
Reading Assignment: Chapter 1, 2, 3, 4, and 8 from the book by Sobell; also read Chapter 5 from the same book though
I’ll cover parts of it in class.

“UNIX was not designed to stop you from doing stupid things, because that would also stop you from doing clever things.”

– Doug Gwyn

Shellscript Programming

Unix shell

• Program that interacts with the user to receive requests for running programs and executing them

• Can be used as an interpreted programming language

– The programs written in shell command language do not have to be compiled (like the C programs) but can
be executed directly

• Useful features of the shell

– Metacharacters

– Quoting

– Creating new commands

– Passing arguments to the commands

– Variables

– Control flow

Command line structure

• Each command is a single word that names a file to be executed

• Example

$ who

• Command ends with a newline or a semicolon

$ date ; who

• Sending the output of the above through a pipe

$ date ; who | wc

• Pipe takes precedence over the semicolon

– Semicolon separates two commands

– Pipe connects two commands into one

• The precedence can be adjusted by using the parenthesis

$ (date ; who) | wc

Shellscript Programming 2

• Data flowing through a pipe can be intercepted by the command tee to be saved in a file

$ (date ; who) | tee save | wc

tee copies the input to the named file, as well as to the output

• Commands can also be terminated by an ampersand (&)

– Useful to run long running commands in the background

$ (sleep 5 ; date) & date

• Precedence rules (again)

– & has a lower priority compared to both | and ;

• The special characters interpreted by the shell (<, >, |, ;, and &) are not arguments to the programs being run, but
control the running of those programs

• The command

$ echo Hello > junk

can also be written as

$ > junk echo Hello

• Avoiding overwriting files by accident

– In C shell, you can type the command

% set noclobber

to avoid overwriting a file by accident during output redirection

– If you have already set noclobber and want to overwrite a file still, you have to follow the redirection symbol
> with a bang (!) as

% echo hello >! junk

Metacharacters

• Characters that have special meaning to the shell

• Most notable metacharacter is the asterisk or *

• An asterisk, by itself, matches all the files in the current working directory

$ echo *

• Metacharacters can be protected from interpretation by the shell by using quotes

$ echo ’***’

• You can also use double quotes but shell peeks inside the double quotes to look for $, ‘ ... ‘ (back quotes), and
\

• You can also protect metacharacters by preceding them with a backslash or escape character

$ echo ***

Shellscript Programming 3

Table 1: Other metacharacters

> redirect stdout to a file
>> append stdout to a file
< take stdin from a file
| pipeline
<<str stdin follows, upto next str on a line by itself
* match any string of zero or more characters
? match any single character in the filenames
[ccc] match any single character from ccc in the filenames

ranges such as [0-9] and [a-z] are legal
; terminate command
& terminate command and run it in the background
‘...‘ run command(s) in ...
(...) run command(s) in ... as a subshell
{...} run command(s) in ... in current shell
$1, $2 $0 ... $9 replaced by arguments to shell file
$var value of shell variable var
${var} value of shell variable to be concatenated withe text
\c take character c literally (suppress newline in echo)
’...’ take ... literally
"..." take ... literally, but after interpreting $, ‘...‘, and \
beginning of comment (ends with the end of line)
var=value assignment (no spaces around operator)
p1 && p2 run p1; if successful, run p2

p1 || p2 run p1; if unsuccessful, run p2

– A backslash is the same as using the single quotes around a single character

– The backslash character can be used to quote itself as \\

$ echo abc\\def
abc\def
$

– A backslash at the end of the line causes the line to be continued (as if the newline character is not there)

• Quoted strings can contain newlines

$ echo ’hello
> world’

• The > character above is secondary prompt stored in variable PS2 and can be modified to preference

• The metacharacter # starts a comment only if it is placed at the beginning of a word (following whitespace)

• The newline following the echo command can be suppressed with the -n option

Bourne shell

• Developed by and named after Stephen R. Bourne at Bell Labs

• If a shell name is not specified, it is assumed that the reference is to Bourne shell

• Commonly known as sh or /bin/sh

Shellscript Programming 4

Shellscripts

• Ordinary text files that contain commands to be executed by the shell

• First line of the script should identify the shell (interpreter) used by the script for execution

