
Machine Language Instructions

Introduction

• Instructions – Words of a language understood by machine

• Instruction set – Vocabulary of the machine

• Current goal: to relate a high level language to instruction set of a machine

• Machine language vs. human language (restricted programming language)

– Most machines speak similar languages, or dialect of the same language

– Similar operations in a formal language (arithmetic, comparison)

– Close to like learning to drive one car

• mips instruction set

– Used by nec, Nintendo, Silicon Graphics, and Sony

– Designed since the early 1980s

Hardware operations

• Arithmetic

– mips assembly language instruction

add a, b, c

Equivalent C statement: a = b + c;

– Too rigid in nature; to perform a = b + c + d + e; you have to do the following:

add a, b, c # a = b + c
add a, a, d # a = b + c + d
add a, a, e # a = b + c + d + e

– Each line can contain only one instruction, and the instruction does not achieve much more than a primitive
operation

– Comments terminate at the end of line

– Same number of operands for each instruction (three above)

∗ Keeping number of operands constant keeps hardware simple

Design Principle 1 Simplicity favors regularity.

– Compiling a simple C program into mips assembly

C Program Assembly
a = b + c; add a, b, c
d = a - e; sub d, a, e

– Compiling a slightly complex C program into mips assembly

C Program Assembly
f = (g + h) - (i + j) add t0, g, h

add t1, i, j
sub f, t0, t1

Somehow, the compiler needs to know to perform both additions before performing subtraction, and to
use temporary variables

Machine Language Instructions 2

Hardware operands

• Registers

– Required operands of arithmetic instructions

– Replace memory variables

– 32-bits per register in the mips isa

– Since 32-bits occur frequently, and is the size of each operand, it is given the name word

– Only a limited number available in a machine

∗ Typically 32 in the current machine, including the mips isa

∗ mips registers are numbered from 0 to 31
∗ Contrast this with number of variables in programming languages, or a typical program
∗ The three operands in the mips arithmetic instruction must be chosen from these 32 registers

– The reason for a small number of registers is

Design Principle 2 Smaller is faster.

A large number of registers will slow down the signal, increasing clock cycle time

– Convention

∗ mips registers corresponding to C variables will be called $s0, $s1, . . .
∗ mips registers corresponding to temporary variables will be called $t0, $t1, . . .

– Compiling a C program using registers
Assume variables f, g, h, i, and j correspond to registers $s0, . . ., $s4, respectively

C Program Assembly
f = (g + h) - (i + j) add $t0, $s1, $s2

add $t1, $s3, $s4
sub $s0, $t0, $t1

• Data transfer instructions

– Data structures in programming languages can contain more than one variable (arrays and structures)

∗ Complex data structures are kept in memory and brought into registers as needed

– Memory words are accessed by an address

– Memory can be treated as a 1D array, with the address providing an index into the array, starting at 0

– Instruction load

∗ Used to transfer data from memory to register (load data into register)
∗ Format is name of instruction followed by the register to be loaded, then a constant, and then, a

register containing memory address
∗ Memory address in second register is called base address or starting address for the array, and the

constant is called an offset with respect to base address
∗ Actual memory address is formed by taking the sum of offset and base address
∗ mips name is lw for load word

– Compiling a C program with data in memory

C Program Assembly
g = h + A[8] lw $t0, 8($s3)

add $s1, $s2, $t0

– Instruction store

∗ Complementary to load

Machine Language Instructions 3

∗ Transfer data from register to memory
∗ mips uses the instruction sw (store word)
∗ Uses the same format as lw

• Hardware/software interface

– Compiler associates variables with registers, and allocates complex data structures to locations in memory

– Most architectures address individual bytes, and address of a word matches 4 bytes

– Addresses of sequential words differ by 4

– Alignment restriction

∗ mips words must always start at an address that is a multiple of 4

– Some machines may use the address of leftmost byte as the word address; called big endian

∗ mips, Powerpc, and sparc are big endian
∗ Data is laid over as

0 1 2 3

– Other machines may use the address of rightmost byte as the word address; called little endian

∗ Pentium is little endian
∗ Data is laid over as

3 2 1 0

– Addresses are still in terms of bytes

∗ Addressing of A[8]
∗ Offset to be added should be 8× 4 = 32

– Compiling C program with load and store (fixing the bug of byte offset)

