
File Processing

Files

• Used for permanent storage of large quantity of data

• Generally kept on secondary storage device, such as a disk, so that the data stays even when the computer is shut off

Data hierarchy

• Bit

– Binary digit

– true or false

– quarks of computers

• Byte

– Character (including decimal digits)

– Atoms

– Smallest addressable unit (difficult to get by itself)

– Generally, eight bits to a byte though there used to be 6-bit bytes in the 60s

• Word

– Collections of bytes

– Molecules

– Smallest unit fetched to/from memory at any time

– Number of bits in word is generally used as a measure of the machine’s addressability (32-bit machine)

• Field

– Collection of bytes or even words

– Exemplified by the name of an employee (30 characters/bytes, or 8 words on a 32-bit machine)

• Record

– struct in C

– Collection of fields

• File

– Collection of records

– Each record in the file identified with a unique [set of] field[s], called key

– I use student name as a key to keep the file of grades

– The payroll of a large company may use the social security number as the key

– Sequential file

∗ Records follow one after the other

– Random access file

∗ The location of a record is a function of the key
∗ Mostly used in databases



Input and Output 2

– Indexed sequential file

∗ The location of a record is dependent on an index kept in a separate file

Files and streams

• C views each file simply as a sequential stream of bytes

• Each file ends with a special end-of-file marker, CTRL-D in Unix, CTRL-Z in Windows

• Streams

– Any source for input or any destination for output

– Communication channels between files and programs

– Accessed through a file pointer of type FILE *

• Opening a file

– Equivalent to associating a stream with the file

– Returns a pointer to a FILE structure

∗ Defined in <stdio.h>
∗ The pointer structure contains information used to process the file

· file descriptor – Index into the operating system array called open file table
· Each element in the open file table contains a file control block that is used by the OS to administer the

corresponding file
∗ FILE structure is dependent upon the operating system

· Members of the structure vary among systems based on how each system handles its files

– Three files and their associated streams are automatically opened at the beginning of program execution

1. stdin – Standard input
∗ Stream to read data from the keyboard

2. stdout – Standard output
∗ Print data on the screen (buffered output)

3. stderr – Standard error
∗ Prints data on screen as soon as it is available

– Standard streams can be redirected by using the feature from operating system

– A file must be opened before it is referred to in the program

∗ The standard streams (stdin, stdout, and stderr) are automatically opened whenever you run a program

• Standard library

– Provides many functions for reading data from files and for writing data into the files

– fgetc ( fd )

∗ Reads one character from the file stream associated with fd
∗ If there is no more data in the file, it returns the constant EOF
∗ getchar() can also be written as fgetc ( stdin )

– fputc ( ch, fd )

∗ Writes the character ch into the file stream associated with fd
∗ putchar ( ch ) can also be written as fputc ( ch, stdout );

∗ ch is actually of type int but only the least significant 8 bits are considered

– fgets ( str, n, stream )



Input and Output 3

∗ Get a string str containing n characters from the stream
∗ If the line terminates by reading in \n before n characters, fgets stops reading at that point
∗ gets (str ) is the equivalent function to read in a string str from stdin

– fputs ( str, stream )

∗ Put the string str on the stream
∗ Does not need the specification of size but keeps writing until it encounters the end of string character ’\0’
∗ puts ( str ) is the equivalent function to write a string to stdout

– Other file I/O functions include fscanf, fprintf, fread, and fwrite

Creating a sequential access file

• No file structure imposed by C, therefore, structure of a file is entirely up to the programmer

• The file variable name must be declared with the FILE * type

• Every file is handled by a separate FILE * variable, or file descriptor

• Opening a file

– Process of connecting a program to a file, or associating a stream with a file

– Use the function fopen

fd = fopen ( name, mode );

∗ FILE * fd is the file descriptor or the file variable
∗ char * name is the actual name of the file (vectors.dat)
∗ char * mode indicates if the file is to be read or written into

Different modes are
r Read. Only to be used for existing files
w Write. If the file already exists, its old contents are lost;

otherwise, the file is created
a Append. If the file does not exist, it is created