• For Bourne shell, the identifying line is

#!/bin/sh

• If the first line is other than the identifying line, the script defaults to Bourne shell

Creating shellscripts

• Creating the script nu to count the number of users

$ echo ’who | wc -l’ > nu

• The above script can be executed by

$ sh nu

• You can also change the permissions on the script to avoid typing sh

$ chmod +x nu
$ nu

• Child shell or subshell

• Putting the scripts in a separate directory

$ mkdir $HOME/scripts
$ PATH=$PATH:$HOME/scripts
$ mv nu scripts
$ nu

Command arguments and parameters

• Items are specified within the script by argument numbers as $1 through $9

• The number of arguments itself is given by $#

• Writing a script to change mode to executable for a specified file

• Shellscript cx as a shorthand for chmod a+x

chmod +x $1

• What if there are multiple files (like more than 10)

– The line in the shellscript can handle eight more arguments as

chmod +x $1 $2 $3 $4 $5 $6 $7 $8 $9

– More arguments can be handled with

chmod +x $*

Shellscript Programming 5

– $* indicates operation on all the arguments

• Creating a phonebook

– Let us have a personal telephone directory as

dial-a-joke 212-976-3838
dial-a-prayer 212-246-4200
dial santa 212-976-3636
dow jones report 212-976-4141

– It can be searched by using the grep command

– Let us call our shell script as 411

grep $* phone-book

– Problems if you type a two word pattern

– Can be fixed by enclosing the $* in double quotes

– grep itself can be made case insensitive by using the -i option

• The argument $0 is the name of the program being executed

Program output as argument

• The output of any program can be included in the script by using the backward quotes

echo The current time is ‘date‘

• The backwards quotes are also interpreted within the double quotes but not in single quotes

Difference between sh nu and sh < nu1

• sh nu maintains the stdin of its invoking environment, while sh < nu forces stdin to come from the script, thus
making non-redirected “read”s inside the script to behave oddly (and also affecting any program invoked by nu
which read stdin)

• $0 in the former is set to nu; in the latter it is sh

Shell variables

• ksh can work with numeric as well as string variables but Bourne shell is limited to string variables alone

• Variables in a shell are known as parameters

– Strings like $1 are called positional parameters

– Positional parameters hold the arguments to a shell script file

• Other shell variables include PATH and HOME

– PATH contains a colon-separated list of directories that are searched by the shell whenever a command is typed

• The value of a variable can be seen by preceding its name with a $

• The positional parameters cannot be changed as $1 is just a compact notation to get the value of the first parameter

1Quoted from Ken Pazzini (ken@halcyon.com)

Shellscript Programming 6

• Shell variables can be created, accessed, and modified

$ echo $PATH
$ PATH=$PATH:/usr/games
$ echo $PATH

• New variables (non-shell variables) can be created by assigning them values using the following syntax

color1=red
color2="Mulberry Red"
color3=’Seattle Silver’
dir=‘pwd‘
cd /usr/lib
pwd
cd $dir
pwd

– If there is a space in the string that is being assigned to the variable, enclose it in double quotes or single
quotes as shown in examples above

– Spacing on either side of the = operator is important; you can not have any

• The value in the variables can be accessed by preceding the variable name with the character $ as follows

$ echo $color1
red
$

• Shell variables are usually in upper case and non-shell variables can be defined in lower case to distinguish between
the two

• The command set displays the values of all the defined variables (including the ones defined by the user)

• The value of a variable is associated with the shell that creates it and is not automatically passed to the new shell
(or child)

– A shell will keep its variables intact even if they are modified in a subshell (or child)

• A shellscript can be run quickly by using the . command

• If the value of a variable is to be used in subshells, you should use the export command

$ PATH=$PATH:/usr/local/bin
$ export PATH

More on I/O redirection

• The terminal as a file

– Unix treats every device as a file

∗ In effect, terminal and keyboard can be treated as files

∗ Keyboard is an input file

∗ Terminal monitor is an output file

– The devices reside in the directory /dev

– You can find the file associated with your terminal in the /dev directory by using the command tty

