
System Programming in C

Concurrency

• At hardware level, multiple devices operate at the same time

• CPUs have internal parallelism – multicore, pipelining

• At application level, signal handling, overlapping of I/O and computation, communications, and sharing of resources

• One of the most difficult problems for the programmer to handle

• Simple example

a = b = c = d = 1;
cobegin

a = b + c;
c = b + d;

coend

• What is the value of variables when the two arithmetic statements are executed concurrently?

• Problem even greater due to the availability of multiprocessor machines at the desktop level where applications need to
exploit all the processors to achieve speed

• Communication

– Conveyance of information from one entity to another

– The other entity may be specified explicitly (broadcast to one) or the message may be transmitted to everyone to be
picked up by the relevant entity

• Concurrency

– Sharing of resources in the same time frame

– Execution of processes is interleaved in time, on the same CPU

– Concurrent entities may be threads of execution within programs or other abstract objects (such as processes)

• Processes, threads and resource sharing

– Program

∗ Collection of instructions and data kept in ordinary file on disk
∗ The file is marked as executable in the i-node
∗ File contents are arranged according to rules established by OS

∗ Source program, or text file
∗ Machine language translation of the source program, or object file
∗ Executable program, complete code output by linker/loader, with input from libraries

– Process

∗ Created by kernel as an environment in which a program executes
∗ Program in execution
∗ Three segments

1. Instruction segment
2. User data segment
3. System data segment
· Includes attributes such as current directory, open file descriptors, and accumulated CPU times

System Programming in C 2

· Information stays outside of the process address space
∗ Program initializes the first two segments
∗ Process may modify both instructions (rarely) and data
∗ Process may acquire resources (more memory, open files) not present in the program

– Process ID

∗ Unique integer to identify a process
∗ PID 0 – swapper
∗ PID 1 – init
∗ PID 2 – pagedaemon

• Process groups

– Represent a job abstraction

– As an example, processes in a pipeline form a group and the shell acts on those as a single entity

– Process descriptor contains a field called process group ID

∗ PID of the group leader

– Login session

∗ All processes that are descendants of the process that started a working session on a specific terminal
∗ All processes in a process group are in the same login session
∗ A login session may have several process groups
∗ One of the processes is always in the foreground; it has access to the terminal
∗ When a background process tries to access the terminal, it receives a SIGTTIN or SIGTTOUT signal

Multiprogramming and multitasking

• Multiprogramming

– A mode of operation that provides for the interleaved execution of two or more programs by a single processor

– Cycle stealing

∗ A mechanism by which the OS assigns higher priority to an I/O-bound process compared to a CPU-bound
process

∗ The I/O-bound process is said to steal cycles from the CPU-bound process

• Multitasking

– A mode of operation that provides for the concurrent performance, or interleaved execution, of two or more tasks

• Timesharing

– A system in which two or more users share the CPU

– Generally, the processing is quick so that the users do not notice that the CPU is being shared with other users

– The CPU allocates a quantum of time (or time slice) to each user for processing before moving on to another user

• Multiprocessing

– Use of two or more CPUs in a computer such that the CPUs have access to common storage (shared memory)

Concurrency at the Applications Level

• Interrupts

System Programming in C 3

– A suspension of processing caused by a deliberate instruction to the CPU

– Usually done to allow the I/O operations to proceed

– Each conventional machine level instruction executed in a processor instruction cycle

– A device may generate a signal, called an interrupt, to set a hardware flag within the CPU

– This flag is detected as a part of the instruction cycle by the CPU

– When the interrupt is detected, the CPU saves the current value of the program counter register on stack and loads
a new value in there which is the address of the interrupt service routine

– After servicing the interrupt, CPU resumes the execution of the instruction it left off

– Asynchronous or asynchronous interrupts

– Asynchronous event

∗ The time of occurrence is not determined by the entity that makes it happen
∗ Interrupts generated by external hardware
∗ Email received by you
∗ The interrupts may not occur at the same point in the program