Repositioning operations are ignored
If the file does not exist,it is created

r+ Update an existing file (read and write)
w+ Create an empty file and open it for both read and write

If the file exists, its contents are discarded
a+ Same as a but reading also possible

Repositioning operators are allowed for reading only
If the file is written into, the position is moved back to the end of file

– If fopen succeeds, it returns a pointer to be used to identify the stream in subsequent operations

– If fopen fails, it returns a NULL

∗ The cause of error is captured in variable errno

if ( ( fd = fopen ( "vectors.dat", "w" ) ) == NULL )
{

printf ( "Error opening the file vectors.dat\n" );
return ( 1 );

}

– Once the file is open, actual reading and writing can be done by several functions, including fscanf, fgets,
fputs, and so on

– Example: wr_fl.c



Input and Output 4

– Cautions

∗ Opening an existing file with mode "w" discards the current contents of the file without warning
∗ You must open a file and attach it to a file descriptor before using it in the program
∗ Never open a non-existent file for reading
∗ Always check whether the file was opened properly
∗ The connected stream/file is fully buffered by default if it is known to not be an interactive device

– Each process is allowed to open at least FOPEN_MAX files (defined in stdio.h)

– A new specifier x can be added to any w specifier to prevent accidental overwriting of an existing file

∗ The operation will fail if a file by that name already exists

• Closing a file

– Disconnect the file stream from the process

– Use the function fclose

fclose ( fd );

∗ Writes any buffered data for the named stream FILE * fd and then, closes the stream
∗ Also frees any buffers allocated by the standard I/O system
∗ Performed automatically for all open files upon calling exit
∗ Returns 0 on success
∗ Returns EOF on error (such as trying to write to a file that was not opened for writing)

· Even if the call fails, the stream will no longer be associated with the file or its buffers

– Example: fcpy.c – Copying a text file to another

• Other useful functions

– freopen ( filename, mode, fd ) opens the file named by filename and associates the stream pointed
to by fd with it

∗ Reuses fd to either reopen the file specified by filename or to change its mode
∗ The mode argument is used just as in fopen
∗ The original stream is closed, regardless of whether the open ultimately succeeds
∗ If the open succeeds, freopen returns the original value of fd
∗ Typically used to attach the preopened streams associated with stdin, stdout, and stderr to other files
∗ If filename is null, the function attempts to change the mode of fd
∗ The error indicator and eof indicator are automatically cleared

– feof ( fd ) returns a non-zero if the end of stream fd has been reached, and zero otherwise

∗ The indicator is set by a previous operation on the stream that attempts to read past the end of file
∗ Useful to check end of file

– ferror ( fd ) is non-zero if an error has occurred while reading from or writing into the stream fd

∗ The error indication lasts until the stream is closed, or the error indication is cleared by clearerr()

– clearerr ( fd ) resets the error indication and EOF indication to zero on the stream fd

• File position pointer

– Part of the FILE * structure

– Always points at the location of the byte in file where the file is to be read from, or written into

– The location from the beginning of the file is expressed in number of bytes and is known as the file offset

– May be manipulated by several commands

– rewind ( fd )



Input and Output 5

∗ Function to reset the file position pointer to the beginning of the file
∗ Does not return a value

• Sequential access files are generally not updated in-place; if the file needs to be modified, it should be completely
rewritten

Line input and output

• char * fgets ( char *str, int n, FILE *fd )

– Reads at most n-1 characters from the stream fd into the array str

– Newline character terminates reading after having been read into the str

– Returns pointer to str

– Returns NULL if end-of-file is encountered and no characters have been read

• int fputs ( char *str, FILE *fd )

– Writes the string str to the stream fd

– A newline character is written only if it is a part of str

– Returns non-zero if an error occurs, otherwise returns zero

• char * gets ( char * str )

– Version of fgets to use with stdin

– Reads characters until a newline character is encountered

– The newline character is not placed into str

• int puts ( char * str )

– Version of fputs to use with stdout

– A newline character is automatically added

Unformatted I/O and direct access

• Random access files

– Structured so as to allow the positioning of file pointer anywhere within the file in a meaningful manner (generally,
beginning of record)