C Program Assembly
A[12] = h + A[8] lw $t0, 32($s3)

add $t0, $s2, $t0
sw $t0, 48($s3)

– Compiling C program with variable array index

C Program Assembly
g = h + A[i] add $t1, $s4, $s4 # $t1 = 2 * i

add $t1, $t1, $t1 # $t1 = 4 * i
add $t1, $t1, $s3 # Address of A
lw $t0, 0($t1)
add $s1, $s2, $t0

– Optimizations

∗ Number of variables may be far more than the number of registers
∗ Keep frequently used variables in registers
∗ Spilling registers
· Using load/store combinations to bring the less frequently used variables into memory and then,

putting them back

– Index register

∗ Register to hold the base address in memory

Representing instructions

• Represented as binary numbers inside the computer (opcode)

Machine Language Instructions 4

• Registers are part of every instruction

– Registers $s0 to $s7 map onto registers 16 to 23

– Registers $t0 to $t7 map onto registers 8 to 15

• Translating a mips assembly instruction into machine language

– Consider the instruction add $t0, $s1, $s2

– Decimal representation

0 17 18 8 0 32
+ $s1 $s2 $t0 unused +

Six fields, with field 0 and 5 indicating the operation to be performed, field 4 unused, and other fields
indicating the registers to be used

– Binary representation in 32-bits

000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op rs rt rd shamt funct

∗ Layout of instruction is called instruction format
· All mips instructions are 32-bit long

∗ Numeric version is called machine instruction
∗ Sequence of machine instructions is called machine code

• mips fields – Six fields are identified as

op Basic operation, or opcode, described in 6 bits

rs First register source operand

rt Second register source operand

rd Register destination

shamt Shift amount, used in shift instructions

funct Function; specific variant of operation in op field, also called function code

– Problem

∗ lw specifies two registers and a constant
∗ Limiting constant to 5 bits limits the offset to just 32; too small to be useful for accessing large arrays

or structures
∗ Conflict to keep all instructions the same length and desire for a single instruction format

Design Principle 3 Good design demands good compromises.

∗ mips compromise is to have the same length for all instructions but different format
· R-type format (register type)
· I-type format (data transfer instructions)

op rs rt address
6 bits 5 bits 5 bits 16 bits

∗ 16-bit address allows access to an address in a range of ±215 from the base address (± 32768 bytes,
±213 or ±8192 words), base address is contained in register rs
∗ Consider the instruction: lw $t0, 32($s3) # $t0 = A[8]

op rs rt address
100011 10011 01000 0000000000100000
0x23 0x13 0x08 0x0020

Machine Language Instructions 5

∗ The rt field specifies the destination for this instruction, to receive the result of load (it was second
source in R-type instruction)

– Complexity is reduced by keeping the instruction format similar

∗ First three fields in both R-type and I-type instructions are the same in length and name
∗ Formats are distinguished by the op field
∗ The funct field is recognized based on the bit pattern in the op field

– Example: Assume that base of A is in $t1 and h corresponds to $s2

C Program Assembly
A[300] = h + A[300] lw $t0, 1200($t1) # $t0 = A[300]

add $t0, $s2, $t0 # $t0 = h + A[300]
sw $t0, 1200($t1) # A[300] = h + A[300]

Equivalent machine code is:

0x23 0x09 0x08 0x04B0
0x00 0x12 0x08 0x08 0x00 0x20
0x2B 0x09 0x08 0x04B0

∗ For I-type instructions, base register is specified in second field (rs), destination (or source) is specified
in third field (rt), and the offset in final field

∗ For R-type instructions, we need funct in sixth field, two source operands in second and third fields,
and destination in fourth field
∗ The op for lw and sw differs in just one bit, with no difference in the rest of the fields

– Stored program concept

∗ Both instructions and data are kept in memory as bit patterns (or binary numbers)

• mips has 32 general purpose registers, each of length 32 bits

• mips can address 232 bytes (230 words) of memory

Making decisions

• Conditional branches

– Decision making is implemented in a high level language by using an if statement

