
Source Control Management System (SCM) – git

Project management

• Difficult to keep track of different versions of a file if several people are making updates

– Source code and documentation files change frequently

– Bugs need to be fixed (but keep a copy of the older working program)

– Programs may need to be enhanced

– Software is released at non-regular intervals

• Problem is harder if there is more than one version of the program in circulation

• Different people may attempt to fix different bugs by modifying different parts in the same file

• Problems solved by utilities to manage and track changes in the files

– Source code management systems – SCCS, RCS, CVS, SVN, git

– Record a specific version or revision of the file so that it can be recovered in the event of a problem in that version

– Usable for managing source code and software documentation

– Control the set of people allowed to update a file

– Record the name of the person who made the change, and a comment about what was changed (log commentary)

– Provide control over new revision creation (major or minor revision), depending upon the version

– Possible to regenerate any version of the file that was saved

– Make sure that only one person can modify the file at any time

Goals of project control

• Ability to group files by revision (snapshot)

• Support for product abstraction

– Structuring a group of source files

• Support for concurrent development

• Ability to rebuild product revisions

• Support for multiple target platforms

• Control of released files

git

• Created by Linus Torvalds as an open source project to maintain the code base for Linux

• Used to manage multiple revisions of files

– Older versioning systems used delta-based version control

– git uses snapshots to save versions

• Automates the storage, retrieval, logging, identification, and merging of revisions

• Saves old revisions in a space efficient manner



Source Control Management System (SCM) – git 2

• Maintains a complete history of changes

• Resolves access conflicts

• Maintains a tree of revisions

• Controls releases and configurations

Creating personal git server

• Normally, you will be provided a git server to enable collaborative code development in an organization

– When you are working on individual projects, you will need to create your personal git server

• Steps to create your personal git server

– Set up a password-less ssh login

ssh-keygen -t rsa

∗ Use the default location to store the key
∗ Specify a pass-phrase when prompted; remember the pass-phrase
∗ Note down the location of the public key

– If you are using a remote machine as git server, you need to copy the keys to the server (assuming username ssoid
on remote server)

cat ˜/.ssh/id_rsa.pub | ssh ssoid@remote-server "mkdir -p ˜/.ssh && \
cat >> ˜/.ssh/authorized_keys"

cat ˜/.ssh/id_rsa.pub | ssh bhatia@delmar.umsl.edu "mkdir -p ˜/.ssh && \
cat >> ˜/.ssh/authorized_keys"

– The following commands will get rid of passphrase query every time you log in remotely:

exec ssh-agent bash
ssh-add

You will enter passphrase just once when prompted

– ssh into the server as ssoid and create a project directory for git and create an empty repository

mkdir -p ˜/projectname.git
cd ˜/projectname.git
git init --bare

– exit to get back to your local machine

– Create a git repository on local machine and initialize it

mkdir -p ˜/git/project
cd ˜/git/project
git init

– Add files into the repository

git add .

∗ Run the above command every time you create new files in the directory

– Whenever you have a significant change in the file, you need to commit the change

git commit -m "message" -a
git commit -m "message" file.c
git remote add origin ssoid@remote-server:project.git

git remote add origin bhatias@delmar.umsl.edu:project.git
git push origin master



Source Control Management System (SCM) – git 3

• You can clone your remote project on a new machine

git clone ssoid@remote-server:project.git
mkdir ˜/tmp
cd ˜/tmp
git clone bhatias@delmar.umsl.edu:project.git

Git workflow

• When setting up git, a new subdirectory with the name .git gets created

• Subdirectory contains three subdirectories

– Working directory – directory that contains your files

– Index – staging area for files that eventually get committed

– Head – points to the last commit that was made.

– The flow is your working directory, then add to staging area, then commit moves files to head.

• Git commands to move files through workflow

– cd project Change directory to where your files are located.

– git init Use this command to initialize your working directory the first time for use with git; After first time,
you don’t have to do this again.

– git add * or git add . moves changes to index area

– git commit -m "commit message" moves changes to head area; note that files are not in remote reposi-
tory yet

– git push origin master Use this command the first time

∗ Compresses changes and uses scp to push files to remote repository

– git push use this command after the first time

– If you have a different remote server you want to push changes to use the following command

git remote add origin loginid@remoteserver.com:project.git

Git Logs

• Git keeps logs of everything you do.

• Git commands for various log output.

– git log Show latest changes

– git log --author=Chev Show only changes by Chev

– git log --pretty=oneline Shows compressed description of commits on one line.

– git log --graph --oneline --decorate --all Outputs nice looking logs

– git log --name-status Shows which files have changed with each commit

– git log --help More options on output.

Git Tagging

• Used to name a particular commit



Source Control Management System (SCM) – git 4

– Useful for naming a public release of software.

– git tag 1.0.0 17948a9735

∗ 17948b9725 is 1st 10 digits of a commit id, which can be obtained by looking at the logs

Git and Recovering Deleted files

• Suppose you have deleted important work on your computer that you had already committed to git

– Let’s say this file is called file.txt

• This is the command to get your file back from remote server

git archive --remote=ssoid@delmar.umsl.edu:project.git HEAD file.txt | tar -x > file.txt

• This is the command to get your file back form local cached copy

git checkout -- file.txt

• These series of commands will reset local cache and retrieve a files from remote.
git fetch origin
git reset --hard origin/master

Git useful commands and options

• gitk Graphical User Interface for git, linux systems

• git config color.ui true colorize output from git

Free Git Book

• http://git-scm.com/book/en/v2