– Preferable to have fixed-size records to easy repositioning

– This ensures that records do not have to be searched to find the right one

– Ideal for most large databases, such as airlines reservation system, bank accounts, and inventory files

– Exact location of the record, relative to the beginning of the file, can be calculated as a function of the record key

– You can update a specific record in a random access file without modifying other records

• Functions fread and fwrite for buffered binary I/O

• Allows non-ASCII representation of numbers to be written to a file

• Binary files

– More efficient to write in the format that is used internally in the machine, as no conversion is needed

– Take less space than ASCII files



Input and Output 6

– Cannot be directly printed or viewed on screen

– Not as portable as the ASCII files

• Example to write a binary sequence:

int i = 19;
FILE * fd;
fd = fopen ( ... );
...
fwrite ( &i, sizeof ( int ), 1, fd );

• The syntax is:

fread ( buf_ptr, size, nitems, stream );
fwrite ( buf_ptr, size, nitems, stream );

– fread transfers a specified number of bytes from the location in the file specified by the file descriptor to a buffer
in the memory beginning with the specified address

– fwrite transfers a specified number of bytes beginning at a specific location in memory to the file in the location
pointed to by the file descriptor

– char * buf_ptr – Pointer to a buffer (the address of an object in memory)

– int size – The size (in bytes) of one element in the buffer

– int nitems – Number of elements in the buffer

– FILE * stream – Pointer to the stream

• The following two statements achieve the same effect, except for output format (compare number of characters trans-
ferred)

fprintf ( fd, "%d", number );
fwrite ( &number, sizeof ( int ), 1, fd );

• Both functions return an integer value, equal to the number of items actually read or written (normally equal to nitems)

• If nothing at all can be read, possibly due to an end-of-file, the returned value is 0 (not EOF)

• End-of-file can be distinguished from a read error by one of the functions feof or ferror

• Direct access (or random access)

– Used to update a file (read, modify, write)

– Preferable to have all records to be the same length fixed in advance

∗ Allows access to a record directly without having to scan through other records
∗ Location of each record can be calculated relative to the beginning of the file
∗ Some records in the file may be empty
∗ Data can be inserted without destroying surrounding data

– Locating a position in a file can be accomplished by the function fseek

– fseek ( FILE * stream, long offset, int whence )

∗ stream – file pointer
∗ offset – Position expressed in bytes, relative to a point specified by whence
∗ whence can have the following three values (defined in stdio.h

SEEK_SET – offset is relative to the beginning of the file; offset = 0 specifies the first possible
position in file



Input and Output 7

SEEK_CUR – offset is relative to the current position; offset = -1 moves the file pointer back one
byte

SEEK_END – offset is relative to the end of the file (and must therefore be negative)
∗ Returns zero if the call was successful; non-zero otherwise
∗ fseek destroys character pushback accomplished through ungetc, if called before the getc call

– The current position of the file pointer can be accessed by the function ftell

– long ftell ( FILE * stream )

∗ Returns the offset to be used by fseek if we want to return to the same position in the file stream

• Example: Create a credit processing system capable of storing up to 100 fixed-length records. Each record should consist
of an account number that will be used as the record key, a last name, a first name, and a balance. The resulting program
should be able to update an account, insert a new account record, delete an account and list all the account records in a
formatted text file for printing.

/******************************************************************************/
/* types.h */
/******************************************************************************/
typedef struct
{

int acct_num;
char last_name[15];
char first_name[15];
float balance;

} client_data_t;

/******************************************************************************/
/* Creating a randomly accessed file */
/* create.c */
/******************************************************************************/
#include <stdio.h>
#include "types.h"

int main()
{

int i; /* Loop counter */
client_data_t blank_client = { 0, "", "", 0.00 };
FILE * client_file;

if ( ( client_file = fopen ( "credit.dat", "w" ) ) == NULL )
{

printf ( "Could not open file credit.dat\n" );
exit ( 1 );

}

for ( i = 0; i < 100; i++ )
fwrite ( &blank_client, sizeof ( client_data_t ), 1, client_file );

fclose ( client_file );

return ( 0 );
}
/******************************************************************************/