– Decision making in mips assembly language

∗ Start with two instructions
beq register1, register2, label if (register1 == register2) goto label
bne register1, register2, label if (register1 != register2) goto label

∗ Mnemonics are equivalent to branch if equal and branch if not equal, and are known as conditional
branches

– Compiling C code into mips assembly; assume g, h, i, j, k correspond to registers $s0 through $s4

C Program Assembly
if (i == j) go to L1; beq $s2, $s3, L1
f = g + h; add $s0, $s1, $s2

L1: f = f - i; L1: sub $s0, $s0, $s2

∗ Label L1 corresponds to the address of the subtract instruction
∗ Modern programming languages almost never have any goto-statement, or discourage their use

(see http://www.acm.org/classics/oct95/)

– Compiling if-then-else into conditional branches

Machine Language Instructions 6

∗ Use an unconditional branch or jump, specified by j

C Program Modified C Program Assembly
if (i == j) if (i != j) go to ELSE; bne $s3, $s4, ELSE

f = g + h; f = g + h; add $s0, $s1, $s2
else go to EXIT; j EXIT

f = g - h; ELSE: f = g - h; ELSE: sub $s0, $s1, $s2
EXIT: EXIT:

– Conditional branch instructions are I-type instructions, and instruction such as bne $s1, $s2, 100 trans-
lates as follows:

op rs rt address
6 bits 5 bits 5 bits 16 bits

beq 0x04 0x11 0x12 0x0019
beq 0x05 0x11 0x12 0x0019

The address is specified in terms of word address

• Loops

– Used for iteration, can be implemented with conditional branch and jump

– A simple loop in C

do
g += A[i];
i += j;

while (i != h);

– Equivalent loop using conditional branch

LOOP:
g = g + A[i];
i = i + j;
if (i != h) goto LOOP;

– Making the same code in mips assembly

Load A[i] into temporary register

LOOP: add $t1, $s3, $s3 # $t1 = 2 * i
add $t1, $t1, $t1 # $t1 = 4 * i
add $t1, $t1, $s5 # $t1 = A + 4 * i -- The address of A[i]
lw $t0, 0($t1) # $t0 = A[i]

add $s1, $s1, $t0 # g = g + A[i]
add $s3, $s3, $s4 # i = i + j

bne $s3, $s2, LOOP # if (i != h) goto LOOP

– Basic block

∗ A sequence of instructions without branches, or branches only at the end, and without labels, or labels
only at the beginning
∗ No entry points in the middle of code
∗ No exit points in the middle of code

– Compiling a while loop

∗ A traditional C loop

Machine Language Instructions 7

while (save[i] == k)
i = i + j;

∗ Modified C loop
LOOP: if (save[i] != k)

go to EXIT;
i = i + j;
go to LOOP;

EXIT:

∗ mips assembly code
Load save[i] into temporary register

LOOP: add $t1, $s3, $s3 # $t1 = 2 * i
add $t1, $t1, $t1 # $t1 = 4 * i
add $t1, $t1, $s6 # $t1 = save + 4 * i -- &save[i]
lw $t0, 0($t1) # $t0 = save[i]

bne $t0, $s5, EXIT # if (save[i] != k) go to EXIT

add $s3, $s3, $s4 # i = i + j
j LOOP # go to LOOP

EXIT:

– Comparing two numbers to find out which is larger

∗ Achieved by the instruction slt, (set on less than)
∗ The instruction
slt $t0, $s1, $s2

sets register $t0 to 1 if $s1 is less than $s2; otherwise, it is reset (or set to 0)
∗ slt is R-type instruction, and instruction such as slt $s1, $s2, $s3 translates as follows:

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

beq 0x00 0x12 0x13 0x17 0x00 0x2A

– The $zero register

∗ mips compiler uses the register $zero to read the result of all conditional expressions
∗ Register $zero is mapped to register 0

• Conditions

– Compiling a less than test

∗ The C statement
if (a < b) go to LESS;

∗ mips assembly code
slt $t0, $s0, $s1 # $t0 = ($s0 < $s1) ? 1 : 0;
bne $t0, $zero, LESS # if ($t0 != 0) go to LESS;

– mips isa does not have an instruction to compare and branch in a single instruction but uses two faster
and simpler instructions to achieve the effect

