
Overloading

Function overloading

• Call to a function should be based on context

– Which is better?

∗ student_print (student), or student.print();

∗ date_print (date), or date.print()

• Allows for the use of same name for multiple functions, for example, length() to compute the length of a string,
list, and vector

• Compiler calls the appropriate function depending on the parameters

int length (char * s) // Length of a string
{

char * t = s;
while (*t++);
return (t - s);

}

double length (double *vec, int n) // Length of a vector in n-space
{

for (double r = 0; n--; r += vec[n] * vec[n]);
return (sqrt (r));

}

int n = length ("Harry");
double l, x[3] = { 1, 0, -2 };
l = length (x, 3);

– The overloaded methods can belong to the same scope in which case they are differentiated by parameter types

∗ Compiler cannot generate unique internal identifiers if it uses only the scope of the function names

∗ Compiler must mangle the names of the parameter types with the function name

∗ The above global function length() can produce internal names that look like _length_charp and
_length_vecp_int

∗ Mangling varies from compiler to compiler and hence, you may not be able to use functions generated by
one compiler in another

• The constructor methods are by necessity overloaded

– We have looked at default constructors and parameterized constructors

• The compiler adds type conversions (such as int to double) if necessary to make the call conform to the arguments
in the function

• The following steps are used to find a matching function

1. If an exact match of the argument type is found, use it

2. If there is a unique function that matches after the following promotions, use that function

char → int
unsigned char → int
short → int
unsigned short → (sizeof(short) < sizeof(int)) ? int : unsigned
float → double

Overloading 2

3. If there is a unique function that matches after other standard type conversions, use that function

4. If there is a unique user-defined conversion achieving a match, use that function

• Matches

– 0 is an exact match for an int and can be converted to a pointer or double by a standard conversion

– char and short are not considered exact matches for int

– Standard conversions that might lead to information loss (such as int to char, double to int) are considered
for matching

– Use casts char(ch), int(x) if necessary

• One can also think of member functions as being overloaded as well

– Let us consider member functions list::length(), queue::length(), and vec3::length()

– In compiling x.length(), one of the above three is selected depending on the class to which x belongs, and
no type conversion is applied

Operator overloading

• The built in operators can be defined to act on structured data types by defining special functions

string operator+ (const string&, const string&);

• If the above function is defined, the concatenation of two strings can be achieved as follows

string a;
string b ("Harry"), c ("Hacker");
a = b + c; // Concatenate strings

• The following operators can be overloaded:

+ - * / % ^ & | ~ ! , = < > << >> <= >= == &&
|| ++ -- += -= *= /= %= ^= &= |= != <<= >>= -> () new delete

• The operator function can be attached only to existing operators

• You cannot design new operators, such as |x| for absolute values

• You cannot change the precedence, prefix/postfix application, or the arity

• operator-> takes no argument and must return a pointer to a structure

• Operator functions must take at least one struct (or class) argument; hence the following is wrong

char* operator+ (char*, char*);

• Operator functions can be either global functions or members of a class

– operator=, operator[], operator(), and operator-> are exceptions to the above rule, and must be
member functions only

• No special meaning is assigned to any of the operators

– It is possible to define operator+ to denote vector subtraction

– This also rhymes with the fact the operators for cin >> x and cout << x are overloaded from the shift
operators >> and <<

Overloading 3

• The operators +, -, *, and & can be overloaded as unary or binary operators

• Minor complication with the ++ and -- operators

– Both have prefix and postfix versions

– Both the operators are unary, and hence, the number of arguments can not be used to distinguish between
them

class complex
{

double re, im;

public:
complex (double r = 0, double i = 0) // Constructor
{

re = r;
im = i;

}
double real() { return re; }
double imag() { return im; }
complex inv(); // Inverse
complex operator- () // Negative
{

return (complex (-re, -im));
}
friend complex operator+ (const complex&, const complex &);
friend complex operator- (const complex&, const complex &);
friend complex operator* (const complex&, const complex &);
friend complex operator/ (const complex&, const complex &);
complex& operator+= (const complex&);
complex& operator-= (const complex&);
complex& operator*= (const complex& y)
{

return (*this = *this * y);
}
complex& operator/= (const complex& y)
{

return (*this = *this * y.inv());
}
friend int operator== (const complex&, const complex&);
friend int operator!= (const complex&, const complex&);

