Assignment # 2

Due Date: February 25, 2003

Performance Evaluation

1. Consider two different implementations – M_1 and M_2 – of the same instruction set. There are four classes of instructions – A, B, C, and D, in the instruction set. The clock rates for M_1 and M_2 are 500 MHz and 750 MHz, respectively. The average number of cycles in each instruction class are:

Class	M_1 CPI	M_2 CPI
A	1	2
В	2	2
\mathbf{C}	3	4
D	4	4

- (a) [5 pts] Assume that peak performance is defined as the fastest rate that a machine can execute an instruction sequence chosen to maximize that rate. What are the peak performances of M_1 and M_2 expressed as instructions per second?
- (b) [10 pts] If the number of instructions executed in a certain program is divided equally among the classes of instructions, how much faster is M_2 than M_1 ?
- (c) [5 pts] With equal distribution of instructions across classes, at what clock rate would M_1 have the same performance as 750 MHz M_2 ?
- (d) [10 pts] Let us change the distribution of instruction classes from equal to as follows:

Class	M_1	M_2
A	31%	40%
В	5%	7%
\mathbf{C}	29%	21%
D	35%	32%

Which machine is faster, and by how much?

The following problems are from your main text (Patterson and Hennessy)

- 1. [10 pts] Problem 2.15
- 2. [10 pts] Problem 2.16
- 3. [5 pts] Problems 2.17