Shellscript Programming 7

Table 2: Shell built-in variables

$# number of arguments
$* all arguments to shellscript
$@ similar to $*
$- options supplied to the shell
$? return value of the last command executed
$$ pid of the shell
$! pid of the last command started with &
$HOME home directory of the user
$IFS list of characters that separate words in arguments
$MAIL system mail folder to keep incoming mail
$PATH list of directories to search for commands
$PS1 prompt string, default value ’$ ’
$PS2 prompt string for continued command line, default value ’> ’
EDITOR Name of your favorite editor

• Every program has three default files – stdin, stdout, and stderr

• These files are respectively numbered as 0, 1, and 2

• Redirection

– Sending the output of one program to a file, instead of stdout or stderr

– Receiving the input to a program from a file instead of stdin

– Based on operators <, >, <<, >> as well as pipes and tee

• Example – Command to determine the execution time

$ time command

The output of the time command is sent to stderr

• To capture the output in a file, use the following:

$ time command > command.out 2> time.out

• The two output streams can be merged by any of the following two commands

time command > command.out 2>&1
time command > command.out 1>&2

• New directory program

grep "$*" <<END
dial-a-joke 212-976-3838
dial-a-prayer 212-246-4200
dial santa 212-976-3636
dow jones report 212-976-4141
END

The exit statement/status

Shellscript Programming 8

Table 3: Shell I/O redirection

> file direct stdout to file
>> file append stdout to file
< file take stdin from file
p1 | p2 connect stdout of p1 to stdin of p2
n> file direct output from file descriptor n to file
n>> file append output from file descriptor n to file
n>&m merge output from file descriptor n with file descriptor m
n<&m merge input from file descriptor n with file descriptor m
<<s here document; take stdin until next s at beginning of a line;

substitute for $, ‘...‘, and \
<<\s here document with no substitution
<<’s’ here document with no substitution

• Every Unix command runs exit upon termination

• As opposed to the standard C notation, in shellscripts, a zero signifies true and any positive integer represents
false

• Why should we have a positive integer as false in shellscripts

– The commands can fail for several reasons

– The reason for failure can be encoded in the exit status

– As an example, the exit status for grep command returns

∗ 0 if there was a match

∗ 1 if there was no match

∗ 2 if there was an error in the pattern or filename

• The exit status for the last command is stored in the variable $?

• When writing your C programs, you return the exit status through exit system call (1 upon error)

• Using cmp command to compare two files and taking an action based on the exit status

• When commands are grouped, the exit status of the group is the exit status of the last command executed

Command separators

• Command is usually terminated by the end of line

• Other command separators are

– Semicolon (;)

∗ Separates commands for sequential execution

∗ Command following the semicolon will not begin execution until the command preceding the semicolon
has completed

∗ Semicolon is equivalent to a newline but allows more than one command to be on the same line

– Pipe (|)

∗ Causes the standard output of the command before the vertical bar to be connected, or piped, into the
standard input of the command following the vertical bar

Shellscript Programming 9

∗ The sequence of commands is called a pipeline

∗ Each command in the pipeline is executed as a separate process and the commands are executed concur-
rently

∗ The exit status of the pipeline is the exit status of the last command in the pipeline

∗ The pipeline

cmd1 | cmd2

is equivalent to

cmd1 > tmp; cmd2 < tmp

– Background execution operator (&)

∗ Causes the command preceding it to be executed in the background

∗ The process created to execute the command executes independent of the current process and the current
process does not have to wait for it to complete

∗ Ampersand is not considered to be a command separator

∗ The standard input of the command run in the background is connected to /dev/null to prevent the
current process and the background process from trying to read the same standard input

– ORed execution (||)

∗ cmd1 || cmd2 causes cmd2 to be executed only if cmd1 fails

∗ || can be used to write conditional statements that resemble the C programming language as

if cmd1 || cmd2
then

...
fi

– ANDed execution (&&)

∗ cmd1 && cmd2 causes cmd2 to be executed only if cmd1 executes successfully

Command grouping

• Grouping with parentheses

– Grouping with parentheses makes the commands to execute in a separate shell process, or subshell

– The shell creates the subshell to execute the commands in parentheses and waits for the subshell to complete
before resuming

– Subshell inherits the environment of the parent process but is not able to alter it

– Useful when you do not want the environment of the shell to be altered as a result of some commands, for
example, in Makefile, you may have

