
The Make Utility

Independent compilation

• Large programs are difficult to maintain

• Problem solved by breaking the program into separate files

• Different functions placed in different files

• The main function appears in only one file, conventionally known as main.c

• Advantages

– Reduction in complexity of organizing the program

– Reduction in time required for compilation

∗ Each file is compiled separately
∗ Only those files are recompiled that have been modified

• Compiler creates object files corresponding to each source file

• The object files are linked together to create the final executable

• Compilation time is reduced because linking is much faster than compilation

• Source files are compiled separately under Unix using the -c option to the compiler

gcc -c main.c

• The entire sequence of commands to create an executable can be specified as

gcc -c main.c
gcc -c func.c
gcc -o prog main.o func.o

Header files

• Used to keep information common to multiple source files

• Files need the same #define declarations and the same type declarations (struct and typedef)

• More convenient to declare these declarations in a single header file

• Header file can be used in all the files using #include

• Such a process avoids duplication and allows for easier modification since a constant or type declaration need only be
changed in one place

• Guidelines for good header file usage

– Header files should contain only

∗ Constant definitions
∗ Type declarations
∗ Macro definitions
∗ Extern declarations
∗ Function prototypes

The Make Utility 2

– Header files should not contain

∗ Any executable code
· No function definitions

∗ Definition of variables
· Only exception is to declare variables
· Every variable declaration should be an extern declaration
· Inclusion of variable definitions in header file causes multiple definitions of the same symbol which is a

linkage error

• Organization of header files

– More a matter of style

– Preferable to have a logical organization

– By convention, the files have a suffix .h but it is not required by the C preprocessor

∗ It is also recommended as some utilities (such as make) distinguish between C source files and header files
using this convention

– Advisable to split the header file into multiple header files for large projects

∗ const.h – for constant definitions
∗ types.h – for type definitions
∗ extern.h – for external variable declarations
· Common to define all global variables in the file main.c

– Preferable order of inclusion

∗ Include files in the following order
#include <stdio.h>
#include "const.h"
#include "types.h"
#include "extern.h"

∗ Important because types may need constants, and extern declarations may need types

• Preprocessor trickery

– Alternative to defining all global variables in main.c

– Use a preprocessor trick to cause extern.h to both declare and define global variables

– The file of extern declarations has entries like

extern int x;

– The variables are not defined in main.c or any other file; instead the lines of code shown below are placed in
main.c (or the source file containing main())

#define extern /* Define extern to nothing */
#include "extern.h"
#undef extern /* Revert to no change for safety */

∗ The first line defines extern to nothing or white space
∗ This has the effect of deleting all occurrences of the word extern in the header file
∗ Any extern declaration without the keyword extern is a definition
∗ In all files except main.c, the variable x is qualified by extern, and the global variables are defined exactly

once

– Disadvantages of this technique

∗ Global variables cannot be easily initialized at compile time
∗ Initializations can be included with more preprocessor trickery but may not be worth the trouble

The Make Utility 3

extern int x /* no semicolon */
#ifdef extern

= 2 /* initialize */
#endif

; /* end of declaration */

∗ This is the template to declare each variable

• Header files of function prototypes

– Function prototypes need to be included to allow proper type checking

– Prototypes are strongly recommended to remove the problem of [accidentally] using a function before it is defined

– Omission of function prototypes loses all type checking of function arguments and may cause compiler or run-time
errors

– It is strongly recommended to maintain a header file containing a prototype for every function

– No strict need to include prototypes in the files where the functions are defined but this is useful in checking that
the declarations in the header file match the actual definitions

• Automatic generation of header files

– Possible by using the grep and sed utilities to extract all function definitions

– All you need to do is to extract the function definitions and add a semicolon at the end

– Assumptions

∗ Function definitions start at the first character of a line
∗ The entire list of function parameters are on a single line

The Make Utility

• Utility to aid in the design and maintenance of multiple-file programs

• Relieves the programmer of the burden of remembering which files need recompilation

– Examines the date of modification of files to see if they have changed

– Recompiles the files if above is true

• Requires the use of a special file (called description file) in the directory, called Makefile or makefile

• Examines Makefile to determine the dependencies needed to build the executables

– Sorts out dependency relations among files

– Automatically recompiles only those files that have been changed after building the executable, and links them into
the executable

• Based on non-procedural programming techniques, such as backtracking used in logic programming languages

The Makefile

• Used to make a target of the operation, using prerequisites or dependents; the dependents may have other files as prereq-
uisites

– Target could be the name of a file generated by a program

– Target can also be the name of an action to carry out, such as clean

– A prerequisite is a file used as input to build a target

The Make Utility 4

∗ A target may depend on several prerequisites

• Recipe

– Action carried out by make

– Recipe may have one or more commands

– Every recipe line (rule) is started by a tab character

– Recipe creates a target if any of its prerequisites changes

∗ Some recipes may not have any prerequisite

• Sensitive to dependencies such as

source ⇒ object
object ⇒ executable

• Consists of two main types of lines described in the following general syntax

target : dep1 dep2 dep3 ... # Dependency line
cmd # Command line

1. Dependency lines

– Show the dependencies between files
– Exactly one line long; use of backslash as the last character is allowed to extend the line
– The dependencies must be satisfied, possibly by building them as targets in other entries, to build the current

target
– A single target may appear on multiple dependency lines; however, only one of them can be associated with

commands

2. Command lines

– Commands to be executed to compile the files
– Must be on a single line but the use of backslash as the last character of the line allows extended lines
– Must begin with a tab as the first character on line1

