Dynamic Memory Allocation

new and delete operators

e Memory is allocated by using the new operator (it is not a function)

— new is followed by a type name and causes a block of memory of the size of the type to be allocated on the
free store

— It returns the address of the allocated block

vec3 * Vv;
Vv = new vec3;

— The above replaces the C statement
v = (vec3 *) malloc (sizeof (vec3));
— We can also allocate an array using new as
v = new vec3[n];
— If an array of a type-with-constructor is called, the constructor without arguments is called on all elements
complex *az = new complex[10]; // calls complex() on all az[i]

— The operator new makes calls to two separate functions:

1. free store allocator
2. appropriate constructor (additional feature to malloc)

e The space allocated by new is recycled by using the delete operator

— The syntax is:

delete v;
delete[] az; // Syntax to reclaim storage for an array

— delete makes a call to a destructor function, if one exists; otherwise, it is exactly like the function free in C

e Example with the class scalar_matrix

class scalar_matrix

{
double *sm; // Matrix elements
int col, row; // Dimensions of matrix
public:
scalar_matrix(int, int);
“scalar_matrix() { delete[] sm; }
double& element(int, int);
//
}
scalar_matrix::scalar_matrix(int x, int y) // Constructor function
{
col = x;
row = y;
sm = new double[col * row J];
}

double& scalar_matrix::element (int x, int y)

Dynamic Memory Allocation

if (0 <=x && x < col & 0 <=y && y < row)
return (smly*row + x]);

}
e The declaration
scalar_matrix m (5, 6);

causes a call to the constructor and initializes m.sm with a new double[5 * 6]

e Example — Linked list

class cell

{
int info;
cell * next;
friend class list;
};
class list
{
cell xhead;
cell *cur; // Current position
cell * pre; // Predecessor of current position
public:
list();
“list();
void insert (int n); // Insert before current position
void remove(); // Remove current position
int info(); // Information in the current element
void advance(); // Advance current pointer
void reset(); // Change current pointer to point to head
bool atend() { return (cur == NULL); };
};
list::1list() // Constructor function
{
head = cur = pre = NULL;
}
list::"1list() // Destructor function -- Removes all cells in the list
{
cell *p = head;
while (p)
{
cell *xq = p;
p = p—>next;
delete q;
}
}

void list::insert(int n)

Dynamic Memory Allocation 3

{
cell *p = new cell;
p—->info = n;
p—>next = cur;
if (pre)
pre—->next = p;
else
head = p;
pre = p;
}
void list::remove()
{
if ('cur)
return;
if (pre)
pre->next = cur->next;
else
head = cur->next;
cell *p = cur;
cur = cur->next;
delete p;
}
int list::info()
{
return (cur ? cur->info : 0);
}
void list::advance();
{
if (cur)
{
pre = cur;
cur = cur->next;
}
}
void list::reset()
{
cur = head;
pre = NULL;
}

— cell has no public access but all member functions of 1ist have been declared friends; you can walk through
the list with the following loop:

for (l.reset(); !'l.atend(); 1l.advance())
{

// Body of the loop
}

Construction and destruction

e Constructor is a member function with the same name as the class and no return type

Dynamic Memory Allocation 4

Destructor is a member function with the name ~“class-name, no arguments, and no return type

— Just as a constructor guarantees proper initialization of an object, the destructor guarantees proper cleanup
after the object is no longer needed

A class may have many constructors but not more than one destructor

e Both constructors and destructors are not actual functions but only get caused to be called

If a class does not have a constructor, an instance of the class gets initialized with random data (garbage) or an
exact copy of another object in the class

e Destructors are necessary only for those classes that need cleanup, most commonly recycling the allocated storage

You may also decrement a reference counter, or close a file in the destructor

e A constructor for class X is called in the following circumstances:

A static local or a global variable of class X is declared. The constructor is called before main starts, or when
the program enters its scope for the first time

An automatic variable of class X is declared within a block and the location of its declaration is reached

A function is called with argument X. A function call causes all its argument variables to be allocated and
initialized

