
Debugging

• See what goes on inside a program as it executes

• Information about specific data structures is part of the code in the form of comments, or in the README file

• Debugging pertains only to the values contained within variables at different points of time during execution

Interactive debugging

• Based on a source code, statement-level debugger

• Allows to discover values of variables by using their names in the source program, tracing their execution one statement
at a time

– Allows you to see what is going on inside a process during execution, or when the process crashes

• Debugger allows you to

– Start a program with any specified set of arguments

– Make the process stop on specified conditions

– Examine what has happened when the process is stopped/suspended

– Change variable values in your program to correct some bugs and see the effect on other statements

• Different debuggers

– The native Unix debugger was called dbx

– It has given way to the Gnu Debugger called gdb that is now ubiquitous with all the other Gnu tools, including
compilers

– A nice front end to gdb is provided by xxgdb and ddd

Working with gdb

• Starting and stopping

– Start gdb by typing the command gdb

– Stop gdb by typing quit or ˆD

• Invoking gdb

– Any of the following works:

gdb
gdb prog_name
gdb --args prog_name arg1 arg2 ...
gdb -h

gdb commands

• Command syntax

– Each command is a single line of input of arbitrary length

– The first word is the command, followed by [optional] arguments

– Commands may be truncated if they are unambiguous



Debugging 2

– A blank line (just hitting return) repeats the last command
– Any text starting with a # to the end of line is a comment

• Command completion

– Pressing tab key after some characters will complete the command or give you a list of commands starting with that
string

– Also works with command arguments or symbolic names

info bre<TAB>

– Pressing <TAB> twice gives you all the possibilities starting with the entered string

Running programs under gdb

• Must generate debugging information when the code is compiled

– Debugging information involves data types of different variables
– Need to have access to symbolic information along with their line numbers and address in memory

• Compiling for debugging

– The C (or C++) files are compiled with the -g flag in effect
∗ Allows the inclusion of extra symbol table information in the executable

· Names and locations of all variables
· Names of all functions and their arguments
· Data types of all objects declared in the program
· Path names of the source code files used to compile the program

– If you want to see your macros inside gdb,you should compile the code using the flag -g3

• Compiling for delivery

– The code to be delivered to customersdoes not need to have debugging information
– It should avoid any overheads and aim for optimized [fast] execution
– Compile it using the flag -O
– The flags -g and -O are mutually exclusive, though the compiler gcc allows the use of both, implying that you

can debug optimized code

• Running code

– If a program is not loaded, or to change an existing program, use the command file with argument specifying the
program name

– Run the loaded program using the command run or abbreviation r
∗ run creates an inferior process and makes that process run the loaded code

– You can run the loaded code by using the command start
∗ This will be equivalent to stopping the code at the first executable statement (main)

– The arguments to the program can be specified as arguments to either run or start
∗ The arguments will be reused if the code is executed again using run or start within the same session of
gdb

– The I/O can be redirected using the shell redirection operators

run > outfile

Stopping and Continuing

• Breakpoints


