
Shellscript Programming Using bash

Shell

• Program that interacts with the user to receive requests for running programs and executing them

– Most of the Unix shells provide character-based user interface to the computer

– Other interfaces are Graphic User Interface (GUI) and touch-screen interface (ATM)

• Can be used as an interpreted programming language

– The programs written in shell command language do not have to be compiled (like the C programs) but can be
executed directly

• Useful features of the shell

– Metacharacters

– Quoting

– Creating new commands

– Passing arguments to the commands

– Variables

– Control flow

bash

• Bourne Again shell

– Bourne shell was the original shell on Unix

∗ Developed by and named after Stephen R. Bourne at Bell Labs

• Useful for both interactive use as well as writing shellscripts

• Home directory

– The default area to store a user’s files; individual to the user

– The first directory the user encounters after logging in

– Typically stores all the configuration files for the user

– Tilde (˜) notation

∗ Used to abbreviate home directories
∗ Home directory of username johndoe is abbreviated as ˜johndoe/
∗ Your own home directory is abbreviated as ˜/

• Referring to multiple files using shell metacharacters

– File names can be considered to be patterns of characters

– Shell metacharacters

? Any single character
* Any string (including empty string)
[...] Any character in the set
[!...] Any character not in the set

– Metacharacters described above are used to match filenames and are interpreted by shell before handing over to
the command as parameters

Shellscript Programming 2

– ! in the shell can be matched literally by escaping it using the metacharacter \

– A range of characters can be specified by using -

[a-e] Match any of abcde
[a-cx-z1-5] Match any of abcxyz12345

– Process of matching metacharacters is also known as wildcard expansion or globbing

• Brace expansion

– Mechanism to generate arbitrary strings

– Similar to metacharacter expansion as above but the filenames generated need not exist

– Patterns in the form of an optional preamble followed by a set of comma-separated strings enclosed in braces
followed by an optional postscript

– Examples

∗ a{r,c,sse}t gives art act asset

∗ {a..e} gives a b c d e

∗ {0..20..3} gives 0 3 6 9 12 15 18

∗ {a..z..4} gives a e i m q u y

Metacharacters

• Characters that have special meaning to the shell

• Most notable metacharacter is the asterisk or *

• An asterisk, by itself, matches all the files in the current working directory

$ echo *

• What happens when you issue the following command
echo 2 * 3 > 5 is a valid inequality

• Metacharacters can be protected from interpretation by the shell by using quotes

$ echo ’***’

• You can also use double quotes but shell peeks inside the double quotes to look for $, ‘ ... ‘ (back quotes), and \

• You can also protect metacharacters by preceding them with a backslash or escape character

$ echo ***

– A backslash is the same as using the single quotes around a single character

– The backslash character can be used to quote itself as \\

$ echo abc\\def
abc\def
$

– A backslash at the end of the line causes the line to be continued (as if the newline character is not there)

• Quoted strings can contain newlines

$ echo ’hello
> world’

Shellscript Programming 3

Table 1: Other metacharacters

> redirect stdout to a file
>> append stdout to a file
< take stdin from a file
| pipeline
<<str stdin follows, upto next str on a line by itself
* match any string of zero or more characters
? match any single character in the filenames
[ccc] match any single character from ccc in the filenames

ranges such as [0-9] and [a-z] are legal
; terminate command
& terminate command and run it in the background
‘...‘ run command(s) in ...
(...) run command(s) in ... as a subshell
{...} run command(s) in ... in current shell
$1, $2 $0 ... $9 replaced by arguments to shell file
$var value of shell variable var
${var} value of shell variable to be concatenated with text
\c take character c literally (suppress newline in echo)
’...’ take ... literally
"..." take ... literally, but after interpreting $, ‘...‘, and \
beginning of comment (ends with the end of line)
var=value assignment (no spaces around operator)
p1 && p2 run p1; if successful, run p2
p1 || p2 run p1; if unsuccessful, run p2

• The > character above is secondary prompt stored in variable PS2 and can be modified to preference