— An unnamed temporary variable is created to hold the return value of a function returning X

An instance is obtained from the free store with new X

A variable is being initialized that has a member of type X

A variable is being initialized that is derived from X
e A destructor for class X is called in the following circumstances:

— After the end of main() to destroy all static local or global instances of X
— At the end of each block containing an automatic variable of type X

— At the end of each function containing an argument of type X

To destroy any unnamed temporaries of type X after their use

When an instance of X is deleted

When a variable with a member of type X is destroyed

When a variable derived from X is destroyed

e Important to have destructor (or explicitly return the memory to the free store) as otherwise, the allocated memory
stays after the end of a function and creates garbage

e A class may have many constructors with different argument types, with two of them being special:

— The constructor with no arguments, or X()

Also known as the default constructor
Important: When an array is initialized using either of the following
complex c[n];
complex *c = new complex[n];
the constructor with no arguments is called on each array element; if a class has constructors but none of
them without arguments, it is an error to allocate an array
— The copy constructor, X(const X&)

x The copy constructor is called whenever a copy of an object needs to be made, such as the following
instances

Dynamic Memory Allocation

- When a function argument is initialized with the value in the call
- When a return value is copied out of the function into an unnamed temporary
- When a variable is declared with an initializer of the same type

list 1 = tasklist;
Initialization (above) is different from assignment (below)
list 1;
1 = tasklist;
Initialization is accomplished by a call to the copy constructor (if it exists) which will be like
list::list (const list&)
Assignment is initialized with the constructor
list::1list (void)
and tasklist is copied by using the operator list::operator= (list&) (if that exists)

x In the absence of a copy constructor, C++ makes a bitwise copy of all data members which may lead to
problems with dynamically allocated objects (or object members)

* Parameter to the copy constructor
- Passed as a reference parameter, to prevent making a copy of the parameter
- Qualified by a const to ensure that it does not get modified

— You can prevent a user from creating an object with no parameters by making the default constructor private

e Static data

to the class

Consider the examples

complex i (0, 1); // global variable
fraction a[10]; // global array

The objects are allocated in the static data area
Both of them are initialized through the constructors before the start of main

If there is no destructor (“complex or “fraction), no cleanup occurs

e Local variables

— Allocated in the stack area

— Initialized and destroyed just as automatic variables

e Function arguments

Consider the function call

i = count (tasklist, 0);

When the function starts, two local variables (let us call them 11 and 12) are allocated in the stack area

11 is initialized with a copy of tasklist (through copy constructor, if it exists, or through memberwise copy)
12 is initialized with 0

They are destroyed by the destructor calls at the end of the function

e Unnamed temporaries

— Consider the following segment

Dynamic Memory Allocation 6

fraction x, y;
//

cout << x * y;

fraction fraction::operator* (fraction b)

{
fraction r;
/] ...
return (r);
}

— In the call to operator* (x, y), the result is computed in r

— An unnamed temporary variable is created in the scope of the caller before the call is made to the function,
and initialized with a copy of r using copy constructor or memberwise copy

— The temporary variable is given to operator<< and destroyed after that

— An explicit call to the constructor also results in unnamed temporary

cout << fraction (1, 2);

e Free-store data

Consider the example

filex f = new file ("input.dat");
/...
delete f;

The structure is allocated on free store

When the call to delete is made, the destructor is called first and then, the storage is returned to free store

When an array is deleted, the destructor is called on each element of the array before the storage space is
returned

Copying dynamically allocated objects

e Default copy of one structure to another makes an exact copy of all members

e This behavior can lead to problems if one of the members is a pointer into the free store

Memberwise copying

e If no special copy semantics are specified through the copy constructors or assignment operator, a default method
is applied to perform memberwise copy of structures

e Some structure members might be objects with special copy semantics
e Recursive copy rule:

— If the object has a copy initializer or assignment operator, it is called
— If the object is a built-in type or a pointer, a bitwise copy is made

— Otherwise, memberwise assignment is applied recursively to each subobject

Reference counting

e Technique to avoid the problem of garbage in free store

