
Bit Operations

• Bit or flag

– Smallest unit of information

– Can take on the value 1 (true) or 0 (false)

– Used to manipulate the bits of integral operands, char, short, int, and long, both signed and unsigned

– Used to control the machine at the lowest level, specially in pixel-level graphics

• Byte

– Collection of 8 bits

– Can be represented as two hexadecimal numbers by using 0xHH where H is a hexadecimal number

• Bit operators

– Allow a programmer to manipulate individual bits in integer or character data types

Operator Semantics
& Bitwise and
| Bitwise or
ˆ Bitwise xor (exclusive or)
˜ Complement
<< Shift left
>> Shift right

– The and operator

∗ Compares corresponding bits in the two operands
· Compare two bits and set the output to 1 if both the input bits are 1; otherwise, set the result to 0

∗ Consider the following program
int main()
{

char c1 = 0x45,
c2 = 0x71;

printf ("Result of %x & %x = %x\n", c1, c2, c1 & c2);
}

∗ The operators & and && are different
∗ Using bitwise operator to check if a number is even

#define even(x) (((x) & 1) == 0)

– The bitwise inclusive or operator

∗ Compare two operands and set resultant bit to 1 if either of the corresponding bits is a 1

– The bitwise exclusive or operator

∗ Compare two operands and set resultant bit to 1 if either of the corresponding bits is a 1 but not both

– The not operator

∗ Also called one’s complement, invert, or bit flip
∗ Unary operator
∗ Changes the corresponding bits to 0 if they are 1, or 1 if they are 0
∗ Does not change the value of a variable if used by itself, for example ˜x does not change the value in x

• Setting and clearing bits

– Use & and | operators

Bit Operators 2

x |= mask; Set bits set in mask
x &= ˜mask; Clear bits set in mask
x &= mask; Clear all bits not set in mask
x ˆ= x; Clear all bits in x

Bit-shift operators

• The left and right shift operators

– Used to move the data a specified number of bits

– Bits shifted out of the left side disappear

– New bits coming in from the right side are zeros or ones depending on whether the number is positive or negative

– Example – bitp.c

• Sign extension

– Shifting left by one bit will fill the right side bits with zeroes

∗ Equivalent to multiplication by 2

– Right shifting positive numbers fills the left bits with zeroes

∗ Right shifting by 1 bit is equivalent to divide by 2

– Right shifting negative numbers is not always equivalent to divide by 2

∗ Right shifting negative numbers will leave the sign bit unchanged and shift it as well
∗ Shifting with sign extension is equivalent to division but sign extension is not guaranteed

– Example: bits.c

• Operator precedence

– Precedence of shift operators is lower than addition/subtraction

– This may cause issues if you replace multiply/divide by shift because precedence of multiply/divide is higher than
addition/subtraction

– Example

∗ Original: x = a + b * 2;, equivalent to x = a+ 2b

∗ Using shift operator: x = a + b << 1; equivalent to x = 2(a+ b)

∗ Should be: x = a + (b << 1);

Bit fields

• Declaration of bit fields or packed structures

– Consider a structure with the following information:

name ≤ 28 characters
male 1 or 0
married 1 or 0
elderly 1 or 0

– The structure can be declared as

Bit Operators 3

struct person
{

char name[29]; /* 28 characters + end of string */
unsigned male : 1,

married : 1,
elderly :1;

} people[1000];

– male, married, and elderly are bit-fields

∗ The 1 following the colon indicates that each of these fields contains only one bit
∗ These structure members can only have the values 0 or 1
∗ Instead of 1, a greater number of bits may be chosen limited to the number of bits in a single machine word

– An assignment to bit fields can be made as

people[i].married = 0;

– Bit fields occupy little space in the memory

∗ In the above example, male, married, and elderly may be bits of a single machine word
∗ Bit fields have no address of their own, and so, we cannot use pointers to them
∗ &(person[i].married) is not a valid expression

– Another example of a bit field or packed structure

struct item
{

unsigned int list:1; /* item is in the list */
unsigned int seen:1; /* item has been seen */
unsigned int number:14; /* item number */

/* at most 16383 items */
};

– Code to extract data from bit fields is relatively large and slow

– Better for human consumption than bit operators which are complex and error prone

Enumerated types

• User-defined data types that make the code more readable

• Designed for variables that contain only a limited set of values

• Set of integer constants represented by identifiers or tags, known as enumeration constants

• Declared using the keyword enum

• Values in an enumeration start with 0, unless specified otherwise, and are incremented by 1

• Creating a new type months

enum months { JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC };

• To number the months from 1 to 12, the enumeration is specified as

enum months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC };

• The name of the enum type (months above) is optional and can be omitted

Bit Operators 4

• Identifiers in an enumeration must be unique, and are generally written as upper case letters; they can be any valid C
identifiers

• Value of each enumeration constant of an enumeration can be set explicitly in the definition by assigning a value to the
identifier

• Multiple members of an enumeration can have the same integer value

– The following is legal

enum months { Jan = 1, January = 1, Feb = 2, February = 2 };

• The values assigned to enum constants must be integral, and can be in any order

enum state { stopped = 0, waiting = 1, trace = 5, run = 10 };

• Using enumeration: enum.c

• Cautions

– Assigning a value to an enumeration constant after it has been defined is a syntax error

• All enum constants must be unique within a scope; the following is illegal:

enum prog { compiled, failed };
enum result { passed, failed };

int main()
{

return (0);
}

• I found the following post on stack overflow very instructive:
https://stackoverflow.com/questions/1102542/how-to-define-an-enumerated-type-enu
m-in-c