• The metacharacter # starts a comment only if it is placed at the beginning of a word (following whitespace)

• The newline following the echo command can be suppressed with the \c option (It is also done by using the -n option
on other UNIX variants)

• The newline following the echo command can be suppressed with the -n option

• Metacharacter interpretation

– Metacharacters are interpreted by shell rather than the filesystem

– All the major current shells follow the same metacharacter conventions

∗ Exceptions to the convention may occur when you use a special purpose shell such as DCL-like shell

– The metacharacters are interpreted by the shell before a program has an opportunity to see them

∗ This rule ensure that the command
find . -name *.dvi -print

is interpreted as
find . -name foo.dvi fubar.dvi -print

when the files foo.dvi and foobar.dvi exist in the directory where the command is executed
∗ The intent of the command is preserved by delaying the interpretation by protecting the metacharacter using

quotes, such as
find . -name ’*.dvi’ -print

Command line structure

Shellscript Programming 4

• Each command is a single word that names a file to be executed

• Example

$ who

• Command ends with a newline or a semicolon

$ date ; who

• Sending the output of the above through a pipe

$ date ; who | wc

• Pipe takes precedence over the semicolon

– Semicolon separates two commands

– Pipe connects two commands into one

• The precedence can be adjusted by using the parenthesis

$ (date ; who) | wc

• Data flowing through a pipe can be intercepted by the command tee to be saved in a file

$ (date ; who) | tee save | wc

tee copies the input to the named file, as well as to the output

• Commands can also be terminated by an ampersand (&)

– Useful to run long running commands in the background

$ (sleep 5 ; date +"%D") & date

• Precedence rules (again)

– & has a lower priority compared to both | and ;

• The special characters interpreted by the shell (<, >, |, ;, and &) are not arguments to the programs being run, but control
the running of those programs

• The command

$ echo Hello > junk

can also be written as

$ > junk echo Hello

• Avoiding overwriting files by accident

– Set the noclobber option by

set -o noclobber

to avoid overwriting a file by accident during output redirection

– If you have already set noclobber and want to overwrite a file still, you have to follow the redirection symbol > with
a pipe (|) as

Shellscript Programming 5

echo hello >| junk

Control keys

• Special characters with meaning to the shell

• Don’t print anything but may affect the functioning of your input

Key Action
ˆM Enter or Return
ˆ? Delete
ˆH Backspace
ˆU Kill line
ˆW Erase last word
ˆC Interrupt
ˆZ Suspend process
ˆD End of input

• Use stty -a to see the mappings

Getting help on bash builtins

• Use the command help

• Does not replace man

Command line editing

• Enabled by default when you start bash

– Can be disabled by starting bash with option -noediting

• Editor used to edit the command line can be customized between vi and emacs by one of the following commands

set -o vi
set -o emacs

• Command history

– Each command is recorded as you execute it in the file ˜/.bash_history

– The history is read (and preserved) when you start bash

• Textual completion (in emacs mode)

Customizing bash

• Performed by a startup file called .bash_profile in your home directory

– If .bash_profile does not exist, bash will look for .profile, bash_profile, or .bashrc

– .bash_profile is sourced for login shells

– .bashrc is sourced for login as well as non-interactive shells

Shellscript Programming 6

• Effectively, you will customize the environment in which you execute commands

• Environment

– Collection of internal variables that can help in customization of look and feel of the shell, as well as allow the
machine to respect your privacy

– Handled by environment variables

– Issue the command set with no parameters to see the environment variables

• Ownership

– Ownership of files, resources, and processes is determined by UID and GID

– Shell picks it up when you log in from your authentication record

– A closely related set is that of effective UID and effective GID

– Used to find permissions to read/write/execute files

• File creation mask

– Created by umask command

– Used to set default values for file permissions as the files get created

– Specified as the complement of desired octal permission values

∗ If you want to have the permissions as rwxr-xr-x or 755, the umask value will be 777− 755 or 022

