Source Control Management System (SCM) — git

Project management

Difficult to keep track of different versions of a file if several people are making updates

Source code and documentation files change frequently

Bugs need to be fixed (but keep a copy of the older working program)

Programs may need to be enhanced

— Software is released at non-regular intervals
Problem is harder if there is more than one version of the program in circulation
Different people may attempt to fix different bugs by modifying different parts in the same file
Problems solved by utilities to manage and track changes in the files

— Source code management systems — SCCS, RCS, CVS, SVN, git

— Record a specific version or revision of the file so that it can be recovered in the event of a problem in that version
— Usable for managing source code and software documentation

— Control the set of people allowed to update a file

— Record the name of the person who made the change, and a comment about what was changed (log commentary)
— Provide control over new revision creation (major or minor revision), depending upon the version

— Possible to regenerate any version of the file that was saved

— Make sure that only one person can modify the file at any time

Goals of project control

git

Ability to group files by revision (snapshot)
Support for product abstraction

— Structuring a group of source files
Support for concurrent development
Ability to rebuild product revisions
Support for multiple target platforms

Control of released files

Created by Linus Torvalds as an open source project to maintain the code base for Linux
Used to manage multiple revisions of files

— Older versioning systems used delta-based version control

— git uses snapshots to save versions
Automates the storage, retrieval, logging, identification, and merging of revisions

Saves old revisions in a space efficient manner



Source Control Management System (SCM) — git 2

Maintains a complete history of changes

e Resolves access conflicts

Maintains a tree of revisions

Controls releases and configurations

Creating personal git server

e Normally, you will be provided a git server to enable collaborative code development in an organization

When you are working on individual projects, you will need to create your personal git server

e Steps to create your personal git server

Set up a password-less ssh login

ssh-keygen -t rsa

* Use the default location to store the key
* Specify a pass-phrase when prompted; remember the pass-phrase
* Note down the location of the public key

If you are using a remote machine as git server, you need to copy the keys to the server (assuming username ssoid
on remote server)

cat “/.ssh/id_rsa.pub | ssh ssoid@remote-server "mkdir -p ~/.ssh && \
cat >> 7/.ssh/authorized_keys"

cat "/.ssh/id_rsa.pub | ssh bhatia@delmar.umsl.edu "mkdir -p “/.ssh && \
cat >> 7 /.ssh/authorized_keys"

The following commands will get rid of passphrase query every time you log in remotely:

exec ssh—agent bash
ssh—add

You will enter passphrase just once when prompted
ssh into the server as ssoid and create a project directory for git and create an empty repository
mkdir -p “/projectname.git
cd " /projectname.git
git init --bare
exit to get back to your local machine
Create a git repository on local machine and initialize it
mkdir -p “/git/project
cd “/git/project
git init
Add files into the repository
git add
* Run the above command every time you create new files in the directory
Whenever you have a significant change in the file, you need to commit the change
git commit -m "message" -a
git commit -m "message" file.c
git remote add origin ssoid@remote-server:project.git

git remote add origin bhatias@delmar.umsl.edu:project.git
git push origin master



Source Control Management System (SCM) — git 3

e You can clone your remote project on a new machine

git

clone ssoid@remote-server:project.git

mkdir ~/tmp

cd “/tmp

git clone bhatias@delmar.umsl.edu:project.git

Git workflow

e When setting up git, a new subdirectory with the name . git gets created

e Subdirectory contains three subdirectories

Working directory — directory that contains your files
Index — staging area for files that eventually get committed
Head - points to the last commit that was made.

The flow is your working directory, then add to staging area, then commit moves files to head.

e Git commands to move files through workflow

Git Logs

cd project Change directory to where your files are located.

git init Use this command to initialize your working directory the first time for use with git; After first time,
you don’t have to do this again.

git add *orgit add . moves changes to index area

git commit -m "commit message" moves changes to head area; note that files are not in remote reposi-
tory yet

git push origin master Use this command the first time
* Compresses changes and uses scp to push files to remote repository
git push use this command after the first time

If you have a different remote server you want to push changes to use the following command

git remote add origin loginid@remoteserver.com:project.git

e Git keeps logs of everything you do.

e Git commands for various log output.

git log Show latest changes

git log -—author=Chev Show only changes by Chev

git log —-—-pretty=oneline Shows compressed description of commits on one line.
git log —--graph —--oneline —--decorate --all Outputs nice looking logs
git log —--name-status Shows which files have changed with each commit

git log -—-help More options on output.

Git Tagging

e Used to name a particular commit



Source Control Management System (SCM) — git 4

— Useful for naming a public release of software.
- git tag 1.0.0 17948a9735
* 17948b9725 is Ist 10 digits of a commit id, which can be obtained by looking at the logs

Git and Recovering Deleted files

e Suppose you have deleted important work on your computer that you had already committed to git
— Let’s say this file is called file.txt
e This is the command to get your file back from remote server
git archive --remote=ssoid@delmar.umsl.edu:project.git HEAD file.txt | tar -x > file.txt
e This is the command to get your file back form local cached copy
git checkout —-- file.txt
e These series of commands will reset local cache and retrieve a files from remote.
git fetch origin
git reset —--hard origin/master
Git useful commands and options
e gitk Graphical User Interface for git, linux systems

e git config color.ui true colorize output from git
Free Git Book

e http://git-scm.com/book/en/v2