(cd $SUBDIR1; make)

– An ampersand can be used after the right parenthesis to execute the subshell in the background

– Parentheses can be nested to create more than one subshell

• Grouping with braces

– Same as grouping with parentheses but the commands are executed in the current shell

– The syntax is:

{ cmd1; cmd2; ...; }

– The last command must be followed by a semicolon and there must be a space between commands and braces

– Useful to redirect the combined standard input or standard output of the commands within the braces

Shellscript Programming 10

∗ In such a case, commands are executed in a subshell and braces have the same behavior as parentheses

– Braces can be nested and may be followed by an ampersand to execute the commands within the braces in the
background

Looping in a shell program

• The syntax for loops is

for x [in list]
do

...
done

– The loop executes once for each value in list

∗ list is a string that is parsed into words using the characters specified in the IFS (internal field separators)
variable as delimiters

· Initially, IFS variable is set to space, tab, and newline (the whitespace characters)

∗ The part [in list] is optional

∗ If [in list] is omitted, it is substituted by positional parameters

– The value of x is accessed by $x

• Example – To display the number of lines in each file

for file in *.tex
do

echo -n "$file "
wc -l $file | awk ’{printf "\t"$1"\n"}’

done

• You can use the break command to exit the loop early or the continue command to go to the next iteration by
skipping the remainder of the loop body

• The output of the entire for command can be piped to another program, as the entire command is treated as a
single entity

The case statement

• The syntax for the case statement is

case value in
pattern1) commands1 ;;
pattern2) commands2 ;;
.
.
.
*) commands for default ;;

esac

– Patterns can use file generation metacharacters

– Multiple patterns can be specified on the same line by separating them with the | symbol (not to be confused
with the use of the same symbol for communicating between programs)

Shellscript Programming 11

• A modified calendar program

#!/bin/sh
newcal : Nice interface to /bin/cal

case $# in
0) set ‘date‘; m=$2; y=$6 ;; # no arguments; use today
1) y=$1; set ‘date‘; m=$2 ;; # 1 argument; use this year
2) m=$1; y=$2 ;; # 2 arguments; month and year
*) echo "Too many arguments to $0" ;

echo "Aborting ..." ;
exit 1 ;;

esac

case $m in
[jJ]an*) m=1 ;;
[fF]eb*) m=2 ;;
[mM]ar*) m=3 ;;
[aA]pr*) m=4 ;;
[mM]ay*) m=5 ;;
[jJ]un*) m=6 ;;
[jJ]ul*) m=7 ;;
[aA]ug*) m=8 ;;
[sS]ep*) m=9 ;;
[oO]ct*) m=10 ;;
[nN]ov*) m=11 ;;
[dD]ec*) m=12 ;;
[1-9] | 0[1-9] | 1[0-2]) ;; # numeric month
*)
esac

/bin/cal $m $y

exit

The set statement

• A shell built-in command

• Can be used to assign values to variables

• Without arguments, set shows the values of variables in the environment

• Ordinary arguments reset the values of the variables $1, $2, and so on

– Consider set ‘date‘ as used in the above shellscript

– $1 is set to the day of the week

– $2 is set to the name of the month

– and so on

• You can also specify some options with set, such as -v and -x for echoing the commands to assist in debugging

The if statement

Shellscript Programming 12

• The if statement runs commands based on the exit status of a command

• The syntax is

if condition
then

commands if the condition is true
else

commands if the condition is false
fi

• The else part is optional

• Every if statement is terminated by an fi statement

• The condition is followed by the keyword then on a line by itself

– then can be on the same line as the condition if it is preceded by a semicolon

• Example

if [$counter -lt 10]
then

number=0$counter
else

number=$counter
fi

• Nesting of if with else using elif

– You can use any number of elif statements in an if statement to check for additional conditions