• Working directory

– Default directory for work of a process

– Kept in the variable PWD

– Changed by the command cd

– Default assigned as your home directory, kept in variable HOME

Aliases

• Allow renaming of existing commands and to create new commands

• Created by using the command alias

$ alias name=command

– Syntax dictates that there is no space on either side of =

• Removed by using the command unalias

• It is a good idea to add aliases to your .bashrc

• The command alias without any arguments lists your current aliases and the commands assigned to them

• Examples

– Make the -i option a default on the command to delete files

alias rm=’/bin/rm -i’

• Aliases override the commands with the same name as alias

• Aliases can be used only for the beginning of a command string

Shellscript Programming 7

• You can view all the aliases in your environment by using the command alias with no parameters

• You can prevent an alias to be applied to a command by preceding the alias name by a backslash (\)

– Use the original rm command, not the alias you just created by typing \rm foo

• The alias definition can be removed by the command unalias

– The alias rm created above can be removed by unalias rm

– The command unalias -a will remove all aliases

• You can put aliases in the file .bashrc so that they are always available

Shell options

• Modify the behavior of the shell towards different commands

• Options turned on and off by the following commands

set -o optionname Turn option on
set +o optionname Turn option off

• Status of options is seen by using the command set -o with no parameters

Shell variables

• A variable in the shell is just like one in a programming language – a place to hold a value

• Variables in the shell are typeless

– The same variable can hold characters, strings, or numbers

– Shell variables are not very good at holding and manipulating floating point numbers

– Some variables are created and initialized as you log in

– The user can also create variables at any time

• Variable name syntax

– Variable names are made up of between 1 to 20 characters

∗ The characters forming the variable name can be upper or lower case alphabetic characters, digits, and under-
score

∗ The first character of a variable name cannot be a digit

– By convention, user defined variables are in lower case while system variables as well as environment variables are
in upper case

• A special class of variables is environment variables

– Have special meaning for the shell

– Define the working environment

– Can be modified at the command line level or through the startup files

– Used by some programs to customize themselves to the user

∗ A number of utilities (such as mail and cron) may need to use the editor; the environment variable EDITOR
allows you to customize the utilities so that you always work with your favorite editor
· In the absence of environment variable, you may have to specify the command as

Shellscript Programming 8

Table 2: Common environment variables
EDITOR Editor to be used by various programs
DISPLAY Display server identification
EXINIT Set up options for vi
HISTFILE File to record command history
HOME Absolute pathname of home/default directory
MAIL system mail folder to keep incoming mail
PAGER Application for per page display
PATH list of directories to search for commands
PWD Absolute pathname of current directory
SHELL Name of shell environment
TERM Terminal type
TZ Time zone
USER User name
VISUAL Visual editor for various programs

crontab -e

∗ An example is the environment variable DISPLAY which is used by most of the X programs
· In the absence of environment variable, you may have to specify the command as

xclock -g 100x100 -display 192.0.0.10:0.0

∗ Other environment variables are shown in Table 2
∗ PATH contains a colon-separated list of directories that are searched by the shell whenever a command is typed

– Since your favorite editor does not change everyday, and your office cubicle does not change everyday, and your
workstation IP address does not change every day, it makes sense to define them once for all as environment
variables

– You can see the current setting of all environment variables by using the command printenv or env

– Environment variables are managed by the shell

– Environment variables can be forgotten by using the command unset

• Another name for variables in a shell is parameters

– Strings like $1 are called positional parameters

– Positional parameters hold the arguments to a shell script file

– The positional parameters cannot be changed as $1 is just a compact notation to get the value of the first parameter

– Make scripts self-documenting by assigning the values of positional parameters to variables

User-defined variables

• The user-defined variables can be assigned values on the command line or in .bash_profile

• There may be some variables that are assigned by the system

• A user-defined variable is assigned a value by using the following syntax

color1=red
color2="Mulberry Red"
color3=’Seattle Silver’

– If there is a space in the string that is being assigned to the variable, enclose it in double quotes or single quotes as
shown in examples above

