 bits limits the offset to just 32; too small to be useful for accessing large arrays
or structures

x Conflict to keep all instructions the same length and desire for a single instruction format

Design Principle 3 Good design demands good compromises.
x MIPS compromise is to have the same length for all instructions but different format
- R-type format (register type)
- I-type format (data transfer instructions)

op s rt address
6 bits | 5 bits | 5 bits | 16 bits
% 16-bit address allows access to an address in a range of 2% from the base address (£ 32768 bytes,
+213 or +8192 words), base address is contained in register rs
* Consider the instruction: 1w $t0, 32($s3) # $t0 = A[8]
op s rt address
100011 | 10011 | 01000 | 0000000000100000
0x23 0x13 | 0x08 0x0020

Machine Language Instructions 5

* The rt field specifies the destination for this instruction, to receive the result of load (it was second
source in R-type instruction)

— Complexity is reduced by keeping the instruction format similar

x First three fields in both R-type and I-type instructions are the same in length and name
x Formats are distinguished by the op field
* The funct field is recognized based on the bit pattern in the op field

— Example: Assume that base of A is in $t1 and h corresponds to $s2

C Program Assembly

A[300] = h + A[300] | 1w $t0, 1200($t1) # $t0 = A[300]

add $t0, $s2, $t0 # $t0 = h + A[300]

sw $t0, 1200($t1) # A[300] = h + A[300]

Equivalent machine code is:

0x23 [0x09 | 0x08 0x04B0
0x00 | 0x12 | 0x08 | 0x08 | 0x00 | 0x20
0x2B [0x09 | 0x08 0x04B0

* For I-type instructions, base register is specified in second field (rs), destination (or source) is specified
in third field (rt), and the offset in final field

* For R-type instructions, we need funct in sixth field, two source operands in second and third fields,
and destination in fourth field

* The op for 1w and sw differs in just one bit, with no difference in the rest of the fields

— Stored program concept

* Both instructions and data are kept in memory as bit patterns (or binary numbers)

e MIPS has 32 general purpose registers, each of length 32 bits

e MIPS can address 232 bytes (230 words) of memory

Making decisions

e Conditional branches

— Decision making is implemented in a high level language by using an if statement
— Decision making in MIPS assembly language
x Start with two instructions
beq registerl, register2, label | if (registerl == register2) goto label

bne registerl, register2, label | if (registerl != register2) goto label
* Mnemonics are equivalent to branch if equal and branch if not equal, and are known as conditional
branches

— Compiling C code into MIPS assembly; assume g, h, i, j, k correspond to registers $s0 through $s4

C Program Assembly
if (i ==3j) go to L1; beq $s2, $s3, L1
f =g+ h; add $s0, $s1, $s2
Li: £ =1f - i; L1: sub $s0, $s0, $s2

x Label L1 corresponds to the address of the subtract instruction

* Modern programming languages almost never have any goto-statement, or discourage their use
(see http://www.acm.org/classics/oct95/)

— Compiling if-then-else into conditional branches

Machine Language Instructions 6

x Use an unconditional branch or jump, specified by j

C Program Modified C Program Assembly
if (1i==3j) if (i !'=3j) go to ELSE; bne $s3, $s4, ELSE
f =g+ h; f =g+ h; add $s0, $s1, $s2
else go to EXIT; J EXIT
f =g - h; ELSE: f = g - h; ELSE: sub $s0, $s1, $s2
EXIT: EXIT:

— Conditional branch instructions are I-type instructions, and instruction such as bne $s1, $s2, 100 trans-
lates as follows:

op s rt address
6 bits | 5 bits | 5 bits | 16 bits
beq | 0x04 | Ox11 | Ox12 | 0x0019
beq | 0x05 | Ox11 | O0x12 | 0x0019

The address is specified in terms of word address
e Loops

— Used for iteration, can be implemented with conditional branch and jump
— A simple loop in C
do
g += A[il;
i+=j;
while (i !'=h);

— Equivalent loop using conditional branch

LOOP:
g =g + Alil;
i=1+ 3;
if (i '= h) goto LOOP;
— Making the same code in MIPS assembly

Load A[i] into temporary register

LOOP: add $t1, $s3, $s3 # $t1 =2 * i
add $t1, $t1, $t1 # $t1 =4 % i
add $t1, $t1, $s5 # $t1 = A + 4 * i -- The address of A[il
1w $t0, 0($t1) # $t0 = A[i]
add $s1, $s1, $tO # g =g+ A[i]
add $s3, $s3, $s4 #i=1+j
bne $s3, $s2, LOOP # if (i !=h) goto LOOP

— Basic block

* A sequence of instructions without branches, or branches only at the end, and without labels, or labels
only at the beginning

