
Inheritance

• Property of object-oriented programming that allows one class, known as a derived class, to share the structure and
behavior of another class, known as the base class

• Allows newly created members to inherit members (attributes and methods) from existing classes

• Derived (or child) classes include their own members and members inherited from the base (or parent) class

• A collection of classes with common inherited members is viewed as a family of classes

Why use inheritance?

• Allows you to reuse the code from a previous programming project

– You can enhance an existing class by adding new attributes and methods

– Extremely practical approach in an environment with multiple programmers, working on the code written by
others long ago

∗ You do not have to get inside each method of an existing class to modify the data and code

• Allows you to build a hierarchy among classes

– A general bank account is used to define attributes such as an account number and account balance, and
member functions such as deposit that are common to all bank accounts

– Classes that define checking account and savings accounts can be derived from the base class bank account

– We could even derive another class called super-now account from the class checking account, leading to a
grandchild class of bank account

– Such a family of classes is referred to as a class hierarchy

• IS-A relationship

– Important link between a derived class and its base class

– Must exist for proper use of inheritance

– A checking account IS-A bank account

Derived classes

• A derived class is declared using the following format:

class <derived class> : public <base class>
{

<derived class member data>
<derived class member functions>

};

• The class for bank accounts

Inheritance 2

class bank_account
{

protected:
int account_no;
float balance;

public:
void deposit (float); // Add deposit
int account_num (void); // Return account number
float curr_bal (void); // Return current balance

};

– There is no constructor function to initialize the attributes of the class because we are going to leave that for
the derived classes

– The way things are structured, we will not be creating any objects for the base class

– When no objects are to be created for a class, the class is known as an abstract class

– The attributes of the class have been declared to be protected

• protected member

– A member that is accessible to both the base class and any derived classes of the base class in which it is
declared

– A protected member in a base class is accessible to any class within the class family but not accessible from
outside the class family

– If a member is declared to be private to a base class, it is not accessible to a derived class

• Implementation of methods in the base class

void bank_account::deposit (float amount)
{

balance += amount;
}

int bank_account::account_num (void)
{

return (account_no);
}

float bank_account::curr_bal (void)
{

return (balance);
}

• Derived class for checking account

class checking : public bank_account
{

protected:
float minimum; // Minimum balance to avoid check charge
float charge; // Per check-charge

public:
// Constructor functions
checking (void);

Inheritance 3

checking (int, float, float, float);
void cash_check (float); // Cash a check

};

– The keyword public prior to the base class name makes the class bank_account a public base class to the
derived class checking

– A public base class allows all public members of the base class to be public in the derived class

– The inherited members of the public base class (both attributes and methods) maintain their access level in
the derived class

– Without the use of the keyword public, the public functions of the base class would not be accessible to
any code using an object of the class checking, and the following will lead to a compile-time error

checking ca;
float bal = ca.curr_bal();

– minimum and charge are defined to be protected members because they will be inherited by the class
super_now

– Because of inheritance, checking has four attributes – two of its own and two inherited from bank_account

• Implementation of the methods in the derived class checking

checking::checking (void) // Default constructor
{

account_no = 0;
balance = 0.0;
minimum = 0.0;
charge = 0.50;

}

checking::checking (int acct_no = 0, float bal = 0.0, float min = 1000, \
float chg = 0.50)

{
account_no = acct_no;
balance = bal;
minimum = min;
charge = chg;

}

void checking::cash_check (float amt) // Cash a check
{

if (amt > balance) // Test for overdraft
cerr << "Cannot cash check, account will be overdrawn." << endl;

else // Cash check
balance -= (balance < minimum) ? (amt + charge) : amt;

}

• The derived class super_now

class super_now : public checking
{

float int_rate; // Annual rate of interest

public:
super_now (void); // Constructor functions

Inheritance 4

super_now (int, float, float, float, float);
void add_interest (void); // Add interest to balance

};

– The super_now class has only one attribute, and inherits four attributes from its parent and grandparent

• Implementation of the methods in the derived class super_now

super_now::super_now (void) // Default constructor
{

account_no = 0;
balance = 0.0;
minimum = 0.0;
charge = 0.50;
int_rate = 2.0;

}

super_now::super_now (int acct_no = 0, float bal = 0.0, float min = 0.0, \
float chg = 0.5, float rate = 2.0)

: checking (acct_no, bal, min, chg)
{

int_rate = rate;
}

void super_now::add_interest (void) // Add interest to balance
{

float interest;

if (balance >= minimum)
{

interest = balance * (int_rate * 0.01 / 12);
balance += interest;

}
}

• The derived class savings

class savings : public bank_account
{

float int_rate; // Annual rate of interest

public:
savings (void); // Default constructor
savings (int, float, float);
void add_interest (void); // Add interest to balance
void withdraw (float); // Make a withdrawal

};

– Two attributes are inherited from the base class bank_account

• Implementation of the methods in the derived class savings

savings::savings (void) // Default constructor
{

account_no = 0;

Inheritance 5

balance = 0.0;
int_rate = 4.0;