};

complex complex::inv()
{

double norm = re * re + im * im;
if (! norm) // (0, 0) has no inverse

return (*this);
return (complex (re/ norm, -im/norm));

}

complex operator+ (const complex& x, const complex& y)
{

return (complex (x.re + y.re, x.im + y.im));

Overloading 4

}

complex operator- (const complex& x, const complex& y)
{

return (x + (-y));
}

complex operator* (const complex& x, const complex& y)
{

return (complex (x.re * y.re - x.im * y.im , x.re * y.im + x.im * y.re));
}

complex operator/ (const complex& x, const complex& y)
{

return (x * y.inv());
}

complex& complex::operator+= (const complex& y)
{

re += y.re;
im += y.im;
return (*this);

}

• Use reference variables for efficiency considerations

– Pass only the address of the complex number rather than two doubles

• Most operators can be coded as friend functions

Overloaded operator[]

• Let us again look at the safe integer array class

class int_array
{

int value[MAXSIZE];
int lower, upper; // Bounds of the array

public:
int_array (int lo, int hi); // Constructor function
int& operator[] (int); // Accessing an element

};

int& int_array::operator[] (int n)
{

if (n < lower || n > upper)
error ("Index out of bounds");

return (value[n-lower]);
}

– Because the function return type is int&, a[n] actually returns a pointer to a.value[n] and can be used on
the left side of an assignment

Overloading 5

• Associative array

– A data structure that associates certain keys, typically strings, with other values

– Example

assoc_array a;
a["Harry"] = 5.3;
cout << a["Harry"];

– A typical implementation consists of an array of strings and a parallel array of double

– We can use a simple hashing scheme for the strings, resolving collisions through the next available entry in the
string array

class assoc_array
{

char * key[MAXENTRY];
double val[MAXENTRY];
char buffer[BUFSIZE]; // Stores actual strings
int buf_end;

int locate (const char*); // Find hash location of a string

public:
double& operator[] (char *);

};

int assoc_array::locate (const char * s)
{

int h = hash (s) % MAXENTRY; // Compute key transformation
int i = h;

do
{

if (! (key[i] && strcmp (s, key[i])))
return (i);

if (++i >= MAXENTRY)
i = 0;

}
while (i != h);

return (-1); // Not found
}

double& assoc_array::operator[] (char * s)
{

int i;
if (key [i = locate(s)] == 0) // new string
{

key[i] = buffer + buf_end;
strcpy (buffer + buf_end, s);
buf_end += strlen (s) + 1;

}

return (val[i]);
}

Overloading 6

• There is no operator [][] for double subscripted arrays

Type conversions

• Essential for effective operator overloading

• Conversion from type X to type Y can be achieved simply by supplying a constructor for Y with argument X or (X&)

complex (double)
string (char *)
fraction (int)

• Cannot be used to convert back to built in types (they are not classes)

– We can circumvent this restriction by using a member function, for example

class fraction
{

int num, denom;
public:

// ...
operator double();

};

fraction::operator double (void)
{

return (double (num) / double (denom));
}

• Type conversion/promotion does not work across more than one level of user-defined type conversion when trying
to match an overloaded function

– The following will not work

fraction f (1, 2);
complex z (2, -1);
complex w = f * z;

– We can help the compiler by

complex w = double (f) * z;

• Type conversion and reference arguments

– Let us look at the swap function again

void swap (double& a, double& b)
{

double tmp = a;
a = b;
b = tmp;

}

– Now consider the following code

double x = 3.0;
fraction f (1, 2);
swap (x , f); // f is not changed

Overloading 7

– The following sequence of steps takes place

∗ A type conversion fraction → double is performed

∗ Result is stored in a temporary variable

∗ A reference to the temporary variable is passed to swap (instead of f)

∗ The contents of the temporary variable are swapped with x

∗ The temporary variable is destroyed

∗ f remains unaffected

• Unintended type conversion

– C++ automatically uses constructors with a single argument as type converters

– Look for the error in the following code

class point
{

double _x, _y;
public:

point (double x = 0, double y = 0); // Constructor
// ...

};

main()
{

double a, r, x, y;
// ...
point p = (x + r * cos (a), y + r * sin (a));
// ...

}

– The intention was to write

point p (x + r * cos (a), y + r * sin (a));

– The code compiles and runs using the comma in the expression as the comma operator

– The end result is

point p (y + r * sin (a), 0);

– This happened because default arguments can lead to unintended results

• Finally, never ever forget the precedence of overloaded operators