– slt is an R-type instruction

• Case/switch statement

– Consider the C code

Machine Language Instructions 8

switch (k)
{
case 0:

f = i + j; break;
case 1:

f = g + h; break;
case 2:

f = g - h; break;
case 3:

f = i - j; break;
}

– Simplest way to code it is using a sequence of if-then-else
– A more efficient way is to use a jump address table
∗ Jump address table is simply a vector of addresses corresponding to labels in the code

– mips has a jump register instruction (jr) to provide an unconditional jump to the address specified in the
register

– mips assembly code for the C code given above
∗ Variables f through k correspond to registers $s0 through $s5

∗ Register $t2 contains constant 4
∗ Register $t4 contains the address of vector table (jumptable)
∗ An unconditional jump is provided by the instruction j

slt $t3, $s5, $zero # k < 0 ?
bne $t3, $zero, EXIT
slt $t3, $s5, $t2 # k < 4 ?
beq $t3, $zero, EXIT

At this point, we know that 0 <= k < 4

add $t1, $s5, $s5 # k *= 2
add $t1, $t1, $t1 # k *= 2

add $t1, $t1, $t4 # $t1 = jumptable + k
lw $t0, 0($t1) # $t0 = jumptable[k]

jr $t0 # Jump to jumptable[k]

L0: add $s0, $s3, $s4 # f = i + j
j EXIT

L1: add $s0, $s1, $s2 # f = g + h
j EXIT

L2: sub $s0, $s1, $s2 # f = g - h
j EXIT

L3: sub $s0, $s3, $s4 # f = i - j

EXIT:

∗ jr is an R-type instruction, and instruction such as jr $t1 translates as follows:
op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
jr 0x00 0x09 0x00 0x00 0x00 0x08

Machine Language Instructions 9

Procedures

• Legacy name for function

• Performs a task given to it and returns control to the point where the task was originally assigned

– Place parameters in a place accessible to procedure

– Transfer control to procedure

– Acquire storage resources needed for procedure

– Perform the task

– Place the result in a place accessible to calling module

– Return control to point of origin

• More register allocation

– $a0 – $a3: Argument registers to pass parameters

– $v0 – $v1: Value registers to return values

– $ra: Return address register to return to point of origin

• jump and link instruction

– jal proc_addr

– Jumps to proc_addr and saves the address of the next instruction (after jal) in register $ra (return
address)

– Return address ensures that the return is to the place from where the procedure was called as it could be
called from multiple locations

• Program counter

– Register to hold the address of current instruction being executed

– Abbreviated to pc in mips

– The address saved in $ra by jal is pc + 4

– Return jump is now easily accomplished by jr $ra

• Execution of procedures

– Caller puts the parameter values in registers $a0–$a3

– Issues the instruction jal foo to jump to procedure foo

– foo does the work, and puts the result in registers $v0–$v1

– foo returns control to caller by issuing jr $ra

• Using more registers

– Four arguments and two return value registers

– All registers must be restored to their original values after return from procedure

– Spill registers using a stack in memory

– Achieved by a special register called stack pointer or sp

∗ Stacks grow from higher address to lower address

• Example of procedure call

Machine Language Instructions 10

int foobar (const int g, const int h, const int i, const int j)
{

int f = (g + h) - (i + j);

return (f);
}

• In assembly language:

foobar:
sub $sp, $sp, 12 # Make room for three words

sw $t1, 8($sp) # Save registers $s0, $t0, and $t1
sw $t0, 4($sp)
sw $s0, 0($sp)

Variables g, h, i, j correspond to $a0, $a1, $a2, $a3

add $t0, $a0, $a1 # (g + h)
add $t1, $a2, $a3 # (i + j)
sub $v0, $t0, $t1 # (g + h) - (i + j); into return value

lw $s0, 0($sp) # Restore registers
lw $t0, 4($sp)
lw $t1, 8($sp)

add $sp, $sp, 12 # Adjust stack pointer

jr $ra # Return to caller

• Convention to reduce register spilling

– Saved registers ($s0 – $s7) must be saved by the called procedure and restored before return

– Temporary registers ($t0 – $t9) need not be preserved by the called procedure

– The convention implies that we could have reduced the saving and restoration steps for temporary registers
in the above code

