System Programming in C

Concurrency

e At hardware level, multiple devices operate at the same time

e CPUs have internal parallelism — multicore, pipelining

e At application level, signal handling, overlapping of 1/0 and computation, communications, and sharing of resources
e One of the most difficult problems for the programmer to handle

e Simple example

a=b=c¢=d=1;
cobegin

a=>b + c;

c = Db + d;
coend

e What is the value of variables when the two arithmetic statements are executed concurrently?

e Problem even greater due to the availability of multiprocessor machines at the desktop level where applications need to
exploit all the processors to achieve speed

o Communication

— Conveyance of information from one entity to another

— The other entity may be specified explicitly (broadcast to one) or the message may be transmitted to everyone to be
picked up by the relevant entity

e Concurrency

— Sharing of resources in the same time frame
— Execution of processes is interleaved in time, on the same CPU

— Concurrent entities may be threads of execution within programs or other abstract objects (such as processes)
e Processes, threads and resource sharing

— Program

*

Collection of instructions and data kept in ordinary file on disk
The file is marked as executable in the i-node

*

* File contents are arranged according to rules established by 0S

* Source program, or text file

* Machine language translation of the source program, or object file

* Executable program, complete code output by linker/loader, with input from libraries
— Process

x Created by kernel as an environment in which a program executes
* Program in execution
* Three segments
1. Instruction segment
2. User data segment
3. System data segment
- Includes attributes such as current directory, open file descriptors, and accumulated CPU times

System Programming in C 2

- Information stays outside of the process address space
* Program initializes the first two segments
* Process may modify both instructions (rarely) and data
* Process may acquire resources (more memory, open files) not present in the program

— Process ID

* Unique integer to identify a process
* PID 0 — swapper

* PID1 —init

* PID 2 — pagedaemon

e Process groups

Represent a job abstraction

As an example, processes in a pipeline form a group and the shell acts on those as a single entity

Process descriptor contains a field called process group 1D

* PID of the group leader

Login session
* All processes that are descendants of the process that started a working session on a specific terminal
* All processes in a process group are in the same login session
* A login session may have several process groups
* One of the processes is always in the foreground; it has access to the terminal
* When a background process tries to access the terminal, it receives a SIGTTIN or SIGTTOUT signal

Multiprogramming and multitasking

e Multiprogramming

— A mode of operation that provides for the interleaved execution of two or more programs by a single processor
— Cycle stealing

* A mechanism by which the OS assigns higher priority to an I/O-bound process compared to a CPU-bound
process
* The I/O-bound process is said to steal cycles from the CPU-bound process

e Multitasking
— A mode of operation that provides for the concurrent performance, or interleaved execution, of two or more tasks
e Timesharing

— A system in which two or more users share the CPU
— Generally, the processing is quick so that the users do not notice that the CPU is being shared with other users

— The CPU allocates a quantum of time (or time slice) to each user for processing before moving on to another user
e Multiprocessing

— Use of two or more CPUs in a computer such that the CPUs have access to common storage (shared memory)

Concurrency at the Applications Level

e Interrupts

System Programming in C 3

A suspension of processing caused by a deliberate instruction to the CPU

— Usually done to allow the I/O operations to proceed

— Each conventional machine level instruction executed in a processor instruction cycle

— A device may generate a signal, called an interrupt, to set a hardware flag within the CPU
— This flag is detected as a part of the instruction cycle by the CPU

— When the interrupt is detected, the CPU saves the current value of the program counter register on stack and loads
a new value in there which is the address of the interrupt service routine

— After servicing the interrupt, CPU resumes the execution of the instruction it left off
— Asynchronous or asynchronous interrupts
— Asynchronous event

* The time of occurrence is not determined by the entity that makes it happen
* Interrupts generated by external hardware
* Email received by you
* The interrupts may not occur at the same point in the program
— Synchronous events
* Occurs depending on the data presented
* Can be controlled

— Interrupts generated by peripheral devices

Interrupts based on time to implement time sharing
e Signals

— Software notification of an event
— May be a response of the OS to a hardware event (interrupt)
— The sequence of events associated with "~ c

* User presses “c

* Interrupt generated for the device driver handling the keyboard
* Driver sends a signal to the appropriate process

Process commits suicide

*

— Driver recognizes the character as an interrupt and notifies the process associated with the terminal by sending a
signal

— 0S may also send a signal to a process to notify it of a completed 1/0 operation or an error
— A signal is generated as a response to the occurrence of an event

— A process catches a signal by executing a signal handler

— Process and signal handler typically execute concurrently

* Concurrency restricts what can be done inside signal handler

* If signal handler modifies external variables that the program can modify elsewhere, proper execution my
require those variables to be protected

e Input and output

Coordinate resources with different characteristic access times

Avoid blocking processes by using asynchronous 1/0

Results in additional performance and extra programming overhead

What if a process waits for input from two different sources

* A blocked wait for input from one source may miss input from the other source

System Programming in C 4

e Threads and the sharing of resources

Multiple threads of execution provide concurrency within a process

A thread is a stream of instructions that define the flow of control for the process