}

savings::savings (int acct_no = 0, float bal = 0.0, float rate = 4.0)
{

account_no = acct_no;
balance = bal;
int_rate = rate;

}

void savings::withdraw (float amt) // Make a withdrawal
{

balance -= amt;
}

void savings::add_interest (void) // Add interest
{

float interest;

interest = balance * (int_rate * 0.01 / 12);
balance += interest;

}

• Structure of the base class bank_account

account_no
balance

• Structure of the derived class checking

account_no
balance

minimum
charge

• Structure of the derived class super_now

account_no
balance

minimum
charge

int_rate

• Structure of the derived class savings

account_no
balance

int_rate

– In each of the above classes, a pointer to the derived classes is also a pointer to the base class

– Consider the following case:

bank_account * b = new checking;

Inheritance 6

This will allocate space for an object of the class checking but ignore the attributes that are not visible in
bank_account

• Difference between inheritance and using a base class as a subclass in the derived class

– Both the cases have the same memory layout with the following differences:

– A pointer to the derived class is not automatically a pointer to the base class

– A public member function of the base class cannot be applied to the derived class (you will have to specify
derived.base.foo())

Virtual functions

• Dynamic v. Static binding

– Static binding

∗ Static binding occurs when a polymorphic function is defined for several classes in a family and the code
for the function is attached, or bound, at compile time

∗ Overloaded functions are statically bound

– Dynamic binding

∗ Dynamic (or late) binding occurs when a polymorphic function is defined for several classes in a family but
the actual code for the function is not attached, or bound, until execution time

∗ A polymorphic function that is dynamically bound is called a virtual function.

• A pointer to a derived class automatically points to a base class

– We can put pointers to a derived class objects and to base class objects in an array

– We cannot put actual objects of the base class and derived classes in an array because of different memory size
requirements

– Imagine printing the bank statement for all checking accounts:

for (accts.reset(); !accts.at_end(); accts.advance())
accts.print_statement();

– Because of differing memory requirements, there is no way of telling whether the account is a plain checking
account or a super-now account and certainly, the print function for both the cases will have to be handled
differently

– We can add a type field to specify the type of account and use it to pick up the correct print function:

switch (acct->type)
{
case 0: acct->print_statement(); break;
case 1: ((super_now *) acct) -> print_statement(); break;
}

• A virtual function allows us to avoid writing such code and solves the problem by making the print_statement
function virtual in base class checking

class checking : public bank_account
{

// ...
virtual void print_statement();

};

• A virtual function alerts the compiler automatically to make a type field that distinguishes a plain checking account
and all its derived classes, and to translate each call

Inheritance 7

acct->print_statement();

into run-time selection of the correct method

• This is also known as run-time overloading of the function

• Only member functions can be virtual

Multiple inheritance

• Look at the following inheritance hierarchy:

? ?

Q
Q
Q
Q
Q
Q
QQs

Box Text

Shaded box Text box

– The inheritance is no longer a tree-shaped hierarchy

– Text box inherits from two classes: Box and Text

– It was possible to define the class Text_Box as

class Text_box : public Box
{

Text t;
public:

// ...
};

but then, it will not inherit from the class Text

• Solution: Multiple inheritance

• The declaration looks like:

class Text_Box : public Box, public Text
{

// ...
};

• Notice that there are two separate keywords public in front of each class from where the derived class inherits

• The constructor function for such a class looks like

Text_Box :: Text_Box (int x1, int y1, int x2, int y2, const char t[])
: Box (x1, y1, x2, y2), Text (t)
{}

• With multiple inheritance, a pointer to a derived class no longer automatically points to the base class because the
order of inclusion of the two classes is not guaranteed

Inheritance 8

• However, whenever a pointer to a derived class is converted to a pointer to any of the base classes, an appropriate
offset is added by the compiler

• What if we now want to have a class called Shaded_Text_Box

– It is natural to combine the two classes: Shaded_Box and Text_Box as

class Shaded_Text_Box : public Shaded_Box, public Text_Box
{

// ...
};

– The inheritance looks like

? ?

Q
Q
Q
Q
Q
Q
QQs

S
S
S
S
Sw

�
�
�
�
��/

Box Text

Shaded box Text box

Shaded Text box

– There is a serious problem: The class Box is inherited via both Shaded_Box and Text_Box

– If any of the attributes in the class Box is referred to, is the reference to be resolved through Shaded_Box or
Text_Box

– Wasting the space for both Boxes is certainly undesirable

• Solution: virtual base classes

– The classes Shaded_Box and Text_Box can both declare the base class Box to be virtual

class Text_Box : virtual public Box { ... };
class Shaded_Box : public virtual Box { ... };

The order of public and virtual does not matter

– A class inheriting from both these classes will get only one instance of Box

– If there are multiple virtual classes, the common ones are coalesced to a single copy

• Restriction on base class construction

– A virtual base class may be initialized only from the most derived class or with a constructor that requires no
arguments

∗ In the above example, the most derived class is Shaded_Text_Box