– Spacing on either side of the = operator is important; you can not have any

Shellscript Programming 9

• The value in the variables can be accessed by preceding the variable name with the character $ as follows

$ echo $color1
red
$

$ echo $PATH
$ PATH=$PATH:/usr/games
$ echo $PATH

dir=‘pwd‘
cd /usr/lib
pwd
cd $dir
pwd

• The command set displays the values of all the defined variables (including the ones defined by the user)

• User variables are not automatically available to the subshells spawned from the current shell; they are only available in
the shell they are created in

– A shell will keep its variables intact even if they are modified in a subshell (or child)

– The user-defined variables can be made available to the subshells by exporting them, using either of the following
syntax:

$ color1=red
$ export color1
$ export color2="Mulberry Red"

• A shellscript can be run quickly by using the . command

• If the value of a variable is to be used in subshells, you should use the export command

$ PATH=$PATH:/usr/local/bin
$ export PATH

• Variables and quoting

– Try to use double quotes when printing variable values

$ foobar="Hello world"
$ echo $foobar
$ echo "$foobar"

– Without the double quotes, shell splits the string into tokens after substitution

– Double quotes prevent tokenization, making the shell treat the entire string as a single token

• Difference between $* and $@

– $* is a single string containing all positional parameters, separated by the first character in IFS (internal field
separator)

∗ $IFS is space, tab, and newline characters by default, in that order

– $@ parses parameters as tokens as "$1", "$2", . . ., "$N" where N is the number of positional parameters

File descriptors

Shellscript Programming 10

Table 3: Shell built-in variables

$# number of arguments
$* all arguments to shellscript
$@ similar to $*
$0 Name of the script being executed
$- options supplied to the shell
$? return value of the last command executed
$$ pid of the shell
$! pid of the last command started with &
$IFS list of characters that separate words in arguments
$PS1 prompt string, default value ’$ ’
$PS2 prompt string for continued command line, default value ’> ’
EDITOR Name of your favorite editor

• Used by kernel to handle I/O

• Described by a small unsigned integer

• Three special file descriptors assigned to the terminal by default

0 stdin Standard input
1 stdout Standard output
2 stderr Standard error

Prompt customization in bash

• Four prompt strings, stored in PS1, PS2, PS3, and PS4

• PS1 – Primary prompt string or shell prompt

• PS2 – Secondary prompt string (default value >)

\u Username
\h Hostname
\H Fully qualified hostname
\w Current working directory (full name)
\W Current working directory (just the directory name)
\d Date
\t Current time in 24-hour hh:mm:ss format
\T Current time in 12 hour hh:mm:ss format
\@ Current time in 12-hour am/pm format
\A Current time in 24-hour hh:mm format
\l Basename of shell’s terminal device
\j Number of jobs being managed by shell
\e Escape character
\n Newline
\r Carriage return
[Beginning of sequence of non-printing characters
] End of sequence of non-printing characters

• Use the escape character to send a terminal control sequence

Shellscript Programming 11

– Change the prompt to red color by

PS1=’\e[31m\w\e[0m> ’

Difference between shell variables and environment variables

• Shell variables are local to a particular instance of the shell, such as shellscripts

• Environment variables are inherited by processes started from the shell, including other shells

• In Unix, every process (shell or otherwise) passes the environment variables to its children

– The passing of variables is one way only, variables cannot be passed back to parent shell; neither a change in their
value reflected back in parent shell

Shellscripts

• Ordinary text files that contain commands to be executed by the shell

– A program in the language understood by shell

• First line of the script should identify the shell (interpreter) used by the script for execution, using absolute path

– For bash, the identifying line is

#!/bin/bash

• If the first line is other than the identifying line, the script defaults to bash on Linux (to Bourne shell on Unix)

Creating shellscripts

• Creating the script nu to count the number of users

$ echo ’who | wc -l’ > nu

• The above script can be executed by

$ sh nu

• You can also change the permissions on the script to avoid typing sh

$ chmod +x nu
$ nu

• Child shell or subshell

• Putting the scripts in a separate directory (call it scripts or bin)