* No entry points in the middle of code
* No exit points in the middle of code

— Compiling a while loop

x A traditional C loop

Machine Language Instructions 7

while (save[i] == k)
i=1i+ j;
* Modified C loop
LOOP: if (savel[i] != k)

go to EXIT;
i=1+j;
go to LOOP;

EXIT:
* MIPS assembly code
Load save[i] into temporary register

LOOP: add $t1, $s3, $s3 # $t1 =2 % i
add $t1, $t1, $ti1 #$t1 =4 % 1
add $t1, $t1, $s6 # $t1 = save + 4 * 1 -- &savel[i]
1w $t0, 0($t1) # $t0 = savelil]
bne $t0, $s5, EXIT # if (save[i] != k) go to EXIT
add $s3, $s3, $s4 #1i=1+ j
j LOOP # go to LOOP

EXIT:

— Comparing two numbers to find out which is larger
* Achieved by the instruction slt, (set on less than)
* The instruction
slt $t0, $s1, $s2
sets register $t0 to 1 if $s1 is less than $s2; otherwise, it is reset (or set to 0)
* slt is R-type instruction, and instruction such as s1t $s1, $s2, $s3 translates as follows:

op s rt rd shamt | funct
6 bits | 5 bits | 5 bits | 5 bits | 5 bits | 6 bits
beq | 0x00 | 0x12 | 0x13 | 0x17 | 0x00 | Ox2A

— The $zero register
x MIPS compiler uses the register $zero to read the result of all conditional expressions
* Register $zero is mapped to register 0

e Conditions

— Compiling a less than test

* The C statement
if (a<b) go to LESS;
* MIPS assembly code

slt $t0, $s0, $s1 # $t0 = ($s0 < $s1) 7 1 : 0;
bne $t0, $zero, LESS # if ($t0 !'= 0) go to LESS;

— MIPS ISA does not have an instruction to compare and branch in a single instruction but uses two faster
and simpler instructions to achieve the effect

— slt is an R-type instruction
e Case/switch statement

— Consider the C code

Machine Language Instructions 8

switch (k)

{
case O:

f =1+ j; break;
case 1:

f =g+ h; break;
case 2:

f =g - h; break;
case 3:

f=1i-7; break;
}

— Simplest way to code it is using a sequence of if-then-else
— A more efficient way is to use a jump address table
* Jump address table is simply a vector of addresses corresponding to labels in the code
— MIPS has a jump register instruction (jr) to provide an unconditional jump to the address specified in the
register
— MIPS assembly code for the C code given above
* Variables £ through k correspond to registers $s0 through $s5
* Register $t2 contains constant 4
* Register $t4 contains the address of vector table (jumptable)
* An unconditional jump is provided by the instruction j

slt $t3, $s5, $zero #k<07?
bne $t3, $zero, EXIT
slt $t3, $s5, $t2 #k<47?

beq $t3, $zero, EXIT

At this point, we know that 0 <= k < 4

add $t1, $s5, $s5 # k k= 2
add $t1, $t1, $t1 # k x= 2
add $t1, $t1, $t4 # $t1 = jumptable + k
1w $t0, 0($t1) # $t0 = jumptablel[k]
jr $t0 # Jump to jumptable[k]
LO: add $s0, $s3, $s4 #f =1+ j
j EXIT
Li: add $s0, $s1, $s2 #f=g+h
j EXIT
L2: sub $s0, $s1, $s2 #f=g-h
j EXIT
L3: sub $s0, $s3, $s4 #f=1-7

EXIT:
% jr is an R-type instruction, and instruction such as jr $t1 translates as follows:

op s rt rd shamt | funct
6 bits | 5 bits | 5 bits | 5 bits | 5 bits | 6 bits
jr | 0x00 | 0x09 | 0x00 | 0x00 | 0x00 | 0x08

Machine Language Instructions 9

Procedures

e Legacy name for function
e Performs a task given to it and returns control to the point where the task was originally assigned

— Place parameters in a place accessible to procedure
— Transfer control to procedure
— Acquire storage resources needed for procedure

Perform the task

Place the result in a place accessible to calling module

— Return control to point of origin

More register allocation

— $a0 — $a3: Argument registers to pass parameters
— $v0 — $v1: Value registers to return values

— $ra: Return address register to return to point of origin

jump and link instruction

— jal proc_addr

— Jumps to proc_addr and saves the address of the next instruction (after jal) in register $ra (return
address)

— Return address ensures that the return is to the place from where the procedure was called as it could be
called from multiple locations

e Program counter

— Register to hold the address of current instruction being executed
— Abbreviated to pc in MIPS
— The address saved in $ra by jal is pc + 4

— Return jump is now easily accomplished by jr $ra

Execution of procedures

— Caller puts the parameter values in registers $a0-$a3

Issues the instruction jal foo to jump to procedure foo

foo does the work, and puts the result in registers $v0—-$vi

— foo returns control to caller by issuing jr $ra
e Using more registers

— Four arguments and two return value registers
— All registers must be restored to their original values after return from procedure

