Bit Operations

e Bitor flag

Smallest unit of information

Can take on the value 1 (true) or 0 (false)

Used to manipulate the bits of integral operands, char, short, int, and 1ong, both signed and unsigned

Used to control the machine at the lowest level, specially in pixel-level graphics

e Byte

— Collection of 8 bits

— Can be represented as two hexadecimal numbers by using 0xHH where H is a hexadecimal number
e Bit operators

— Allow a programmer to manipulate individual bits in integer or character data types

Operator Semantics
& Bitwise and
| Bitwise or
- Bitwise xor (exclusive or)
Complement
<< Shift left
>> Shift right

— The and operator
* Compares corresponding bits in the two operands
- Compare two bits and set the output to 1 if both the input bits are 1; otherwise, set the result to 0
* Consider the following program

int main ()

{

char cl = 0x45,
c2 = 0x71;
printf ("Result of %$x & %$x = %$x\n", cl, c2, cl & c2);

}
* The operators & and && are different
* Using bitwise operator to check if a number is even
#define even(x) (((x) & 1) == 0)

— The bitwise inclusive or operator

* Compare two operands and set resultant bit to 1 if either of the corresponding bits is a 1
— The bitwise exclusive or operator

x Compare two operands and set resultant bit to 1 if either of the corresponding bits is a 1 but not both
— The not operator

* Also called one’s complement, invert, or bit flip

* Unary operator

* Changes the corresponding bits to O if they are 1, or 1 if they are 0

x Does not change the value of a variable if used by itself, for example ~x does not change the value in x

e Setting and clearing bits

— Use & and | operators

Bit Operators 2

X |= mask; Set bits set in mask

x &= “mask; Clear bits set in mask

X &= mask; Clear all bits not set in mask
x "= x; Clear all bits in x

Bit-shift operators

e The left and right shift operators

Used to move the data a specified number of bits

Bits shifted out of the left side disappear

New bits coming in from the right side are zeros or ones depending on whether the number is positive or negative

Example — bitp.c

e Sign extension

Shifting left by one bit will fill the right side bits with zeroes

* Equivalent to multiplication by 2

Right shifting positive numbers fills the left bits with zeroes
* Right shifting by 1 bit is equivalent to divide by 2

Right shifting negative numbers is not always equivalent to divide by 2

* Right shifting negative numbers will leave the sign bit unchanged and shift it as well
* Shifting with sign extension is equivalent to division but sign extension is not guaranteed

— Example: bits.c
e Operator precedence

— Precedence of shift operators is lower than addition/subtraction

— This may cause issues if you replace multiply/divide by shift because precedence of multiply/divide is higher than
addition/subtraction

— Example
* Original: x = a + b » 2;,equivalenttox = a + 2b
* Using shift operator: x = a + b << 1; equivalenttoz = 2(a + b)
* Shouldbe: x = a + (b << 1);

Bit fields

e Declaration of bit fields or packed structures

— Consider a structure with the following information:

name < 28 characters
male lor0
married 1lor0
elderly 1lor0

— The structure can be declared as

Bit Operators

struct person

{

char name[29]; /* 28 characters + end of string =/
unsigned male : 1,
married : 1,

elderly :1;
} people[1000];
— male, married, and elderly are bit-fields
* The 1 following the colon indicates that each of these fields contains only one bit
* These structure members can only have the values O or 1
x Instead of 1, a greater number of bits may be chosen limited to the number of bits in a single machine word

An assignment to bit fields can be made as

people[i] .married = 0;

Bit fields occupy little space in the memory
* In the above example, male, married, and elderly may be bits of a single machine word
+ Bit fields have no address of their own, and so, we cannot use pointers to them
* & (person[i] .married) is nota valid expression

Another example of a bit field or packed structure

struct item

{

unsigned int list:1; /+ item is in the list */
unsigned int seen:1; /* item has been seen */
unsigned int number:14; /* item number */

/* at most 16383 items */

i
— Code to extract data from bit fields is relatively large and slow

— Better for human consumption than bit operators which are complex and error prone

Enumerated types

e User-defined data types that make the code more readable

e Designed for variables that contain only a limited set of values

e Set of integer constants represented by identifiers or tags, known as enumeration constants
e Declared using the keyword enum

e Values in an enumeration start with 0, unless specified otherwise, and are incremented by 1

e Creating a new type months
enum months { JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC };
e To number the months from 1 to 12, the enumeration is specified as
enum months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC };

e The name of the enum type (months above) is optional and can be omitted

Bit Operators 4

e Identifiers in an enumeration must be unique, and are generally written as upper case letters; they can be any valid C
identifiers

e Value of each enumeration constant of an enumeration can be set explicitly in the definition by assigning a value to the
identifier

e Multiple members of an enumeration can have the same integer value

— The following is legal

enum months { Jan = 1, January = 1, Feb = 2, February = 2 };

e The values assigned to enum constants must be integral, and can be in any order
enum state { stopped = 0, waiting = 1, trace = 5, run = 10 };

e Using enumeration: enum.c
e Cautions
— Assigning a value to an enumeration constant after it has been defined is a syntax error

e All enum constants must be unique within a scope; the following is illegal:

enum prog { compiled, failed };
enum result { passed, failed };

int main ()

{

return (0);

e [found the following post on stack overflow very instructive:
https://stackoverflow.com/questions/1102542/how-to-define-an-enumerated-type—enu
m-in-c

