
System Programming

Accessing environment variables

• The function main supports a third parameter to access environment

• The prototype is

int main (int argc, char ** argv, char ** envp);

• The environment variables and their value is passed through envp

– envp contains a pointer to the entire environment

– The format is var=value

• You can access it by

#include <stdio.h>

// Accessing environment variables

int main (const int argc, char ** argv, char ** envp)
{

char ** env_var;
for (env_var = envp; *env_var; env_var++)

printf ("%s\n", *env_var);

return (0);
}

• Use strtok to separate varable name and value (env2.c)

• You can further process the value (env3.c)

• A better way to get an individual environment variable is using getenv (getenv.c)

• You can set an environment variable by using setenv(3)

Getting information about a file

• You may need to get a number of details about a file

• Get the size of a file

– Open the file, go to end of file, find out your location, and return

– sz.c

– A better way is to use stat(2)

∗ You can get a lot of information about a file wihout even opening it

– sz_stat.c

Shared memory

• Goals of memory management

System Programming 2

– Privacy: The memory allocated to a process belongs to just that process

– Isolation: Processes should not be able to access memory that has been allocated to a different process

– Controlled access: Under certain conditions, a process may be able to provide access to its memory to a different
process

• Shared memory

– Allows for controlled access to a different process

– Steps to use shared memory

1. Generate a key to get shared memory using ftok(3)
∗ Use a pathname and a project identifier to create a System V IPC key
∗ The pathname must refer to a file that exists and is accessible to the UID of the process
∗ It is a good idea to use a file in the process working directory
∗ You can use one of the files in the directory or create a dummy file just for the purpose

2. Allocate the shared memory segment using shmget(2)
∗ Get the identifier of the shared memory segment associated with the value of the argument key
∗ For flag, use IPC_CREAT | 0666

3. Attach the shared memory in each process that needs to access it
4. Use shared memory
5. Detatch shared memory
6. Release shared memory when the last process using shared memory is terminated
7. Make sure that shared memory does not linger by using the command ipcs from the shell

