
Dynamic Memory Allocation

new and delete operators

• Memory is allocated by using the new operator (it is not a function)

– new is followed by a type name and causes a block of memory of the size of the type to be allocated on the
free store

– It returns the address of the allocated block

vec3 * v;
v = new vec3;

– The above replaces the C statement

v = (vec3 *) malloc (sizeof (vec3));

– We can also allocate an array using new as

v = new vec3[n];

– If an array of a type-with-constructor is called, the constructor without arguments is called on all elements

complex *az = new complex[10]; // calls complex() on all az[i]

– The operator new makes calls to two separate functions:

1. free store allocator

2. appropriate constructor (additional feature to malloc)

• The space allocated by new is recycled by using the delete operator

– The syntax is:

delete v;
delete[] az; // Syntax to reclaim storage for an array

– delete makes a call to a destructor function, if one exists; otherwise, it is exactly like the function free in C

• Example with the class scalar_matrix

class scalar_matrix
{

double *sm; // Matrix elements
int col, row; // Dimensions of matrix

public:
scalar_matrix(int, int);
~scalar_matrix() { delete[] sm; }
double& element(int, int);
// ...

}

scalar_matrix::scalar_matrix(int x, int y) // Constructor function
{

col = x;
row = y;
sm = new double[col * row];

}

double& scalar_matrix::element (int x, int y)

Dynamic Memory Allocation 2

{
if (0 <= x && x < col && 0 <= y && y < row)

return (sm[y*row + x]);
}

• The declaration

scalar_matrix m (5, 6);

causes a call to the constructor and initializes m.sm with a new double[5 * 6]

• Example – Linked list

class cell
{

int info;
cell * next;
friend class list;

};

class list
{

cell *head;
cell *cur; // Current position
cell * pre; // Predecessor of current position

public:
list();
~list();
void insert (int n); // Insert before current position
void remove(); // Remove current position
int info(); // Information in the current element
void advance(); // Advance current pointer
void reset(); // Change current pointer to point to head
bool atend() { return (cur == NULL); };

};

list::list() // Constructor function
{

head = cur = pre = NULL;
}

list::~list() // Destructor function -- Removes all cells in the list
{

cell *p = head;

while (p)
{

cell *q = p;
p = p->next;
delete q;

}
}

void list::insert(int n)

Dynamic Memory Allocation 3

{
cell *p = new cell;
p->info = n;
p->next = cur;
if (pre)

pre->next = p;
else

head = p;
pre = p;

}

void list::remove()
{

if (!cur)
return;

if (pre)
pre->next = cur->next;

else
head = cur->next;

cell *p = cur;
cur = cur->next;
delete p;

}

int list::info()
{

return (cur ? cur->info : 0);
}

void list::advance();
{

if (cur)
{

pre = cur;
cur = cur->next;

}
}

void list::reset()
{

cur = head;
pre = NULL;

}

– cell has no public access but all member functions of list have been declared friends; you can walk through
the list with the following loop:

for (l.reset(); !l.atend(); l.advance())
{

// Body of the loop
}

Construction and destruction

• Constructor is a member function with the same name as the class and no return type

Dynamic Memory Allocation 4

• Destructor is a member function with the name ~class-name, no arguments, and no return type

– Just as a constructor guarantees proper initialization of an object, the destructor guarantees proper cleanup
after the object is no longer needed

• A class may have many constructors but not more than one destructor

• Both constructors and destructors are not actual functions but only get caused to be called

• If a class does not have a constructor, an instance of the class gets initialized with random data (garbage) or an
exact copy of another object in the class

• Destructors are necessary only for those classes that need cleanup, most commonly recycling the allocated storage

• You may also decrement a reference counter, or close a file in the destructor

• A constructor for class X is called in the following circumstances:

– A static local or a global variable of class X is declared. The constructor is called before main starts, or when
the program enters its scope for the first time

– An automatic variable of class X is declared within a block and the location of its declaration is reached

– A function is called with argument X. A function call causes all its argument variables to be allocated and
initialized

– An unnamed temporary variable is created to hold the return value of a function returning X