Use of multiple threads with shared resources make the programming difficult

With multiprocessing systems, we can achieve multithreaded operation of a process
e The network as the computer

— Distribution of computation over the net
— Client-server model

* Server process manage resources
x Client processes use the resources by sending request to the server

— Object-based model

* Each resource is viewed as an object with a message handling interface
* All shared resources are accesses in a uniform way
* Object frameworks define interactions between code modules

System calls

e Interface between user program and operating system

e Provide a direct entry point into the kernel (privileged part of OS)

e Set of extended instructions provided by the operating system

e Applied to various software objects like processes and files

e Invoked by user programs to communicate with OS and request services
e Library functions

— General purpose functions required in most programs
— May invoke a system call to achieve the task

— fopen () library function invokes open () system call

e Traditionally, system calls are described in section 2 of Unix manuals and library functions are described in section 3 of
the manual

— On delmar, you can get to a command in section n of the manual by invoking

man n command

e Whenever you use a system call or a library function, properly read the man page for the same, paying particular attention
to the header files to be included

e Whenever a system call or library function encounters an error, it sends a signal back to the calling process who may
decide to abort itself or continue

The system calls also sets an external variable errno to indicate the error code

This variable is not reset by the subsequent system calls which may execute successfully

You can include the file errno . h to access the symbolic error names associated with the error code

You can use the C library function perror () to display a message string to the standard error

System Programming in C 5

— The C library function char * strerror (int); returns a pointer to an error message string, given an
errno

e Guidelines for good function development (based on system calls and C library functions)

— Make use of return values to communicate information and to make error trapping easy for the calling program

— Do not exit from functions; instead, return an error value to allow the calling program flexibility in handling the
error

— Make functions general but usable

— Do not make unnecessary assumptions about sizes of buffers

— When it is necessary to use limits, use standard, system-defined limits rather than arbitrary constants

— Do not re-invent the wheel; use standard library functions when possible

— Do not modify input parameter values unless it makes sense to do so

— Do not use static variables or dynamic memory allocation if automatic allocation will do just as well

— Analyze all the calls to the mal1loc family to make sure that the program frees all the memory that was allocated

— Consider whether a function will ever be called recursively, or from a signal handler, or from a thread; reentrant
functions are not self-modifying, so there can be simultaneous invocations active without interference; in contrast,
functions with local static or external variables are nonreentrant and may not behave in the desired way when called
recursively (the errno can cause a big problem here)

— Analyze the consequence of interruptions by signals

— Carefully consider how the program will terminate
e A Unix command line consists of tokens, with the first token (argv [0]) being the name of the command

e You can make an argument array from a string of tokens by using the function makeargv

exec system calls

e The only way to execute programs under Unix
e Reinitialize a process from a designated program
— Program changes while the process remains

e Called by
int execl (path, arg0, argl, ..., argn, null)

— All the arguments are of type char », including null
— The argument path must name an executable program file

— The command
1s -1 /bin
is run by the system call
execl ("/bin/1s", "1s", "-1", "/bin", NULL);
e Process’s instruction segment is overwritten by the instructions from the program
e Process’s user-data segment is overwritten by the data from the program
e Execution of the process begins at main ()

e No return from a successful execl because the return location is gone

System Programming in C 6

e Unsuccessful execl returns -1
— Possible if the path does not exist, or is not executable
e The arguments can be collected by argc and argv

e Process continues to live and its system-data segment is largely undisturbed

All the process attributes are unchanged, including PID, PPID, process GID, real UID and GID, current and root
directories, priority, accumulated execution times, and open file descriptors

Instructions designed to catch the signals need to be reexecuted as they are reset

If the SUID or SGID bit of the new program file is on, the effective UID or GID of the process is changed to reflect
the same; former effective IDs cannot be retrieved

If the process was profiling, profiling is turned off

e Example

exectest ()

{
printf ("The quick brown fox Jjumped over ");
execl ("/bin/echo", "echo", "the", "lazy", "dog.", NULL);
printf ("error in execl");

— The program may cause problem because of buffered 1/0

— Can be fixed by using £f1lush (stdout) ;

o If some file descriptor should not stay open across an execl, it must be explicitly closed

— Wrong way to close file descriptors (assuming 20 file descriptors)

fdtest ()

{
for (1 = 0; 1 < 20; close (i++));
execl (path, arg0, argl, arg2, NULL);
printf ("error in execl");

* stderr is also closed

— Preferable way

fdtest ()

{
for (i =0; 1 < 20; fcntl (i++, F_SETFD, 1)); /* ignore errors x/
execl (path, arg0, argl, arg2, NULL);
printf ("error in execl");

* File descriptors are closed only on successful execl

e Other versions of exec — check the man pages

fork system call

e The only way to create new processes in Unix

System Programming in C 7

— Only exception provided by processes with PID 0, 1, and 2 which are created at bootstrapping time and are called
spontaneous processes

e Create a new process that is a clone of the existing one
— New process is called the child process

e Both parent and child continue execution at the instruction that follows the call to fork

Copy the three segments (instructions, user-data, and system-data) without initialization from a program

System call invoked by

int fork () /* create new process x/
/+ return process—id and 0 on success, or -1 on error =/

