Dynamic memory allocation

Introduction

e Fixed-size data structures
e Have to declare the size of arrays, and may end up going for too much
e Contradicts the savings of bytes we have been talking about

e Solution: Get only as much memory as needed — no more and no less — at run time

Dynamic memory allocation

e Enables a program to obtain more memory space at execution time and to release memory when it is no longer needed
e Limit for dynamic memory allocation can be as large as the amount of virtual memory available on the system
e The function malloc allocates storage for a variable and returns a pointer to it
e ANSI version is prototyped as
void » malloc (unsigned int);
— void = isused to return a generic pointer
e Assume the declarations

char xp;
int n = ...;

e The assignment statement
p = malloc(n);

requests a block of memory space consisting of n bytes

If n consecutive bytes are available, the request is granted

The address of the first byte is assigned to p

If the call is unsuccessful, p is assigned NULL

It is a good idea to follow the malloc () by

if (p == NULL)

The allocated memory block can be treated the same as if it had been declared by using the statement
char pln]

if that were possible (n is not a constant)
e Any integer expression can be used as an argument to ma 1 1oc instead of only a constant-expression in array declaration
e malloc gives us more freedom with respect to when and where we reserve the memory

e Recommended use of malloc

person_info_t x person;
person = (person_info_t %) malloc (sizeof (person_info_t));

Dynamic memory allocation 2

e Memory is deallocated by using the free function

Memory is returned to the system to be reallocated in future

The memory allocated to the variable person above can be freed by using the statement
free (person);

Since the pointer is passed using call-by-value, it is not set to NULL

free (NULL) ; is valid and results in no action

e Caution

1.

If malloc is used to allocate anything other than a character string, it should be typecast to avoid the type-conflict
errors

. A structure’s size is not necessarily the sum of the sizes of its members; this is so because of various machine-

dependent boundary alignment requirements; sizeof operator resolves this problem

. Not returning dynamically allocated memory when it is no longer needed can cause the system to run out of memory

prematurely — a phenomenon known as “memory leak”

. Do not attempt to £ ree memory not allocated through malloc

5. Do not attempt to refer to memory that has been freed

e The function realloc (ptr, size)

Used to increase or decrease the allocated space

Changes the size of the block referenced by pt r to size bytes and returns a pointer to the [possibly moved] block
The values returned by the function is nul1l if the memory allocation fails

If successful, the function returns a pointer to the first byte

The contents of the block are left unchanged up to the lesser of the new and old sizes; contents may be copied if the
block needs to be moved

The function free (p) ; can also be written as realloc (p, 0);