• Using combinations of fseek and fwrite to store data at specific locations in file

/******************************************************************************/
/* Updating a randomly accessed file */
/* update.c */
/******************************************************************************/
#include <stdio.h>
#include "types.h"

int main()
{

FILE * client_file;
client_data_t client;
char line[80]; /* Input buffer for stdin */

if ( ( client_file = fopen ( "credit.dat", "r+" ) ) == NULL )
{

printf ( "Could not open file credit.dat\n" );
exit ( 1 );



Input and Output 8

}

printf ( "Enter account number (valid range: 1 -- 100; 0 to quit) : " );
fgets ( line, sizeof(line), stdin );
sscanf ( line, "%d", &client.acct_num );

while ( client.acct_num )
{

printf ( "Enter last name, first name, and balance : " );
fgets ( line, sizeof(line), stdin );
sscanf (line, "%s%s%f", &client.last_name, &client.first_name, &client.balance);

fseek (client_file, (client.acct_num-1)*sizeof(client_data_t), SEEK_SET);
fwrite (&client, sizeof(client_data_t), 1, client_file);

printf ( "Enter account number (valid range: 1 -- 100; 0 to quit) : " );
fgets ( line, sizeof(line), stdin );
sscanf ( line, "%d", &client.acct_num );

}

fclose ( client_file );

return ( 0 );
}
/******************************************************************************/

• Illustrating fread and feof

/******************************************************************************/
/* Reading data from a random access file */
/* read.c */
/******************************************************************************/
#include <stdio.h>
#include "types.h"

int main()
{

FILE * client_file;
client_data_t client;

if ( ( client_file = fopen ( "credit.dat", "r" ) ) == NULL )
{

printf ( "Could not open file credit.dat\n" );
exit ( 1 );

}

printf ( "%-6s %-15s %-15s %10s\n", "Acct", "Last name", "First name", "Balance" );

while ( ! feof ( client_file ) )
{

fread ( &client, sizeof ( client_data_t ), 1, client_file );
if ( client.acct_num )

printf ( "%-6d %-15s %-15s %10.2f\n", client.acct_num, \
client.last_name, client.first_name, client.balance );

}

fclose ( client_file );

return ( 0 );
}
/******************************************************************************/

Buffering problems

• Buffered I/O stores data in a buffer until the buffer is big enough to write to the disk.

• Look at the following two codes



Input and Output 9

printf ( "starting program\n" ); printf ( "starting program\n" );
do_step_1(); fflush ( stdout );
printf ( "step 1 completed\n" ); do_step_1();
do_step_2(); printf ( "step 1 completed\n" );
printf ( "step 2 completed\n" ); fflush ( stdout );
do_step_3(); do_step_2();
printf ( "step 3 completed\n" ); printf ( "step 2 completed\n" );

fflush (stdout );
do_step_3();
printf ( "step 3 completed\n" );
fflush ( stdout );

– In the left code, the printf puts the output data in a buffer; the buffer gets flushed when it is full, or at the end of
program

– In the right code, the fflush statement forces the buffers to be flushed

• int fflush ( FILE * stream)

– Forces a write of all buffered data for the given output [or update] stream via the stream’s underlying write
function

– The open status of the stream is unaffected

– If the stream argument is NULL, fflush flushes all open output streams

– Returns 0 on successful completion and EOF on error, setting the global variable errno to indicate the error (like
not an open stream, or the stream not open for writing)

– stdout is line buffered and output will appear whenever a newline character is encountered

– scanf flushes stdout before waiting for input

• Related function int fpurge ( FILE * stream )

– Erases any input or output buffered in the given stream

– For output streams, discards any unwritten output

– For input streams, discards any unread data in the stream, including the data pushed back using ungetc

• Setting buffer size

– Two functions for explicit control over the buffering performed on I/O to a file

– Must be called before the first read or write on a file but after opening the file

int setvbuf ( FILE *fd, char *buffer, int mode, int size );
void setbuf ( FILE *fd, char *buffer );

buffer – Contains the address to be used as the new buffer; if a NULL is passed, a new buffer is automatically
created

mode – Can be assigned values declared in stdio.h
_IOFBF – Full buffering or block buffering