– Synchronous events

∗ Occurs depending on the data presented
∗ Can be controlled

– Interrupts generated by peripheral devices

– Interrupts based on time to implement time sharing

• Signals

– Software notification of an event

– May be a response of the OS to a hardware event (interrupt)

– The sequence of events associated with ˆc

∗ User presses ˆc
∗ Interrupt generated for the device driver handling the keyboard
∗ Driver sends a signal to the appropriate process
∗ Process commits suicide

– Driver recognizes the character as an interrupt and notifies the process associated with the terminal by sending a
signal

– OS may also send a signal to a process to notify it of a completed I/O operation or an error

– A signal is generated as a response to the occurrence of an event

– A process catches a signal by executing a signal handler

– Process and signal handler typically execute concurrently

∗ Concurrency restricts what can be done inside signal handler
∗ If signal handler modifies external variables that the program can modify elsewhere, proper execution my

require those variables to be protected

• Input and output

– Coordinate resources with different characteristic access times

– Avoid blocking processes by using asynchronous I/O

– Results in additional performance and extra programming overhead

– What if a process waits for input from two different sources

∗ A blocked wait for input from one source may miss input from the other source

System Programming in C 4

• Threads and the sharing of resources

– Multiple threads of execution provide concurrency within a process

– A thread is a stream of instructions that define the flow of control for the process

– Use of multiple threads with shared resources make the programming difficult

– With multiprocessing systems, we can achieve multithreaded operation of a process

• The network as the computer

– Distribution of computation over the net

– Client-server model

∗ Server process manage resources
∗ Client processes use the resources by sending request to the server

– Object-based model

∗ Each resource is viewed as an object with a message handling interface
∗ All shared resources are accesses in a uniform way
∗ Object frameworks define interactions between code modules

System calls

• Interface between user program and operating system

• Provide a direct entry point into the kernel (privileged part of OS)

• Set of extended instructions provided by the operating system

• Applied to various software objects like processes and files

• Invoked by user programs to communicate with OS and request services

• Library functions

– General purpose functions required in most programs

– May invoke a system call to achieve the task

– fopen() library function invokes open() system call

• Traditionally, system calls are described in section 2 of Unix manuals and library functions are described in section 3 of
the manual

– On delmar, you can get to a command in section n of the manual by invoking

man n command

• Whenever you use a system call or a library function, properly read the man page for the same, paying particular attention
to the header files to be included

• Whenever a system call or library function encounters an error, it sends a signal back to the calling process who may
decide to abort itself or continue

– The system calls also sets an external variable errno to indicate the error code

– This variable is not reset by the subsequent system calls which may execute successfully

– You can include the file errno.h to access the symbolic error names associated with the error code

– You can use the C library function perror() to display a message string to the standard error

System Programming in C 5

– The C library function char * strerror(int); returns a pointer to an error message string, given an
errno

• Guidelines for good function development (based on system calls and C library functions)

– Make use of return values to communicate information and to make error trapping easy for the calling program

– Do not exit from functions; instead, return an error value to allow the calling program flexibility in handling the
error

– Make functions general but usable

– Do not make unnecessary assumptions about sizes of buffers

– When it is necessary to use limits, use standard, system-defined limits rather than arbitrary constants

– Do not re-invent the wheel; use standard library functions when possible

– Do not modify input parameter values unless it makes sense to do so

– Do not use static variables or dynamic memory allocation if automatic allocation will do just as well

– Analyze all the calls to the malloc family to make sure that the program frees all the memory that was allocated

– Consider whether a function will ever be called recursively, or from a signal handler, or from a thread; reentrant
functions are not self-modifying, so there can be simultaneous invocations active without interference; in contrast,
functions with local static or external variables are nonreentrant and may not behave in the desired way when called
recursively (the errno can cause a big problem here)

– Analyze the consequence of interruptions by signals

– Carefully consider how the program will terminate

• A Unix command line consists of tokens, with the first token (argv[0]) being the name of the command