– tabs in the Makefile can be checked by the command
cat -v -t -e Makefile

∗ -v and -e options cause all tabs to appear as ˆI
∗ -e option places a dollar sign at the end of each line to enable you to see any terminating white space

– Multiple commands can be specified on successive lines to be executed in sequence
– Multiple commands can be specified on same line if they are separated by a semicolon from each other

• Comments can be specified by the # sign and extend to the end of line

• Blank lines

– Allowed in some places

– Should not separate a dependency line from its commands

– Should not separate lists of commands

• Default goal

– The first available target is built by default

– The default target can also be specified by the special variable .DEFAULT_GOAL
1Most important syntax rule of make

The Make Utility 5

• Targets without prerequisites

– Must have a colon

– Need not be filenames and if so, are always executed

∗ make treats every non-existent target as out-of-date target

– Also known as phony targets

• Variables

– Allow you to define the important files in one place

– Facilitate the modification of objects just once, in case they appear in multiple places

• A simple Makefile

CC = gcc
CFLAGS = -g
TARGET = math
OBJS = main.o square.o cube.o

$(TARGET): $(OBJS)
$(CC) -o $(TARGET) $(OBJS)

main.o: main.c
$(CC) $(CFLAGS) -c main.c

square.o: square.c
$(CC) $(CFLAGS) -c square.c

cube.o: cube.c
$(CC) $(CFLAGS) -c cube.c

clean:
/bin/rm -f *.o $(TARGET)

• Dependency checking (using above Makefile as an example)

– First target to be built is math

– make checks to see if math exists in the current directory

– If it exists, make checks main.o, square.o, and cube.o to see whether any of them are newer than math

– The process in the above step is repeated for each of the *.o files as targets, checking their dependencies, using
later entries in Makefile

– Only after all the prerequisites have been verified and brought up-to-date, make will exit making sure that the file
math is current

– Order of checking dependencies is important, and chain of commands must be issued in the correct order

– It should also be apparent by now why the target name (to the left of the colon) is the same as the filename resulting
from the execution of a command

• Minimizing rebuilds

– If some object files are used in multiple programs, they need to be compiled only once

• Invoking make

– Any target in the Makefile can be built by using the command

The Make Utility 6

make target

– Several targets can be specified in a single invocation of make

make square.o cube.o

– If target is not specified, make attempts to make the first available target in the Makefile

Macros

• Description file entries of the form

NAME = text_string

• Can be referred to subsequently by $(NAME) or ${NAME}

– Parentheses or braces can be dispensed with for macros with single letter names

– Preferable to use braces as it allows the use of parentheses exclusively for library modules

• Permit variation from one build to the next, for example, changing the DEBUG_FLAG from -g to -O

• Can be used anywhere in the Makefile, on both the dependency lines as well as the command lines

• Conceptually, the make utility expands macros before any other processing

• Conventionally, macro names are typed in all upper case letters

• A pound sign (#) ends the definition and starts a comment

• Macro definition can be continued on the next line by using backslash as the last character on the current line

• A macro definition with no string after the equal sign is assigned the null string

• Order of definition of macros is not important

– Cannot redefine a macro once it has been defined in the same file

– Macro must be defined before any dependency line in which it appears

Phony targets

• Typically, we use a target clean to remove derived files

• Make may get confused if there is an actual file named clean

• This can be fixed by declaring clean as phony

.PHONY: clean
clean:

/bin/rm -rf *.o *˜ $(TARGET)

• clean should be the last target as it should not be invoked by default

Implicit rules

• Make utility knows how to build object files from files with extension .c

• The recipes to build object files from .c files may be omitted

The Make Utility 7

• The downside is that the build is performed using just the default flags

• The default to build object file from fubar.c is

gcc -c fubar.c

Suffix rules

CC = gcc
CFLAGS = -g
TARGET = math
OBJS = main.o square.o cube.o
.SUFFIXES: .c .o

$(TARGET): $(OBJS)
$(CC) -o $@ $(OBJS)

.c.o:
$(CC) $(CFLAGS) -c $<

clean:
/bin/rm -f *.o $(TARGET)

Library archive

CC = gcc
CFLAGS = -g
TARGET = math
OBJS = main.o
LIBOBJS = square.o cube.o
LIBS = -lmymath
MYLIBS = libmymath.a
LIBPATH = .
.SUFFIXES: .c .o

$(TARGET): $(OBJS) $(MYLIBS)
$(CC) -o $@ -L. $(OBJS) $(LIBS)

$(MYLIBS): $(LIBOBJS)
ar -rs $@ $(LIBOBJS)

.c.o:
$(CC) $(CFLAGS) -c $<

clean:
/bin/rm -f *.o $(TARGET)

Creating shared objects

Makefile with shared library creation

The Make Utility 8

CC = gcc
CFLAGS = -g
TARGET = math
OBJS = main.o
LIBOBJS = square.o cube.o foo.o
LIB = mymath.so

ALL: $(LIB) $(TARGET)

$(TARGET): $(OBJS)
$(CC) -o $@ $(OBJS) $(LIB)

$(LIB): $(LIBOBJS)
$(CC) -shared -Wl,-soname,$@ -o $@ $(LIBOBJS)

square.o: square.c
$(CC) -fpic -c square.c

cube.o: cube.c
$(CC) -fpic -c cube.c

.c.o:
$(CC) $(CFLAGS) -c $<

.PHONY: clean
clean:

/bin/rm -f *.o *˜ $(LIB) $(TARGET)