$ mkdir $HOME/scripts
$ PATH=$PATH:$HOME/scripts
$ mv nu scripts
$ nu

Command arguments and parameters

Shellscript Programming 12

• Items are specified within the script by argument numbers as $1 through $9

• The number of arguments itself is given by $#

• Writing a script to change mode to executable for a specified file

• Shellscript cx as a shorthand for chmod a+x

chmod +x $1

• What if there are multiple files (like more than 10)

– The line in the shellscript can handle eight more arguments as

chmod +x $1 $2 $3 $4 $5 $6 $7 $8 $9

– More arguments can be handled with

chmod +x $*

– $* indicates operation on all the arguments

• The argument $0 is the name of the program being executed

• Creating a phonebook

– Let us have a personal telephone directory as

dial-a-joke (636) 976-3838
dial-a-prayer (314) 246-4200
dial santa (636) 976-3636
dow jones report (212) 976-4141

– It can be searched by using the grep command

– Let us call our shell script as 411

grep $* phone-book

– Problems if you type a two word pattern

– Can be fixed by enclosing the $* in double quotes

– grep itself can be made case insensitive by using the -i option

Program output as argument

• The output of any program can be included in the script by using the backward quotes or using $(...) notation

echo The current time is ‘date‘
echo "The current time is $(date)"

– Both the methods quotes are also interpreted within the double quotes but not in single quotes

– The $(...) mechanism is preferred in bash

Difference between sh nu and sh < nu1

• sh nu maintains the stdin of its invoking environment, while sh < nu forces stdin to come from the script, thus
making non-redirected “read”s inside the script to behave oddly (and also affecting any program invoked by nu which
read stdin)

1Quoted from Ken Pazzini (ken@halcyon.com)

Shellscript Programming 13

• $0 in the former is set to nu; in the latter it is sh

More on I/O redirection

• The terminal as a file

– Unix treats every device as a file

∗ In effect, terminal and keyboard can be treated as files
∗ Keyboard is an input file
∗ Terminal monitor is an output file

– The devices reside in the directory /dev

– You can find the file associated with your terminal in the /dev directory by using the command tty

• Every program has three default files – stdin, stdout, and stderr

• Redirection

– Sending the output of one program to a file, instead of stdout or stderr

– Receiving the input to a program from a file instead of stdin

– Based on operators <, >, <<, >> as well as pipes and tee

• Example – Command to determine the execution time

$ time command

The output of the time command is sent to stderr

• To capture the output in a file, use the following:

(time command) > command.out 2> time.out

• The two output streams can be merged by any of the following two commands

(time command) > command.out 2>&1
(time command) > command.out 1>&2

• New directory program

grep "$*" <<END
dial-a-joke (636) 976-3838
dial-a-prayer (314) 246-4200
dial santa (636) 976-3636
dow jones report (212) 976-4141
END

The exit statement/status

• Every Unix command runs exit upon termination

• As opposed to the standard C notation, in shellscripts, a zero signifies true and any positive integer represents false

• Why should we have a positive integer as false in shellscripts

Shellscript Programming 14

Table 4: Shell I/O redirection

> file direct stdout to file
>> file append stdout to file
< file take stdin from file
p1 | p2 connect stdout of p1 to stdin of p2
n> file direct output from file descriptor n to file
n>> file append output from file descriptor n to file
n>&m merge output from file descriptor n with file descriptor m
n<&m merge input from file descriptor n with file descriptor m
<<s here document; take stdin until next s at beginning of a line;

substitute for $, ‘...‘, and \
<<\s here document with no substitution
<<’s’ here document with no substitution

– The commands can fail for several reasons

– The reason for failure can be encoded in the exit status

– As an example, the exit status for grep command returns

∗ 0 if there was a match
∗ 1 if there was no match
∗ 2 if there was an error in the pattern or filename

• The exit status for the last command is stored in the variable $?