— Spill registers using a stack in memory

Achieved by a special register called stack pointer or sp

x Stacks grow from higher address to lower address

e Example of procedure call

Machine Language Instructions 10

int foobar (const int g, const int h, const int i, const int j)

{
int £f=(Cg+h)-(Ci+ j);

return (f);

}
e In assembly language:

foobar:
sub $sp, $sp, 12 # Make room for three words

sW $t1, 8($sp) # Save registers $s0, $t0, and $t1
sw $t0, 4($sp)
sw $s0, 0($sp)

Variables g, h, i, j correspond to $a0, $al, $a2, $a3

add $t0, $a0, $ail # (g+h)

add $t1, $a2, $a3 # (i+3)

sub $v0, $t0, $t1 # (g+h)-(1i+ j); into return value
1w $s0, 0($sp) # Restore registers

1w $t0, 4($sp)

1w $t1, 8($sp)

add $sp, $sp, 12 # Adjust stack pointer

jr $ra # Return to caller

e Convention to reduce register spilling

— Saved registers ($s0 — $s7) must be saved by the called procedure and restored before return

— Temporary registers ($t0 — $t9) need not be preserved by the called procedure

— The convention implies that we could have reduced the saving and restoration steps for temporary registers
in the above code

e Nested procedures

— Procedures that do not call other procedures are known as leaf procedures
— All the registers, including $ra and temporaries may need to be preserved, using the stack

— Recursive procedures may make it even more tough

Compiling a recursive procedure to compute factorial

int fact (const int n)

{
if (n< 1)
return (1);
return (n * fact (n-1));
}

— Parameter n is the argument or $a0

— Assembly code

Machine Language Instructions 11

fact: sub $sp, $sp, 8 # Make room for 2 items on stack
sSw $ra, 4($sp) # Return address
sW $a0, 0($sp) # Input argument, saved for multiplication
slt $t0, $a0l, 1 #n< 17
beq $t0, $zero, L1 # Prepare to call function again
add $v0, $zero, 1 # Return 1
add $sp, $sp, 8 # Pop two items; you don’t restore them (why?)
jr $ra # Return to caller
Li: sub $a0, $a0, 1 # Perform recursion

jal fact

Return point from recursion

1w $a0, 0 ($sp) # Restore n to value before recursive call
lw $ra, 4 ($sp) # Return address before recursive call
add $sp, $sp, 8 # Restore stack pointer

mul $v0, $ald, $vO # return (n * fact (n -1))

jr $ra # Return to caller

— Some registers must be preserved while others are not so important

— As a rule of thumb, preserve a register’s value if you need it when you return from procedure call
e Allocating space for new data

— Stack is also used to store local variables for the procedure

— This segment of stack, including both local variables and saved registers, is called procedure frame or
activation record

— Frame pointer ($£p)

Used to keep track of first word of the frame of a procedure
Specified by register 30 (s8) in SPIM

Stack pointer may change during the procedure execution (why?)

EE

Frame pointer offers a stable base register for local memory references, and is useful when the stack
changes during procedure execution

* Frame pointer is initialized using the address in $sp on a call and $sp is restored using fp

— jal actually saves the address of the instruction that follows jal into $ra so that return can be accom-
plished by a simple jr $ra
— C variables
* Automatic variables (local scope)
* Static variables (local scope; non-local lifetime)
Global avriables
* Static data is accessed in MIPS by using a register called $gp, or global pointer

*

Beyond numbers

e Need to access data in bytes (such as characters)

e Load byte and store byte instructions (least significant 8 bits in register)

Machine Language Instructions

1b $t0, 0($sp) # Read byte from source
sb $t0, 0($gp) # Store byte in destination

e Characters are normally combined into strings, using three choices

— First byte gives the length of string
— A separate variable contains the length of string (C++)

— Last position in string is indicated by end of string mark (C)

e Example: String copy in C

void strcpy (char * x, char * y)

{
while (*x++ = *xy++)

3

e MIPS assembly, with x and y pointers in $a0 and $al

strcpy:
add $t1, $al, $zero # Copy addresses into temporary
add $t0, $al0, $zero

L1: 1b $t2, 0($t1)
sb $t2, 0($t0)
beq $t2, $zero, L2 # Copied last byte? Yes, go to L2
add $t0, $t0, 1
add $t1, $t1, 1
j L1

L2: jr $ra

e Unicode

— Preferred encoding of characters

Useable for more than just plain English characters

Used in Java,

— Another reason to use sizeof (char) rather than 1 when allocating space in code

Word alignment in stack and strings, packing four bytes per word in MIPS

Other styles of addressing in MIPS

e Constant or immediate operands

— You can keep a constant in an instruction itself, instead of having to load it from memory
— Same format as branch and data transfer instructions (I-type)

x I stands for immediate

Constant can be up to 16 bits

— Translating assembly constant to machine language with the instruction
addi $sp, $sp, 4

op s rt imm
6 bits | 5 bits | 5 bits | 16 bits
addi | 0x08 0x29 0x29 | 0x0004

— Comparisons can be tested using slti

Machine Language Instructions 13

Design Principle 4 Make the common case fast.