∗ Characters as saved up and written as a block
_IOLBF – Line buffering

∗ Characters are saved up until a newline is encountered, or input is read from stdin, or the buffer is full
_IONBF – No buffering

∗ Information appears on the destination file or screen as soon as it is written
size – Specifies the number of bytes to be contained in the buffer

– setvbuf returns zero for success; non-zero for error



Input and Output 10

– setbuf is similar to setvbuf except that if buffer is NULL, buffering is turned off; if buffer is not NULL,
it is used with full buffering and a buffer size equal to BUFSIZ (declared in stdio.h)

– Useful in debugging programs

#if DEBUG
setbuf ( stdout, NULL );

#endif

Unbuffered I/O

• Based on system calls

• Conceptually similar to those in the standard library1

• Low-level I/O is never buffered

• open system call

– Open an unbuffered file

– Invoked by

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int fd = open ( char *file_name, int flags ); /* File already exists */
int fd = open ( char *file_name, int flags, int mode ); /* Create a new file */

∗ File descriptor is an integer and not a pointer
∗ file_name can be an absolute path or relative to the current directory
∗ flags is an integer with each bit indicating the type of access; defined in fcntl.h as follows

O_RDONLY Open for read
O_WRONLY Open for write
O_RDWR Open for read and write
O_CREAT Create if file not found
O_APPEND Write at end of file
O_TRUNC Truncate existing file to zero length, if found
O_EXCL Fail if file exists

Flags can be combined using bitwise-or operator |
∗ mode is the protection mode of the file; used only when the O_CREAT flag is set, otherwise ignored

– Examples

int in_fd, out_fd; /* File descriptors */
in_fd = open ( "infile", O_RDONLY, 0 ); /* Read only */
out_fd = open ( "outfile", O_WRONLY|O_CREAT, 0666 ); /* Write */

∗ Note that the permissions are specified as octal integer constant 0666, and not as a decimal integer 666; the
prefix zero is very important

∗ open does not provide the stream abstraction and the programmer has to handle the data at a lower level
∗ open is slightly faster than fopen but is useful only if the I/O is performed in large blocksof data

• creat system call

– Create a new file or truncate an existing one
1Standard library functions are generally recommended for portability; System calls are more efficient and may be required in some cases, such as handling

I/O for programs that create new processes



Input and Output 11

– Defined by

int creat ( char *filename, int permissions )

– Returns the file descriptor of the created file, or -1 on error

– creat is deprecated

– The call

creat ( filename, mode );

is equivalent to

open ( filename, O_WRONLY | O_CREAT | O_TRUNC, mode );

• close system call

– Close the file

– Frees the file descriptor for later use

– Any record locks owned by the process on the file are unlocked

– Defined by

int close ( int fd );

• read system call

– Read a block of data from file

– Defined by

int read ( int fd, char *buffer, int num );

– Returns the number of bytes read; zero if end of file is encountered; -1 if an error occurs

• write system call

– Write a block of data to a file

– Defined by

int write ( int fd, char *buffer, int num );

– Returns the number of characters written

– Error is indicated by the returned integer being less than num

Designing file formats

• Important to include file type information with each file

• DOS does it by using an extension, such as file.dat

• Unix achieves the same by using a magic number

• Magic number

– Identification number for the type of file

– The file(1) command identifies the type of a file using, among other tests, a test for whether the file begins with
a certain magic number

– Magic number is specified in the file /etc/magic using four fields

∗ Offset: A number specifying the offset, in bytes, into the file of data which is to be tested
∗ Type: Type of data to be tested – byte, short (2-byte), long (4-byte), or string



Input and Output 12

∗ Value: Expected value for file type
∗ Message: Message to be printed if comparison succeeds

– Used by the C compiler to distinguish between source, object, and assembly file formats

– Developing magic numbers

∗ Start with first four letters of program name (e.g., list)
∗ Convert them to hex: 0x6c607374
∗ Add 0x80808080 to the number
∗ The resulting magic number is: 0xECE0F3F4
∗ High bit is set on each byte to make the byte non-ASCII and avoid confusion between ASCII and binary files