• When writing your C programs, you return the exit status through exit system call (1 upon error)

• Using cmp command to compare two files and taking an action based on the exit status

• When commands are grouped, the exit status of the group is the exit status of the last command executed

Command separators

• Command is usually terminated by the end of line

• Other command separators are

– Semicolon (;)

∗ Separates commands for sequential execution
∗ Command following the semicolon will not begin execution until the command preceding the semicolon has

completed
∗ Semicolon is equivalent to a newline but allows more than one command to be on the same line

– Pipe (|)

∗ Causes the standard output of the command before the vertical bar to be connected, or piped, into the standard
input of the command following the vertical bar

∗ The sequence of commands is called a pipeline
∗ Each command in the pipeline is executed as a separate process and the commands are executed concurrently
∗ The exit status of the pipeline is the exit status of the last command in the pipeline
∗ The pipeline

cmd1 | cmd2

is equivalent to

Shellscript Programming 15

cmd1 > tmp; cmd2 < tmp

– Background execution operator (&)

∗ Causes the command preceding it to be executed in the background
∗ The process created to execute the command executes independent of the current process and the current

process does not have to wait for it to complete
∗ Ampersand is not considered to be a command separator
∗ The standard input of the command run in the background is connected to /dev/null to prevent the current

process and the background process from trying to read the same standard input

– ORed execution (||)

∗ cmd1 || cmd2 causes cmd2 to be executed only if cmd1 fails
∗ || can be used to write conditional statements that resemble the C programming language as
if cmd1 || cmd2
then

...
fi

– ANDed execution (&&)

∗ cmd1 && cmd2 causes cmd2 to be executed only if cmd1 executes successfully

Command grouping

• Grouping with parentheses

– Grouping with parentheses makes the commands to execute in a separate shell process, or subshell

– The shell creates the subshell to execute the commands in parentheses and waits for the subshell to complete before
resuming

– Subshell inherits the environment of the parent process but is not able to alter it

– Useful when you do not want the environment of the shell to be altered as a result of some commands, for example,
in Makefile, you may have

(cd $SUBDIR1; make)

– An ampersand can be used after the right parenthesis to execute the subshell in the background

– Parentheses can be nested to create more than one subshell

• Grouping with braces

– Same as grouping with parentheses but the commands are executed in the current shell

– The syntax is:

{ cmd1; cmd2; ...; }

– The last command must be followed by a semicolon and there must be a space between commands and braces

– Useful to redirect the combined standard input or standard output of the commands within the braces

∗ In such a case, commands are executed in a subshell and braces have the same behavior as parentheses

– Braces can be nested and may be followed by an ampersand to execute the commands within the braces in the
background

– A more general way is provided by the command seq

∗ seq works with variables while braces may not
n=5
echo {1..$n}
seq 1 $n

Shellscript Programming 16

The if statement

• The if statement runs commands based on the exit status of a command

• The syntax is

if condition
then

commands if the condition is true
else

commands if the condition is false
fi

• The else part is optional

• Every if statement is terminated by an fi statement

• The condition is followed by the keyword then on a line by itself

– then can be on the same line as the condition if it is preceded by a semicolon

• Example

if [$counter -lt 10]
then

number=0$counter
else

number=$counter
fi

• Nesting of if with else using elif

– You can use any number of elif statements in an if statement to check for additional conditions

– Each elif statement contains a separate command list

– The last elif statement can be followed by an else statement

if [$counter -lt 10]
then

number=00$counter
elif [$counter -lt 100]

then
number=0$counter

else
number=$counter

fi

Looping in a shell program

• The syntax for for loops is

for x [in list]
do

...
done

Shellscript Programming 17

– The loop executes once for each value in list

∗ list is a string that is parsed into words using the characters specified in the IFS (internal field separators)
variable as delimiters
· Initially, IFS variable is set to space, tab, and newline (the whitespace characters)

∗ The part [in list] is optional
∗ If [in list] is omitted, it is substituted by positional parameters

– The value of x is accessed by $x

• Example – To display the number of lines in each file

for file in *.tex
do

echo -n "$file "
wc -l < $file

done

• You can use the break command to exit the loop early or the continue command to go to the next iteration by
skipping the remainder of the loop body

• The output of the entire for command can be piped to another program, as the entire command is treated as a single
entity

The case statement

• The syntax for the case statement is

case value in
pattern1) commands1 ;;
pattern2) commands2 ;;
.
.
.