• You can make an argument array from a string of tokens by using the function makeargv

exec system calls

• The only way to execute programs under Unix

• Reinitialize a process from a designated program

– Program changes while the process remains

• Called by

int execl (path, arg0, arg1, ..., argn, null)

– All the arguments are of type char *, including null

– The argument path must name an executable program file

– The command

ls -l /bin

is run by the system call

execl ("/bin/ls", "ls", "-l", "/bin", NULL);

• Process’s instruction segment is overwritten by the instructions from the program

• Process’s user-data segment is overwritten by the data from the program

• Execution of the process begins at main()

• No return from a successful execl because the return location is gone

System Programming in C 6

• Unsuccessful execl returns -1

– Possible if the path does not exist, or is not executable

• The arguments can be collected by argc and argv

• Process continues to live and its system-data segment is largely undisturbed

– All the process attributes are unchanged, including PID, PPID, process GID, real UID and GID, current and root
directories, priority, accumulated execution times, and open file descriptors

– Instructions designed to catch the signals need to be reexecuted as they are reset

– If the SUID or SGID bit of the new program file is on, the effective UID or GID of the process is changed to reflect
the same; former effective IDs cannot be retrieved

– If the process was profiling, profiling is turned off

• Example

exectest()
{

printf ("The quick brown fox jumped over ");
execl ("/bin/echo", "echo", "the", "lazy", "dog.", NULL);
printf ("error in execl");

}

– The program may cause problem because of buffered I/O

– Can be fixed by using fflush(stdout);

• If some file descriptor should not stay open across an execl, it must be explicitly closed

– Wrong way to close file descriptors (assuming 20 file descriptors)

fdtest()
{

for (i = 0; i < 20; close (i++));
execl (path, arg0, arg1, arg2, NULL);
printf ("error in execl");

}

∗ stderr is also closed

– Preferable way

fdtest()
{

for (i = 0; i < 20; fcntl (i++, F_SETFD, 1)); /* ignore errors */
execl (path, arg0, arg1, arg2, NULL);
printf ("error in execl");

}

∗ File descriptors are closed only on successful execl

• Other versions of exec – check the man pages

fork system call

• The only way to create new processes in Unix

System Programming in C 7

– Only exception provided by processes with PID 0, 1, and 2 which are created at bootstrapping time and are called
spontaneous processes

• Create a new process that is a clone of the existing one

– New process is called the child process

• Both parent and child continue execution at the instruction that follows the call to fork

• Copy the three segments (instructions, user-data, and system-data) without initialization from a program

• System call invoked by

int fork() /* create new process */
/* return process-id and 0 on success, or -1 on error */

• Upon return, both parent and child receive the return

– Child receives a 0 return value

∗ 0 is not the PID of child because this is the PID of swapper

– Parent receives the PID of the child

– Usually, the child does an exec and the parent either waits for the child to terminate or goes off to do something
else

– Error occurs if there are no more resources

∗ Insufficient swap space
∗ Too many processes already in execution

• Child inherits most of the attributes from parent

– Child’s PID and PPID are different

– Child gets copies of parent’s open file descriptors

∗ Each is opened to the same file and the file pointer has the same value
∗ If the child changes the file pointer with lseek, parent’s next read or write will be at the new location
∗ File descriptor itself is distinct
· If the child closes the file descriptor, the parent’s copy is undisturbed

– Child’s accumulated execution times are reset to zero

– Child and parent do not share portions of memory

• Example

forktest()
{

int pid;
printf ("Start of test\n");
pid = fork();
printf ("Returned pid is: %d\n", pid);

}

exit system call

• Invoked by

void exit (status) /* terminate process */
int status; /* exit status */

System Programming in C 8

• Terminates the process that issued it, with a status code equal to the rightmost byte of status

• All open file descriptors are closed

• All standard I/O streams are closed, and their buffers are flushed

• If child processes are still alive when exit is called, they are not disturbed

– The PPID for such processes is changed to 1 (PID of init)