– An instance is obtained from the free store with new X

– A variable is being initialized that has a member of type X

– A variable is being initialized that is derived from X

• A destructor for class X is called in the following circumstances:

– After the end of main() to destroy all static local or global instances of X

– At the end of each block containing an automatic variable of type X

– At the end of each function containing an argument of type X

– To destroy any unnamed temporaries of type X after their use

– When an instance of X is deleted

– When a variable with a member of type X is destroyed

– When a variable derived from X is destroyed

• Important to have destructor (or explicitly return the memory to the free store) as otherwise, the allocated memory
stays after the end of a function and creates garbage

• A class may have many constructors with different argument types, with two of them being special:

– The constructor with no arguments, or X()

Also known as the default constructor

Important: When an array is initialized using either of the following

complex c[n];
complex *c = new complex[n];

the constructor with no arguments is called on each array element; if a class has constructors but none of
them without arguments, it is an error to allocate an array

– The copy constructor, X(const X&)

∗ The copy constructor is called whenever a copy of an object needs to be made, such as the following
instances

Dynamic Memory Allocation 5

· When a function argument is initialized with the value in the call

· When a return value is copied out of the function into an unnamed temporary

· When a variable is declared with an initializer of the same type

list l = tasklist;

Initialization (above) is different from assignment (below)

list l;
l = tasklist;

Initialization is accomplished by a call to the copy constructor (if it exists) which will be like

list::list (const list&)

Assignment is initialized with the constructor

list::list (void)

and tasklist is copied by using the operator list::operator= (list&) (if that exists)

∗ In the absence of a copy constructor, C++ makes a bitwise copy of all data members which may lead to
problems with dynamically allocated objects (or object members)

∗ Parameter to the copy constructor

· Passed as a reference parameter, to prevent making a copy of the parameter

· Qualified by a const to ensure that it does not get modified

– You can prevent a user from creating an object with no parameters by making the default constructor private
to the class

• Static data

– Consider the examples

complex i (0, 1); // global variable
fraction a[10]; // global array

– The objects are allocated in the static data area

– Both of them are initialized through the constructors before the start of main

– If there is no destructor (~complex or ~fraction), no cleanup occurs

• Local variables

– Allocated in the stack area

– Initialized and destroyed just as automatic variables

• Function arguments

– Consider the function call

i = count (tasklist, 0);

– When the function starts, two local variables (let us call them l1 and l2) are allocated in the stack area

– l1 is initialized with a copy of tasklist (through copy constructor, if it exists, or through memberwise copy)

– l2 is initialized with 0

– They are destroyed by the destructor calls at the end of the function

• Unnamed temporaries

– Consider the following segment

Dynamic Memory Allocation 6

fraction x, y;
// ...
cout << x * y;

fraction fraction::operator* (fraction b)
{

fraction r;
// ...
return (r);

}

– In the call to operator* (x, y), the result is computed in r

– An unnamed temporary variable is created in the scope of the caller before the call is made to the function,
and initialized with a copy of r using copy constructor or memberwise copy

– The temporary variable is given to operator<< and destroyed after that

– An explicit call to the constructor also results in unnamed temporary

cout << fraction (1, 2);

• Free-store data

– Consider the example

file* f = new file ("input.dat");
// ...
delete f;

– The structure is allocated on free store

– When the call to delete is made, the destructor is called first and then, the storage is returned to free store

– When an array is deleted, the destructor is called on each element of the array before the storage space is
returned

Copying dynamically allocated objects

• Default copy of one structure to another makes an exact copy of all members

• This behavior can lead to problems if one of the members is a pointer into the free store

Memberwise copying

• If no special copy semantics are specified through the copy constructors or assignment operator, a default method
is applied to perform memberwise copy of structures

• Some structure members might be objects with special copy semantics

• Recursive copy rule:

– If the object has a copy initializer or assignment operator, it is called

– If the object is a built-in type or a pointer, a bitwise copy is made

– Otherwise, memberwise assignment is applied recursively to each subobject

Reference counting

• Technique to avoid the problem of garbage in free store