Upon return, both parent and child receive the return

Child receives a O return value

* 0 1is not the PID of child because this is the PID of swapper
Parent receives the PID of the child

Usually, the child does an exec and the parent either waits for the child to terminate or goes off to do something
else

Error occurs if there are no more resources
* Insufficient swap space
* Too many processes already in execution

e Child inherits most of the attributes from parent

Child’s PID and PPID are different

Child gets copies of parent’s open file descriptors

* Each is opened to the same file and the file pointer has the same value
* If the child changes the file pointer with 1seek, parent’s next read or write will be at the new location
* File descriptor itself is distinct

- If the child closes the file descriptor, the parent’s copy is undisturbed

Child’s accumulated execution times are reset to zero

Child and parent do not share portions of memory

e Example

forktest ()
{
int pid;
printf ("Start of test\n");
pid = fork();
printf ("Returned pid is: %d\n", pid);

exit system call
e Invoked by

void exit (status) /* terminate process */
int status; /* exit status */

System Programming in C

Terminates the process that issued it, with a status code equal to the rightmost byte of status

e All open file descriptors are closed

All standard 1/0 streams are closed, and their buffers are flushed

If child processes are still alive when exit is called, they are not disturbed

— The PPID for such processes is changed to 1 (PID of init)

The only system call that never returns

e By convention, a status code of zero means that the process terminated normally

The exiting process’s parent receives the status code through a wait system call

wait system call

e Invoked by

int wait (statusp) /+ wait for child */
int xstatusp; /* exit status */
/* returns pid or -1 on error */

o If there are many child processes, wait sleeps until one of them returns
e (Caller cannot specify which child is to be waited for
— Can be achieved by using the waitpid system call
e Process cannot receive a return from wait upon termination of a grandchild, those exit values are lost
e Process may terminate at a time when it is not being waited for

— Kernel does not allow such processes to die

— The unwaited for processes become zombies

Argument arrays

e Command line made up of tokens or arguments separated by whitespace

— Whitespace is blank or tab or \ at the end of line
— Each token a string of characters

— No whitespace in a token unless protected by quotation marks

Shell parses command line into tokens and passes the result to program in the form of an argument array

e Argument array is an array of pointers to strings

End of array marked by an entry containing a NULL pointer

Examples
— Number of tokens in command
ls -1 mydir

— They are captured in argv by the program

System Programming in C

e Creating an argument array with makeargv

Create the array from a string of tokens
Should take an input string parameter and return a pointer to an argv array
Returns the number of tokens in the input string
* Indicate an error by —1
Prototype for the function
int makeargv (char * s, char xxx argvp);

The code should be used as

int i;
char xx myargv;
char mytest[] = "This is a test";
int numtokens;
if ((numtokens = makeargv (mytest, &myargv)) == -1)
fprintf (stderr, "Failed to construct an argument array\n"
else
for (1 = 0; 1 < numtokens; i++)
printf ("%d:%s\n", i, myargv[i]);

An even better prototype is

int makeargv (const char * s, const char * delimiters, char *xx argvp);

— This code will be used as

#include <stdio.h>
#include <stdlib.h>

int makeargv (const char % s, const char * delimiters, char *x*% argvp

int main (int argc, char ** argv)
{

int i;

char delim[] = " \t";

char *% myargv;

int numtokens;

if (argc != 2)

{

fprintf (stderr, "Usage: %s string\n", argv([0]);

return (1);

}

if ((numtokens = makeargv (argv([l], delim, &myargv)) == -1

{
fprintf (stderr, "Failed to construct an argument array for %s\n",
return (1);

}

printf ("The argument array contains:\n");

for (1 = 0; i1 < numtokens; i++)

printf ("%d:%s\n", i, myargv[i]);

)i

argv[1l]

)i

System Programming in C 10

}

return (0);

e Implementation of makeargv

Prototype given by

int makeargv (const char % s, const char » delimiters, char **x argvp);

No a priori assumption on the size of s ordelimiters

* A good idea to avoid imposing any arbitrary limit on buffer size

*

1.

AR

In case you must, use system-defined constant MAX_CANON for a buffer size for command line arguments

Release all dynamically allocated memory
No direct application of st rt ok on input string s to preserve the input string

Implementation strategy

Use malloc to allocate a buffer t to parse input string; at least the same size to hold s
Copy stot

Make a pass through t to count tokens using st rtok

Use the count to allocate an argv array

Copy s into t again

Use strtok to get pointers to individual tokens, modifying t and parsing t in place

— A word on strtok

*

Prototype
char * strtok (char x restrict sl, const char x restrict s2);
First call to st rtok is different
On the first call, pass the address of the string to parse as the first argument; on subsequent calls, pass a NULL
in its place
The second argument is a string of allowable token delimiters

Each successive call to st rt ok returns the start of next token and inserts a * \ 0’ at the end of the token being
returned

strtok returns NULL when there are no more tokens to be returned
strtok tokenizes the string in place; does not allocate new space for tokens

restrict qualifier on the two fprmal parameters requires that any object referenced by s1 in this function
cannot be accessed by s2

- The tail end of s1 cannot be used to contain the delimiters

