
Dynamic memory allocation

Introduction

• Fixed-size data structures

• Have to declare the size of arrays, and may end up going for too much

• Contradicts the savings of bytes we have been talking about

• Solution: Get only as much memory as needed – no more and no less – at run time

Dynamic memory allocation

• Enables a program to obtain more memory space at execution time and to release memory when it is no longer needed

• Limit for dynamic memory allocation can be as large as the amount of virtual memory available on the system

• The function malloc allocates storage for a variable and returns a pointer to it

• ANSI version is prototyped as

void * malloc (unsigned int);

– void * is used to return a generic pointer

• Assume the declarations

char *p;
int n = ...;

• The assignment statement

p = malloc(n);

requests a block of memory space consisting of n bytes

– If n consecutive bytes are available, the request is granted

– The address of the first byte is assigned to p

– If the call is unsuccessful, p is assigned NULL

– It is a good idea to follow the malloc() by

if (p == NULL) ...

– The allocated memory block can be treated the same as if it had been declared by using the statement

char p[n]

if that were possible (n is not a constant)

• Any integer expression can be used as an argument to malloc instead of only a constant-expression in array declaration

• malloc gives us more freedom with respect to when and where we reserve the memory

• Recommended use of malloc

person_info_t * person;
person = (person_info_t *) malloc (sizeof (person_info_t));

Dynamic memory allocation 2

• Memory is deallocated by using the free function

– Memory is returned to the system to be reallocated in future

– The memory allocated to the variable person above can be freed by using the statement

free (person);

– Since the pointer is passed using call-by-value, it is not set to NULL

– free (NULL); is valid and results in no action

• Caution

1. If malloc is used to allocate anything other than a character string, it should be typecast to avoid the type-conflict
errors

2. A structure’s size is not necessarily the sum of the sizes of its members; this is so because of various machine-
dependent boundary alignment requirements; sizeof operator resolves this problem

3. Not returning dynamically allocated memory when it is no longer needed can cause the system to run out of memory
prematurely – a phenomenon known as “memory leak”

4. Do not attempt to free memory not allocated through malloc

5. Do not attempt to refer to memory that has been freed

• The function realloc(ptr, size)

– Used to increase or decrease the allocated space

– Changes the size of the block referenced by ptr to size bytes and returns a pointer to the [possibly moved] block

– The values returned by the function is null if the memory allocation fails

– If successful, the function returns a pointer to the first byte

– The contents of the block are left unchanged up to the lesser of the new and old sizes; contents may be copied if the
block needs to be moved

– The function free(p); can also be written as realloc (p, 0);