• Nested procedures

– Procedures that do not call other procedures are known as leaf procedures

– All the registers, including $ra and temporaries may need to be preserved, using the stack

– Recursive procedures may make it even more tough

– Compiling a recursive procedure to compute factorial

int fact (const int n)
{

if (n < 1)
return (1);

return (n * fact (n - 1));
}

– Parameter n is the argument or $a0

– Assembly code

Machine Language Instructions 11

fact: sub $sp, $sp, 8 # Make room for 2 items on stack
sw $ra, 4($sp) # Return address
sw $a0, 0($sp) # Input argument, saved for multiplication

slt $t0, $a0, 1 # n < 1?
beq $t0, $zero, L1 # Prepare to call function again

add $v0, $zero, 1 # Return 1
add $sp, $sp, 8 # Pop two items; you don’t restore them (why?)
jr $ra # Return to caller

L1: sub $a0, $a0, 1 # Perform recursion
jal fact

Return point from recursion

lw $a0, 0 ($sp) # Restore n to value before recursive call
lw $ra, 4 ($sp) # Return address before recursive call
add $sp, $sp, 8 # Restore stack pointer

mul $v0, $a0, $v0 # return (n * fact (n - 1))
jr $ra # Return to caller

– Some registers must be preserved while others are not so important

– As a rule of thumb, preserve a register’s value if you need it when you return from procedure call

• Allocating space for new data

– Stack is also used to store local variables for the procedure

– This segment of stack, including both local variables and saved registers, is called procedure frame or
activation record

– Frame pointer ($fp)

∗ Used to keep track of first word of the frame of a procedure
∗ Specified by register 30 (s8) in spim

∗ Stack pointer may change during the procedure execution (why?)
∗ Frame pointer offers a stable base register for local memory references, and is useful when the stack

changes during procedure execution
∗ Frame pointer is initialized using the address in $sp on a call and $sp is restored using fp

– jal actually saves the address of the instruction that follows jal into $ra so that return can be accom-
plished by a simple jr $ra

– C variables

∗ Automatic variables (local scope)
∗ Static variables (local scope; non-local lifetime)
∗ Global avriables
∗ Static data is accessed in mips by using a register called $gp, or global pointer

Beyond numbers

• Need to access data in bytes (such as characters)

• Load byte and store byte instructions (least significant 8 bits in register)

Machine Language Instructions 12

lb $t0, 0($sp) # Read byte from source
sb $t0, 0($gp) # Store byte in destination

• Characters are normally combined into strings, using three choices

– First byte gives the length of string

– A separate variable contains the length of string (C++)

– Last position in string is indicated by end of string mark (C)

• Example: String copy in C

void strcpy (char * x, char * y)
{

while (*x++ = *y++);
}

• mips assembly, with x and y pointers in $a0 and $a1

strcpy:
add $t1, $a1, $zero # Copy addresses into temporary
add $t0, $a0, $zero

L1: lb $t2, 0($t1)
sb $t2, 0($t0)
beq $t2, $zero, L2 # Copied last byte? Yes, go to L2
add $t0, $t0, 1
add $t1, $t1, 1
j L1

L2: jr $ra

• Unicode

– Preferred encoding of characters

– Useable for more than just plain English characters

– Used in Java

– Another reason to use sizeof(char) rather than 1 when allocating space in code

– Word alignment in stack and strings, packing four bytes per word in mips

Other styles of addressing in MIPS

• Constant or immediate operands

– You can keep a constant in an instruction itself, instead of having to load it from memory

– Same format as branch and data transfer instructions (I-type)

∗ I stands for immediate

– Constant can be up to 16 bits

– Translating assembly constant to machine language with the instruction
addi $sp, $sp, 4

op rs rt imm
6 bits 5 bits 5 bits 16 bits

addi 0x08 0x29 0x29 0x0004

– Comparisons can be tested using slti

Machine Language Instructions 13

Design Principle 4 Make the common case fast.