• The only system call that never returns

• By convention, a status code of zero means that the process terminated normally

• The exiting process’s parent receives the status code through a wait system call

wait system call

• Invoked by

int wait (statusp) /* wait for child */
int *statusp; /* exit status */
/* returns pid or -1 on error */

• If there are many child processes, wait sleeps until one of them returns

• Caller cannot specify which child is to be waited for

– Can be achieved by using the waitpid system call

• Process cannot receive a return from wait upon termination of a grandchild, those exit values are lost

• Process may terminate at a time when it is not being waited for

– Kernel does not allow such processes to die

– The unwaited for processes become zombies

Argument arrays

• Command line made up of tokens or arguments separated by whitespace

– Whitespace is blank or tab or \ at the end of line

– Each token a string of characters

– No whitespace in a token unless protected by quotation marks

• Shell parses command line into tokens and passes the result to program in the form of an argument array

• Argument array is an array of pointers to strings

• End of array marked by an entry containing a NULL pointer

• Examples

– Number of tokens in command

ls -l mydir

– They are captured in argv by the program

System Programming in C 9

• Creating an argument array with makeargv

– Create the array from a string of tokens

– Should take an input string parameter and return a pointer to an argv array

– Returns the number of tokens in the input string

∗ Indicate an error by −1
– Prototype for the function

int makeargv (char * s, char *** argvp);

– The code should be used as

int i;
char ** myargv;
char mytest[] = "This is a test";
int numtokens;

if ((numtokens = makeargv (mytest, &myargv)) == -1)
fprintf (stderr, "Failed to construct an argument array\n");

else
for (i = 0; i < numtokens; i++)

printf ("%d:%s\n", i, myargv[i]);

– An even better prototype is

int makeargv (const char * s, const char * delimiters, char *** argvp);

– This code will be used as

#include <stdio.h>
#include <stdlib.h>

int makeargv (const char * s, const char * delimiters, char *** argvp);

int main (int argc, char ** argv)
{

int i;
char delim[] = " \t";
char ** myargv;
int numtokens;

if (argc != 2)
{

fprintf (stderr, "Usage: %s string\n", argv[0]);
return (1);

}

if ((numtokens = makeargv (argv[1], delim, &myargv)) == -1)
{

fprintf (stderr, "Failed to construct an argument array for %s\n", argv[1]);
return (1);

}

printf ("The argument array contains:\n");
for (i = 0; i < numtokens; i++)

printf ("%d:%s\n", i, myargv[i]);

System Programming in C 10

return (0);
}

• Implementation of makeargv

– Prototype given by

int makeargv (const char * s, const char * delimiters, char *** argvp);

– No a priori assumption on the size of s or delimiters

∗ A good idea to avoid imposing any arbitrary limit on buffer size
∗ In case you must, use system-defined constant MAX_CANON for a buffer size for command line arguments

– Release all dynamically allocated memory

– No direct application of strtok on input string s to preserve the input string

– Implementation strategy

1. Use malloc to allocate a buffer t to parse input string; at least the same size to hold s
2. Copy s to t
3. Make a pass through t to count tokens using strtok
4. Use the count to allocate an argv array
5. Copy s into t again
6. Use strtok to get pointers to individual tokens, modifying t and parsing t in place

– A word on strtok

∗ Prototype
char * strtok (char * restrict s1, const char * restrict s2);

∗ First call to strtok is different
∗ On the first call, pass the address of the string to parse as the first argument; on subsequent calls, pass a NULL

in its place
∗ The second argument is a string of allowable token delimiters
∗ Each successive call to strtok returns the start of next token and inserts a ’\0’ at the end of the token being

returned
∗ strtok returns NULL when there are no more tokens to be returned
∗ strtok tokenizes the string in place; does not allocate new space for tokens
∗ restrict qualifier on the two fprmal parameters requires that any object referenced by s1 in this function

cannot be accessed by s2
· The tail end of s1 cannot be used to contain the delimiters

