
bash Functions and Arrays

Functions

• More efficients than scripts as they are kept in memory while the script has to be read in

• Help in organizing long scripts into manageable modules

• Defined by one of the two methods (no functional difference between the two forms):

1. Method 1

function fn
{

shell commands
}

2. Method 2

fn()
{

shell commands
}

#!/bin/bash

hello()
{

if [$# -eq 0]
then

echo "Hello World"
return

fi

echo "Hello $*"
return

}

hello
hello John

• A function must be defined in a script before it is being used

• The functions in the environment can be seen in alphabetical order) by the command declare -f

• A function can be deleted by unset -f fn

• Positional parameters in functions work exactly as they do in shellscripts

– Positional parameters are local to the functions

– $0 stays the same inside a function because functions execute in the environment of shellscript

• Local variables

– Variables defined inside a function are local to the function and override a variable with the same name in the calling
script

– The local variables can be declared by using the keywork local (a good practice)

bash Arrays and Functions 2

– The variables not defined with local automatically are declared with global scope

• Return values

– The return values can be used to return a value to the calling function; however, that is not a good way to do this

∗ The return value in calling function will have to be captured in $?
∗ The range of the return value is limited to a max of 255

– The shell way to do this is to print the value

product()
{

echo $(($1 * $2))
}

• Overriding commands

– You can override the commands by using the keyword command

function ls
{

command ls -l
}

– Absence of the keyword command will make the function call itself recursively

Command Precedence

• Commands are executed in the following order of precedence

1. Aliases

2. Keywords (function) and other control statements

3. Functions

4. Built-in commands such as cd and type

5. Scripts and executables, searched through PATH

• The exact version of command used can be found by type

type ls
type -all ls

Arrays in bash

• bash has two types of arrays: one-dimensional indexed arrays and associative arrays

• Any variable can be used as a 1D aray

– Identified as var[index]

Indexed arrays

• Index array need not be declared though they can be using the command declare -a

• You can also declare arrays of any size by

bash Arrays and Functions 3

declare -a color[3]

with the elements indexed from 0 to 2

– In reality, the index above is ignored

– You can simply add more elements to it by assigning an element with a new index

• Accessed by an index

– Index starts at 0

– Index can be any positive integer, up to 599147937791

– Arithmetic expressions are supported in index

• Values are assigned by

var[index]=value

• Examples

color[1]="red"
color[2]="green"
color[0]="blue"

– Values need not be assigned in any specific order

• Another way to assign values, known as compound statement, is

color=([2]=green [1]=red [0]=blue)

• If you specify the elements in order, you can specify them as

color=(red blue green)

• The above values can be accessed by

for i in 0 1 2
do

print ${color[$i]}
done

– You must use the curly braces to access array elements; otherwise, you’ll just get the first array element and the
subscript

• If you specify an index at some point in compound assignment, the values get assigned in consecutive locations from that
point on

color=(red [2]=blue green)

– This array has four elements, with index 1 element null

– Reassigning to an existing array with a compound statement will lose existing values in array

color=([5]=violet yellow)

• You can see all the values by using * or @

echo ${color[*]}

bash Arrays and Functions 4

– * expands the array to one string with values separated by first characters of IFS

– @ expands the array to separate words

• The indices that have been assigned can be listed by ! as

echo ${!color[@]}

• The number of elements, or the length of a specific element, can be found by #

echo ${#color}
echo ${#color[1]}

• List all the elements by

for i in ${!color[@]}
do

echo ${color[$i]}
done

• Use of double quotes

– Use of double quotes around the variable makes the array elements appear as one

for i in ${color[*]}
do

echo ${i}
done

for i in "${color[*]}"
do

echo ${i}
done

• Deleting array elements

– Any array element can be deleted by using the command unset

unset color[1]
echo ${color[*]}
echo ${!color[*]}
echo ${#color}

• Extracting range of indices

– You can extract n elements starting at index m from an array by

${array[*]:m:n}
echo ${colors[*]:3:2}

• Search and replace an element

echo ${colors[*]/red/gold}

• You can also use the pattern to remove an item

echo ${colors[*]/red/}

• Reading an array from a file

bash Arrays and Functions 5

var=$(cat file)
echo $var
echo ${#var}
echo ${!var[*]}
var=($(cat file))
echo $var
echo ${#var}
echo ${!var[*]}

Associative arrays

• The index can be any arbitrary string

• Associative arrays must be declared with typeset -A or declare -A

• Examples

declare -A shade
shade[apple]=red
shade[banana]=yellow
shade[grape]=purple

• The above values can be accessed by

for i in apple banana grape
do

print ${shade[$i]}
done

• You can access all elements by using * for the index, for both indexed as well as associative arrays

• Other features of indexed arrays are available as well

for i in ${!shade[@]}
do

printf "%-10s%-10s\n" $i ${shade[$i]}
done

