The Make Utility

Independent compilation

e Large programs are difficult to maintain

e Problem solved by breaking the program into separate files

e Different functions placed in different files

e The main function appears in only one file, conventionally known as main. c
e Advantages

— Reduction in complexity of organizing the program
— Reduction in time required for compilation

* Each file is compiled separately
* Only those files are recompiled that have been modified

e Compiler creates object files corresponding to each source file
e The object files are linked together to create the final executable
e Compilation time is reduced because linking is much faster than compilation

e Source files are compiled separately under Unix using the —c option to the compiler
gcc —c main.c
e The entire sequence of commands to create an executable can be specified as

gcc —-c main.c
gcc —c func.c
gcc —o prog main.o func.o

Header files

e Used to keep information common to multiple source files

e Files need the same #define declarations and the same type declarations (struct and typedef)
e More convenient to declare these declarations in a single header file

e Header file can be used in all the files using #include

e Such a process avoids duplication and allows for easier modification since a constant or type declaration need only be
changed in one place

e Guidelines for good header file usage

— Header files should contain only

* Constant definitions
* Type declarations
* Macro definitions
* Extern declarations
* Function prototypes

The Make Utility 2

— Header files should not contain
* Any executable code
- No function definitions
* Definition of variables
- Only exception is to declare variables
- Every variable declaration should be an extern declaration

- Inclusion of variable definitions in header file causes multiple definitions of the same symbol which is a
linkage error

e Organization of header files

More a matter of style

Preferable to have a logical organization

By convention, the files have a suffix . h but it is not required by the C preprocessor

x It is also recommended as some utilities (such as make) distinguish between C source files and header files
using this convention

Adpvisable to split the header file into multiple header files for large projects
* const .h — for constant definitions
* types.h — for type definitions
* extern.h — for external variable declarations
- Common to define all global variables in the file main. c

Preferable order of inclusion

* Include files in the following order
#include <stdio.h>
#include "const.h"
#include "types.h"
#include "extern.h"
* Important because types may need constants, and extern declarations may need types

e Preprocessor trickery

Alternative to defining all global variables inmain.c

Use a preprocessor trick to cause extern.h to both declare and define global variables

The file of extern declarations has entries like

extern int x;

The variables are not defined in main. c or any other file; instead the lines of code shown below are placed in
main.c (or the source file containing main ())

#define extern /+ Define extern to nothing =/
#include "extern.h"
#undef extern /+ Revert to no change for safety =/

*

The first line defines extern to nothing or white space
* This has the effect of deleting all occurrences of the word extern in the header file
* Any extern declaration without the keyword extern is a definition
* In all files except main. c, the variable x is qualified by extern, and the global variables are defined exactly
once
— Disadvantages of this technique

* Global variables cannot be easily initialized at compile time
* Initializations can be included with more preprocessor trickery but may not be worth the trouble

The Make Utility 3

extern int x /+* no semicolon */
#ifdef extern

=2 /* initialize x/
#endif

; /+ end of declaration %/

* This is the template to declare each variable
e Header files of function prototypes

— Function prototypes need to be included to allow proper type checking
— Prototypes are strongly recommended to remove the problem of [accidentally] using a function before it is defined

— Onmission of function prototypes loses all type checking of function arguments and may cause compiler or run-time
errors

— It is strongly recommended to maintain a header file containing a prototype for every function
— No strict need to include prototypes in the files where the functions are defined but this is useful in checking that
the declarations in the header file match the actual definitions

e Automatic generation of header files

— Possible by using the grep and sed utilities to extract all function definitions
— All you need to do is to extract the function definitions and add a semicolon at the end
— Assumptions

+ Function definitions start at the first character of a line
* The entire list of function parameters are on a single line

The Make Utility

e Utility to aid in the design and maintenance of multiple-file programs
e Relieves the programmer of the burden of remembering which files need recompilation

— Examines the date of modification of files to see if they have changed

— Recompiles the files if above is true

Requires the use of a special file (called description file) in the directory, called Makefile ormakefile
e Examines Makefile to determine the dependencies needed to build the executables

— Sorts out dependency relations among files

— Automatically recompiles only those files that have been changed after building the executable, and links them into
the executable

Based on non-procedural programming techniques, such as backtracking used in logic programming languages

The Makefile
e Used to make a target of the operation, using prerequisites or dependents; the dependents may have other files as prereq-
uisites

— Target could be the name of a file generated by a program
— Target can also be the name of an action to carry out, such as clean

— A prerequisite is a file used as input to build a target

The Make Utility 4

* A target may depend on several prerequisites

e Recipe

Action carried out by make

Recipe may have one or more commands

Every recipe line (rule) is started by a tab character

Recipe creates a target if any of its prerequisites changes

* Some recipes may not have any prerequisite

e Sensitive to dependencies such as

source = object
object = executable

e Consists of two main types of lines described in the following general syntax

target : depl dep2 dep3 ... # Dependency line
cmd # Command line

1. Dependency lines

Show the dependencies between files

Exactly one line long; use of backslash as the last character is allowed to extend the line

The dependencies must be satisfied, possibly by building them as targets in other entries, to build the current
target

A single target may appear on multiple dependency lines; however, only one of them can be associated with
commands

2. Command lines

Commands to be executed to compile the files

Must be on a single line but the use of backslash as the last character of the line allows extended lines