*) commands for default ;;
esac

– Patterns can use file generation metacharacters

– Multiple patterns can be specified on the same line by separating them with the | symbol (not to be confused with
the use of the same symbol for communicating between programs)

• A modified calendar program

#!/bin/bash
newcal : Nice interface to /bin/cal

case $# in
0) set ‘date‘; m=$2; y=$6 ;; # no arguments; use today
1) y=$1; set ‘date‘; m=$2 ;; # 1 argument; use this year
2) m=$1; y=$2 ;; # 2 arguments; month and year

*) echo "Too many arguments to $0" ;
echo "Aborting ..." ;
exit 1 ;;

esac

Shellscript Programming 18

case $m in
[jJ]an*) m=1 ;;
[fF]eb*) m=2 ;;
[mM]ar*) m=3 ;;
[aA]pr*) m=4 ;;
[mM]ay*) m=5 ;;
[jJ]un*) m=6 ;;
[jJ]ul*) m=7 ;;
[aA]ug*) m=8 ;;
[sS]ep*) m=9 ;;
[oO]ct*) m=10 ;;
[nN]ov*) m=11 ;;
[dD]ec*) m=12 ;;
[1-9] | 0[1-9] | 1[0-2]) ;; # numeric month

*)
esac

/usr/bin/cal $m $y

exit

The set statement

• A shell built-in command

• Can be used to assign values to variables

• Without arguments, set shows the values of variables in the environment

• Ordinary arguments reset the values of the variables $1, $2, and so on

– Consider set ‘date‘ as used in the above shellscript
– $1 is set to the day of the week
– $2 is set to the name of the month
– and so on

• You can also specify some options with set, such as -v and -x for echoing the commands to assist in debugging

while and until loops

• The syntax for while loop is

while condition
do

commands
done

• Looking for someone to log in once every minute

while sleep 60
do

if who | grep -s $1
then

echo "$1 is logged in now"
fi

done

Shellscript Programming 19

• You can also use the null statement (:) for an infinite loop; with null statement, the above example – with a break
statement to terminate infinite loop – can be written as

while :
do

sleep 60
if who | grep -s $1 ; then

echo "$1 is logged in now"
break

fi
done

– The null command does nothing and always returns a successful exit status

• The syntax for until loop is

until condition
do

commands
done

• Same example as above

until who | grep -s $1
do

sleep 60
done

if [$?]
then

echo "$1 is logged in now"
fi

• Display lines 15-20 for all files that meet a specified criterion

find ${DIR} -name "${REG_EXP}" -exec head -20 {} \; | tail -5

– Problem: Only displays five lines from last file meeting the criterion

– Fix it by a loop

find ${DIR} -name "${REG_EXP}" -print | while read FILE
do

echo ${FILE}
head -20 ${FILE} | tail -5

done

Things to watch for in shellscript writing

• Specifying the PATH variable

• Specifying the usage of each command

• Using the exit status values

Evaluation of shell variables

Shellscript Programming 20

Table 5: Shell variable evaluation

$var value of var
nothing, if var undefined

${var} same; useful if alphanumerics follow variable name
${var-value} value of var if defined; otherwise value

$var unchanged
${var=value} value of var if defined; otherwise value

if undefined, $var set to value
${var?message} value of var if defined; otherwise print message and exit shell

if message is not supplied, print the phrase
parameter null or not set

${var+value} value if $var defined, otherwise nothing
${var:offset:len} substring expansion; first character at position 0

if offset < 0 position is taken from end of $var
${#var} Number of characters in string contained in var

• Different symbols in the definition of shell variables and their meaning

Patterns and Pattern Matching

• Allows matching of patterns in strings contained in variables

– The pattern can contain literals or wildcard characters *, ?, and [...]

