Debugging

e See what goes on inside a program as it executes
¢ Information about specific data structures is part of the code in the form of comments, or in the README file

e Debugging pertains only to the values contained within variables at different points of time during execution
Interactive debugging

e Based on a source code, statement-level debugger

e Allows to discover values of variables by using their names in the source program, tracing their execution one statement
at a time

— Allows you to see what is going on inside a process during execution, or when the process crashes

e Debugger allows you to

Start a program with any specified set of arguments

Make the process stop on specified conditions

Examine what has happened when the process is stopped/suspended

Change variable values in your program to correct some bugs and see the effect on other statements
e Different debuggers

— The native Unix debugger was called dbx

— It has given way to the Gnu Debugger called gdb that is now ubiquitous with all the other Gnu tools, including
compilers

— A nice front end to gdb is provided by xxgdb and ddd

Working with gdb

e Starting and stopping
— Start gdb by typing the command gdb
— Stop gdb by typing quit or "D

e Invoking gdb
— Any of the following works:

gdb

gdb prog_name

gdb —--args prog_name argl arg2
gdb -h

gdb commands

e Command syntax

— Each command is a single line of input of arbitrary length
— The first word is the command, followed by [optional] arguments

— Commands may be truncated if they are unambiguous



Debugging 2

— A blank line (just hitting return) repeats the last command
— Any text starting with a # to the end of line is a comment

e Command completion

— Pressing tab key after some characters will complete the command or give you a list of commands starting with that
string

— Also works with command arguments or symbolic names
info bre<TAB>

— Pressing <TAB> twice gives you all the possibilities starting with the entered string

Running programs under gdb

e Must generate debugging information when the code is compiled

— Debugging information involves data types of different variables
— Need to have access to symbolic information along with their line numbers and address in memory

e Compiling for debugging

— The C (or C++) files are compiled with the —g flag in effect
* Allows the inclusion of extra symbol table information in the executable
- Names and locations of all variables
- Names of all functions and their arguments
- Data types of all objects declared in the program
- Path names of the source code files used to compile the program

— If you want to see your macros inside gdb,you should compile the code using the flag —g3
e Compiling for delivery

— The code to be delivered to customersdoes not need to have debugging information

It should avoid any overheads and aim for optimized [fast] execution

Compile it using the flag —O

The flags —g and —O are mutually exclusive, though the compiler gcc allows the use of both, implying that you
can debug optimized code

e Running code
— If a program is not loaded, or to change an existing program, use the command fi 1e with argument specifying the
program name
— Run the loaded program using the command run or abbreviation r
* run creates an inferior process and makes that process run the loaded code
— You can run the loaded code by using the command start
* This will be equivalent to stopping the code at the first executable statement (main)
— The arguments to the program can be specified as arguments to either run or start
* The arguments will be reused if the code is executed again using run or start within the same session of
gdb
— The 1/0 can be redirected using the shell redirection operators

run > outfile

Stopping and Continuing

e Breakpoints