Must begin with a tab as the first character on line'

tabs in the Makefile can be checked by the command
cat -v -t —-e Makefile
* —v and —e options cause all tabs to appear as "~ I
* —e option places a dollar sign at the end of each line to enable you to see any terminating white space

Multiple commands can be specified on successive lines to be executed in sequence

Multiple commands can be specified on same line if they are separated by a semicolon from each other

e Comments can be specified by the # sign and extend to the end of line
e Blank lines

— Allowed in some places
— Should not separate a dependency line from its commands

— Should not separate lists of commands
e Default goal

— The first available target is built by default
— The default target can also be specified by the special variable . DEFAULT_GOAL

Most important syntax rule of make

The Make Utility 5

e Targets without prerequisites

— Must have a colon
— Need not be filenames and if so, are always executed
* make treats every non-existent target as out-of-date target

— Also known as phony targets
e Variables

— Allow you to define the important files in one place

— Facilitate the modification of objects just once, in case they appear in multiple places

e Asimple Makefile

CC = gcc

CFLAGS = -g

TARGET = math

OBJS = main.o square.o cube.o

$ (TARGET) : $ (OBJS)
$(CC) —-o $(TARGET) $(OBJS)

main.o: main.c
$(CC) $(CFLAGS) -c main.c

square.o: square.c
$(CC) $(CFLAGS) -c square.c

cube.o: cube.c
S (CC) $(CFLAGS) -c cube.c

clean:
/bin/rm —-f *.o $(TARGET)

e Dependency checking (using above Makefile as an example)

— First target to be built is math
— make checks to see if math exists in the current directory
— Ifitexists, make checks main.o, square. o, and cube. o to see whether any of them are newer than math

— The process in the above step is repeated for each of the « . o files as targets, checking their dependencies, using
later entries in Makefile

— Only after all the prerequisites have been verified and brought up-to-date, make will exit making sure that the file
math is current

— Order of checking dependencies is important, and chain of commands must be issued in the correct order

— It should also be apparent by now why the target name (to the left of the colon) is the same as the filename resulting
from the execution of a command

e Minimizing rebuilds
— If some object files are used in multiple programs, they need to be compiled only once
e Invoking make

— Any target in the Makefile can be built by using the command

The Make Utility

make target
— Several targets can be specified in a single invocation of make
make square.o cube.o

— If target is not specified, make attempts to make the first available target in the Makefile

Macros
e Description file entries of the form
NAME = text_string

e Can be referred to subsequently by $ (NAME) or $ {NAME }

— Parentheses or braces can be dispensed with for macros with single letter names

— Preferable to use braces as it allows the use of parentheses exclusively for library modules
e Permit variation from one build to the next, for example, changing the DEBUG_FLAG from —g to —O
e Can be used anywhere in the Makefile, on both the dependency lines as well as the command lines
e Conceptually, the make utility expands macros before any other processing
e Conventionally, macro names are typed in all upper case letters
e A pound sign (#) ends the definition and starts a comment
e Macro definition can be continued on the next line by using backslash as the last character on the current line
e A macro definition with no string after the equal sign is assigned the null string
e Order of definition of macros is not important

— Cannot redefine a macro once it has been defined in the same file

— Macro must be defined before any dependency line in which it appears

Phony targets

o Typically, we use a target clean to remove derived files
e Make may get confused if there is an actual file named clean

e This can be fixed by declaring clean as phony
.PHONY: clean
clean:

/bin/rm -rf .o x~ $(TARGET)

e clean should be the last target as it should not be invoked by default

Implicit rules

e Make utility knows how to build object files from files with extension . ¢

e The recipes to build object files from . c files may be omitted

The Make Utility

e The downside is that the build is performed using just the default flags

e The default to build object file from fubar. c is

gcc —c fubar.c

Suffix rules

CC = gcc

CFLAGS -g

TARGET = math

OBJS = main.o square.o cube.o
.SUFFIXES: .c .o

$ (TARGET) : $ (OBJS)
$(CC) -o $@ $(OBJS)

$(CC) $(CFLAGS) -c $<
clean:

/bin/rm —-f *.o0 $(TARGET)

Library archive

CC = gcc
CFLAGS = —g
TARGET = math

OBJS = main.o
LIBOBJS = square.o cube.o

LIBS = —-lmymath
MYLIBS = libmymath.a
LIBPATH =

.SUFFIXES: .c .o

$ (TARGET) : $(OBJS) $ (MYLIBS)
$(CC) -o $@ -L. $(OBJS) S (LIBS)

S(MYLIBS): $(LIBOBJS)
ar -rs $@ $(LIBOBJS)

$(CC) $(CFLAGS) -c $<

clean:
/bin/rm —-f *.o0 $(TARGET)

Creating shared objects

Makefile with shared library creation

The Make Utility

ccC = gcc

CFLAGS = -g

TARGET = math

OBJS = main.o

LIBOBJS = square.o cube.o foo.o
LIB = mymath.so

ALL: $(LIB) $(TARGET)

$ (TARGET) : $ (OBJS)
$(CC) -o $@ $(OBJS) $(LIB)

S(LIB): $(LIBOBJS)
$(CC) —-shared -Wl,-soname,$Q@ -o $S@ $(LIBOBJS)

square.o: square.c
$(CC) —-fpic -c square.c

cube.o: cube.c
$(CC) —-fpic -c cube.c
$(CC) $(CFLAGS) —c s<
.PHONY: clean

clean:
/bin/rm -f .o *~ $(LIB) $(TARGET)