Constants being part of instruction get loaded faster than loading them from memory
Constants longer than 16 bits can be loaded using the instruction load upper immediate, or lui
Consider the following instruction

lui $t0, OxFF
The register $t0 contains: 0x00FF 0000 (the space is added for readability)
Loading a 32-bit constant 0x003D 0900 into $s0

lui $s0, 0x003D
addi $s0, $s0, 0x0900

SPIM compiler automatically breaks large constants into smaller pieces to be handled by assembly language
instructions

Assembler also can do this job, using a temporary register $at

Also, it is preferable to use instrution ori in place of addi for copying large constants

e Addressing in branches and jumps

J-type instructions
Contain a 6-bit opcode and the rest of the bits for address

Translating jump instruction to machine language
j 0x400018

op addr
6 bits 26 bits
j | 0x02 | 0x400018

Conditional branch instructions are I-type, leaving only 16 bits for the address

Addresses larger than 16 bits can be accommodated by using a register whose contents will be added to
the address specified in branch instruction

Since most of the branches are close to the current instruction, we can use $pc as the register to be added,
leading to a range of £21° from the current value in $pc, leading to PC-relative addressing

* Distance or range of branch can be stretched by using the fact that all MIPS instructions are 4 bytes
long

Jump-and-link instructions may go anywhere in the process and hence, they are performed with J-type
instructions

* The 26-bit field also uses word addressing, allowing for a jump that is 228 bytes
* The full 32-bit addressing can be achieved by using a jump register instruction

Branching far away (done automatically by assembler by inverting the condition)
beq $s0, $s1, L1
gets translated to

bne $s0, $s1, L2
j L1
L2:

Starting a program

e Editor

Machine Language Instructions

e Compiler
e Assembler

— Pseudoinstructions
— Object file

* Machine language instructions
* Data allocation

* Information to put the instructions in memory (format)
— Symbol table
— Object file format

+x Header
- Size and position of other pieces of file
* Text segment
- Actual machine language code
* Data segment
- Static data
- Dynamic data
* Relocation information
- Instructions and data words that depend on absolute addresses
Symbol table
- Undefined symbols such as extern variables

*

*

Debugging information
- Associating machine instructions with source language statements

e Linker, or linkage editor

— Putting together independently assembled modules

— Place code and data modules symbolically in memory
— Determine the addresses of data and instruction labels
— Patch both the internal and external references

— Executable file
e Loader

— Read executable file header to determine the size of text and data segments
— Allocate memory to hold text and data

— Copy text (instructions) and data from executable file into memory

— Copy parameters for main() to stack

— Initialize machine registers and stack pointer

— Start the program

Examples on swap and sort

e Reading assignment

Arrays versus pointers

14

Machine Language Instructions

e Refer to earlier example on strcpy function, comparing with the one in the book

e C compiler treats arrays as pointers
#include <iostream>

int main()

' using namespace std;
int all = {1, 2, 3, 4, 5, 6, 7, 8 };
cout << "a[6] = " << a[6] << endl;
cout << "6[a] = " << 6[a] << endl;
return (0);

}

e The above code works because a[i] gets translated internally to *(a + i)

PowerPC and 80x86 ISA

e Instruction complexity, clock speed, and number of instructions executed by a given program

e IBM/Motorola PowerPC

— Similar to MIPS in most respects

* 32 integer registers

* Each instruction is 32-bits long

x Data transfer possible only through load and store
— Two more addressing modes and a few operations

— Indexed addressing

x Allows two registers to be added together during instruction execution

* MIPS code
add $t0, $a0, $s3 # $a0 is array base; $s3 is index
1w $t1, 0($t0) # $t1 = $a0[$s3]

x PowerPC code
1w $t1, $a0 + $s3 # $t1 = $a0[$s3]

— Update addressing

x Look at our pointer arithmetic version of strcpy
x Automatically increment the base pointer
* MIPS code

1w $t0, 4($s3) # $t0 = *x($s3 + 4)
addi $s3, $s3, 4 # $s3 += 4
*x PowerPC code
lwu $t0, 4($s3) # $t0 = *($s3 + 4); $s3 += 4

— New instructions
* Load multiple and store multiple

* Transfer up to 32 words of data in one instruction; useful for copying large data
* Special counter register to speed up loops

15