– Constants being part of instruction get loaded faster than loading them from memory

– Constants longer than 16 bits can be loaded using the instruction load upper immediate, or lui

– Consider the following instruction

lui $t0, 0xFF

The register $t0 contains: 0x00FF 0000 (the space is added for readability)

– Loading a 32-bit constant 0x003D 0900 into $s0

lui $s0, 0x003D
addi $s0, $s0, 0x0900

– spim compiler automatically breaks large constants into smaller pieces to be handled by assembly language
instructions

– Assembler also can do this job, using a temporary register $at

– Also, it is preferable to use instrution ori in place of addi for copying large constants

• Addressing in branches and jumps

– J-type instructions

– Contain a 6-bit opcode and the rest of the bits for address

– Translating jump instruction to machine language
j 0x400018

op addr
6 bits 26 bits

j 0x02 0x400018

– Conditional branch instructions are I-type, leaving only 16 bits for the address

– Addresses larger than 16 bits can be accommodated by using a register whose contents will be added to
the address specified in branch instruction

– Since most of the branches are close to the current instruction, we can use $pc as the register to be added,
leading to a range of ±215 from the current value in $pc, leading to PC-relative addressing

∗ Distance or range of branch can be stretched by using the fact that all mips instructions are 4 bytes
long

– Jump-and-link instructions may go anywhere in the process and hence, they are performed with J-type
instructions

∗ The 26-bit field also uses word addressing, allowing for a jump that is 228 bytes
∗ The full 32-bit addressing can be achieved by using a jump register instruction

– Branching far away (done automatically by assembler by inverting the condition)

beq $s0, $s1, L1

gets translated to

bne $s0, $s1, L2
j L1

L2:

Starting a program

• Editor

Machine Language Instructions 14

• Compiler

• Assembler

– Pseudoinstructions

– Object file

∗ Machine language instructions
∗ Data allocation
∗ Information to put the instructions in memory (format)

– Symbol table

– Object file format

∗ Header
· Size and position of other pieces of file

∗ Text segment
· Actual machine language code

∗ Data segment
· Static data
· Dynamic data

∗ Relocation information
· Instructions and data words that depend on absolute addresses

∗ Symbol table
· Undefined symbols such as extern variables

∗ Debugging information
· Associating machine instructions with source language statements

• Linker, or linkage editor

– Putting together independently assembled modules

– Place code and data modules symbolically in memory

– Determine the addresses of data and instruction labels

– Patch both the internal and external references

– Executable file

• Loader

– Read executable file header to determine the size of text and data segments

– Allocate memory to hold text and data

– Copy text (instructions) and data from executable file into memory

– Copy parameters for main() to stack

– Initialize machine registers and stack pointer

– Start the program

Examples on swap and sort

• Reading assignment

Arrays versus pointers

Machine Language Instructions 15

• Refer to earlier example on strcpy function, comparing with the one in the book

• C compiler treats arrays as pointers

#include <iostream>

int main()
{

using namespace std;

int a[] = { 1, 2, 3, 4, 5, 6, 7, 8 };

cout << "a[6] = " << a[6] << endl;
cout << "6[a] = " << 6[a] << endl;

return (0);
}

• The above code works because a[i] gets translated internally to *(a + i)

PowerPC and 80x86 ISA

• Instruction complexity, clock speed, and number of instructions executed by a given program

• IBM/Motorola PowerPC

– Similar to mips in most respects

∗ 32 integer registers
∗ Each instruction is 32-bits long
∗ Data transfer possible only through load and store

– Two more addressing modes and a few operations

– Indexed addressing

∗ Allows two registers to be added together during instruction execution
∗ mips code

add $t0, $a0, $s3 # $a0 is array base; $s3 is index
lw $t1, 0($t0) # $t1 = $a0[$s3]

∗ PowerPC code
lw $t1, $a0 + $s3 # $t1 = $a0[$s3]

– Update addressing

∗ Look at our pointer arithmetic version of strcpy
∗ Automatically increment the base pointer
∗ mips code

lw $t0, 4($s3) # $t0 = *($s3 + 4)
addi $s3, $s3, 4 # $s3 += 4

∗ PowerPC code
lwu $t0, 4($s3) # $t0 = *($s3 + 4); $s3 += 4

– New instructions

∗ Load multiple and store multiple
∗ Transfer up to 32 words of data in one instruction; useful for copying large data
∗ Special counter register to speed up loops