${var#pattern} if pattern matches the beginning of string in variable, delete the shortest part
that matches and return the rest

${var##pattern} if pattern matches the beginning of string in variable, delete the longest part
that matches and return the rest

${var%pattern} if pattern matches the end of string in variable, delete the shortest part that
matches and return the rest

${var%%pattern} if pattern matches the end of string in variable, delete the longest part that
matches and return the rest

${var/pattern/val} Replace pattern with val in the string contained in variable
${var//pattern/val} Replace all patterns with val in the string contained in variable

– While replacing patterns, # at the beginning of pattern anchors pattern to the beginning of string, % at the beginning
of pattern anchors it to end of string

• Examples

foobar=/accounts/facstaff/bhatias/scripts/hello.world
echo ${foobar##/*/}
echo ${foobar%%.*}
echo ${foobar/world/exe}

Filters

• Family of programs that operate on some input (preferably stdin) and produce some output (preferably stdout)

• Exemplified by grep, tail, head, sort, tr, uniq, wc, sed, and awk

• sed and awk are derived from grep and are also known as programmable filters

Shellscript Programming 21

– grep uses a regular expression for the pattern to be matched

– The regular expression is the same as used by ed – the underlying editor for vi and ex

– sed and awk generalize the pattern as well as the action

Handling interrupts

• One of the most important things in a shellscript is to properly handle interrupts

• You should delete any temporary files when the user interrupts the script

• In Korn/Bourne shell, the syntax for interrupt handling is

trap commands signal

• The commonly used signals for shellscripts are 2 (for ˆC), 14 (for alarm timeout), and 15 (for software termination via
kill)

• If $TMP contains the name of a temporary file, you should remove it if the user hits ˆC or kill by

trap "rm -f $TMP ; exit 1" 2 15

Parsing options

• In Unix, the options are specified with a command line switch - followed by the option identifier

• The parameters are generally specified after the options have been entered on the command line

• A typical example of a Unix command is

ls [-altr] [filename]

where everything within the square brackets is optional

• The parsing of options should work in a way that the options and arguments, if any, are captured and then, the parameter
list is captured

• This is achieved in Bourne shell by using the command getopts and its associated variables OPTIND and OPTARG

• The getopts command succeeds if there is an option left to be parsed and fails otherwise

• The OPTIND variable is set to the command line position of the next option as the options are parsed by getopts

• The OPTARG returns the expected option value from getopts

• Example

#!/bin/sh

while getopts abcdf:h OPTNAME
do

case $OPTNAME in
a) echo Option a received

;;
d) set -x

;;
f) echo Option f received

Shellscript Programming 22

echo Optional argument is: $OPTARG
;;

h | \?) echo usage: $0 [-abc] [-f filename] parameter1 parameter2 ...
echo Options are:
echo " -d : Turn debugging on"
echo " -h : Print help (this message)"
exit 1
;;

esac
done

shift ‘expr $OPTIND - 1‘

echo The number of parameters is: $#
echo The parameters are: $*

Filename generation

• Shell can generate filenames to match the names of existing files by using metacharacters

• Filename generation metacharacters are also called wild cards

• The ? metacharacter

– Matches one and only one character in the name of an existing file

– READ?ME will match READ_ME, READ.ME, and READ-ME but not README

• The * metacharacter

– Matches any number of characters, including zero, in a filename

– READ* will match READ_ME, READ.ME, READ-ME, and README but not TOREAD

– You can combine the ? and * to list all the hidden files by the expression .??*

Automating scripts

• Use cron

• Make sure that the script is not already running

ps aux | grep "$0" | grep -v grep

• Another way

echo $$ > /tmp/$0.pid

If you want to kill the currently running process

kill ‘cat /tmp/$0.pid‘

