System Programming

Accessing environment variables

e The function main supports a third parameter to access environment

e The prototype is
int main (int argc, char ** argv, char *x envp);

e The environment variables and their value is passed through envp

— envp contains a pointer to the entire environment

— The format is var=value

e You can access it by
#include <stdio.h>
// Accessing environment variables

int main (const int argc, char xx argv, char xx envp)

{
char %% env_var;
for (env_var = envp; =*env_var; env_var++)
printf ("%$s\n", *env_var);

return (0);

e Use strtok to separate varable name and value (env2. c)
e You can further process the value (env3.c)
e A better way to get an individual environment variable is using getenv (getenv.c)

e You can set an environment variable by using setenv (3)

Getting information about a file

¢ You may need to get a number of details about a file

o Get the size of a file

Open the file, go to end of file, find out your location, and return

- SzZ.C

A better way is to use stat (2)
* You can get a lot of information about a file wihout even opening it

- sz_stat.c

Shared memory

e Goals of memory management

System Programming 2

— Privacy: The memory allocated to a process belongs to just that process
— Isolation: Processes should not be able to access memory that has been allocated to a different process

— Controlled access: Under certain conditions, a process may be able to provide access to its memory to a different
process

e Shared memory

— Allows for controlled access to a different process
— Steps to use shared memory

1. Generate a key to get shared memory using ftok (3)
* Use a pathname and a project identifier to create a System V IPC key
* The pathname must refer to a file that exists and is accessible to the UID of the process
* Itis a good idea to use a file in the process working directory
* You can use one of the files in the directory or create a dummy file just for the purpose
2. Allocate the shared memory segment using shmget (2)
* Get the identifier of the shared memory segment associated with the value of the argument key
* For flag, use IPC_CREAT | 0666
. Attach the shared memory in each process that needs to access it
. Use shared memory
. Detatch shared memory
. Release shared memory when the last process using shared memory is terminated

~N N L AW

. Make sure that shared memory does not linger by using the command ipcs from the shell