– Each elif statement contains a separate command list

– The last elif statement can be followed by an else statement

if [$counter -lt 10]
then

number=00$counter
elif [$counter -lt 100]

then
number=0$counter

else
number=$counter

fi

while and until loops

• The syntax for while loop is

while condition
do

commands
done

• Looking for someone to log in once every minute

Shellscript Programming 13

while sleep 60
do

if who | grep -s $1
then

echo "$1 is logged in now"
fi

done

• You can also use the null statement (:) for an infinite loop; with null statement, the above example – with a break
statement to terminate infinite loop – can be written as

while :
do

sleep 60
if who | grep -s $1 ; then

echo "$1 is logged in now"
break

fi
done

– The null command does nothing and always returns a successful exit status

• The syntax for until loop is

until condition
do

commands
done

• Same example as above

until who | grep -s $1
do

sleep 60
done

if [$?]
then

echo "$1 is logged in now"
fi

Things to watch for in shellscript writing

• Specifying the PATH variable

– Notice how specification of path alters the behavior of the script

#!/bin/ksh

PATH=/usr/ucb:/bin

for file in *.tex
do

echo -n "$file"
wc -l $file | awk -F ’{printf "\t"$1"\n"}’

Shellscript Programming 14

done

PATH=/bin:/usr/ucb

for file in *.tex
do

echo -n "$file"
wc -l $file | awk -F ’{printf "\t"$1"\n"}’

done

• Specifying the usage of each command

• Using the exit status values

Evaluation of shell variables

• Different symbols in the definition of shell variables and their meaning

Table 4: Shell variable evaluation

$var value of var
nothing, if var undefined

${var} same; useful if alphanumerics follow variable name
${var-value} value of var if defined; otherwise value

$var unchanged
${var=value} value of var if defined; otherwise value

if undefined, $var set to value
${var?message} value of var if defined; otherwise print message and exit shell

if message is not supplied, print the phrase
parameter null or not set

${var+value} value if $var defined, otherwise nothing

Filters

• Family of programs that operate on some input (preferably stdin) and produce some output (preferably stdout)

• Exemplified by grep, tail, head, sort, tr, uniq, wc, sed, and awk

• sed and awk are derived from grep and are also known as programmable filters

– grep uses a regular expression for the pattern to be matched

– The regular expression is the same as used by ed – the underlying editor for vi and ex

– sed and awk generalize the pattern as well as the action

Handling interrupts

• One of the most important things in a shellscript is to properly handle interrupts

• You should delete any temporary files when the user interrupts the script

• In Korn/Bourne shell, the syntax for interrupt handling is

Shellscript Programming 15

trap commands signal

• The commonly used signals for shellscripts are 2 (for ^C), 14 (for alarm timeout), and 15 (for software termination
via kill)

• If $TMP contains the name of a temporary file, you should remove it if the user hits ^C or kill by

trap "rm -f $TMP ; exit 1" 2 15

Parsing options

• In Unix, the options are specified with a command line switch - followed by the option identifier

• The parameters are generally specified after the options have been entered on the command line

• A typical example of a Unix command is

ls [-altr] [filename]

where everything within the square brackets is optional

• The parsing of options should work in a way that the options and arguments, if any, are captured and then, the
parameter list is captured

• This is achieved in Bourne shell by using the command getopts and its associated variables OPTIND and OPTARG

• The getopts command succeeds if there is an option left to be parsed and fails otherwise

• The OPTIND variable is set to the command line position of the next option as the options are parsed by getopts

• The OPTARG returns the expected option value from getopts

• Example

#!/bin/sh

while getopts abcdf:h OPTNAME
do

case $OPTNAME in
a) echo Option a received

;;
d) set -x

;;
f) echo Option f received

echo Optional argument is: $OPTARG
;;

h | \?) echo usage: $0 [-abc] [-f filename] parameter1 parameter2 ...
echo Options are:
echo " -d : Turn debugging on"
echo " -h : Print help (this message)"
exit 1
;;

esac
done

shift ‘expr $OPTIND - 1‘

echo The number of parameters is: $#
echo The parameters are: $*

Shellscript Programming 16

Filename generation

• Shell can generate filenames to match the names of existing files by using metacharacters

• Filename generation metacharacters are also called wild cards

• The ? metacharacter

– Matches one and only one character in the name of an existing file

– READ?ME will match READ_ME, READ.ME, and READ-ME but not README

• The * metacharacter

– Matches any number of characters, including zero, in a filename

– READ* will match READ_ME, READ.ME, READ-ME, and README but not TOREAD

– You can combine the ? and * to list all the hidden files by the expression .??*

