Input/Output

Stream 1/0

e Stream — Sequence of bytes that may be input to, or output from, a program
e Three standard streams in C++

1. cin — Standard input stream (stdin)
2. cout — Standard output stream (stdout)

3. cerr — Standard error stream (stderr)

e cin and cout are buffered streams while cerr is unbuffered

The << and >> operators

e The cin >> and cout << operators are overloaded >> and << operators, applied to members cin and cout of the
classes istream and ostream, defined in iostream.h

e Why can the operators be chained together (like cout << x << y;)?

— The operator << binds left to right

The above expression can be fully parenthesized as

(cout << x) << y;

Furthermore, each << operation returns a value that is identical to its first argument
— Since ostreamns are fairly sizable objects, the operator<< functions take an ostream& and return it

— The definition of the operator inside the class is

ostream& operator<< (ostream&, charx);
ostream& operator<< (ostream&, int);

e Defining << for user-defined classes (example complex)

class complex

{
double re, im;
public:
complex (double, double);
friend ostream& operator<< (ostream&, const complex&) ;
friend istream& operator>> (istream&, complex&) ;
s
complex: :complex (double r = 0.0, double i = 0.0)
{
re = r;
im = i;
}

ostream& operator<< (ostream& s, const complex& c)

{

return (s << c.re << " + i" << c.im);

}

Input/Output 2

istream& operator>> (istream& s, complex& c)

{
s >> c.re;
char ch;
s >> ch;
if (ch !'= 47)
cout << "+ expected" << endl;
s >> ch;
if (ch '= i’)
cout << "i expected" << endl;
s >> c.im;
return s;
}
main()
{
complex ¢ (5.0, 3.0);
cout << "The complex number is: " << c << endl;
}

1/0 of characters and strings
e We can put a single character on the output stream by using the function
ostream: :put (char)
e The function is called as
cout.put (ch)
e A character is input by
cin.get (ch)
get reads a whitespace character rather than skipping over it
e You can put the character back on the input stream by
cin.putback (ch)
e You can examine a character without removing it from input stream by
cin.peek (ch)
e Two functions for line-based input

istream& istream::getline (char * buffer, int bufsize, char terminator = ’\n’);
istream& istream::get (char * buffer, int bufsize, char terminator = ’\n’);

— cin.getline (line, 80); reads a line

— cin.get (word, 20, ’ ’); reads in a word because the termination character is changed to a space

— The termination character is left as the next character on the input stream when calling get, whereas getline
extracts the termination character and throws it away

Input/Output 3

— Both functions automatically place a null string terminator in the buffer, and stop reading when the buffer is
full

— You can call istream: :gcount () immediately after any of these two functions to get the number of characters
transferred into the buffer

Formatted 1/0

e Formatting (binary to ASCII and the other way round) is automatically performed by the class ios, the base class
for both istream and ostream

e Formatting is governed by a format state in the ios class
e The format state contains

— Field width
— Fill character

— Field alignment

Integer base (decimal, hex, octal)

Floating point format (fixed, scientific, general)

Whether to show a + sign, trailing decimal point and zeroes, or the integer base

— Uppercase or lowercase letter usage for E, 0X, hex digits
e To manipulate these states, you need to #include <iomanip.h> in your function
e Each of the states can be changed in two ways

1. With an ios function manipulator

— The ios function manipulators return the old values of the manipulated parameter, making it convenient
to restore the old values if needed

2. With a manipulator

e To set the fill character to '0" and the width to 10, you can use

cout.fill (0’);
cout.width (10);

or
cout << setfill (’0’) << setw (10);

e Setting field width

— For output, field width denotes the minimum number of characters printed for a field

— For input, width is meaningful only if reading a string
e Except for field width, the members of format state are implemented with bits or groups of bits

— Bits can be turned on with the member function ios: :setf or a manipulator setiosflags
— Bits can be turned off with the member function ios::unsetf or a manipulator resetiosflags

— To show a leading + sign for positive numbers, you can use either of the following:

cout.setf (ios::showpos);
cout << setiosflags (ios::showpos);

Input/Output

e The available flags are:

— The flag can be turned off by

cout.unsetf (ios::showpos);

cout << resetiosflags (ios::showpos);

— For more than two choices (such as decimal, hex, or octal base), you need to make two selections

cout.setf (ios::hex, ios::basefield);

ios flag Field group Meaning

left adjustfield Left alignment

right adjustfield Right alignment
internal adjustfield Sign left, remainder

dec basefield Decimal base

hex basefield Hex base

oct basefield Octal base

showbase Show integer base
showpos Show + sign

uppercase Uppercase E, X, and A...F
fixed floatfield Fixed floating-point
scientific floatfield Scientific floating-point
showpoint Show trailing decimal point

o lllustrating different features

#include <iostream.h>
#include <iomanip.h>

main()

{
cout << setfill(’0’) << setw (10);
cout << 42.84 << endl;
cout.setf (ios::left, ios::adjustfield);
cout << setfill(’*’) << setw (20) << "Hello World!" << endl;
cout.setf (ios::right, ios::adjustfield);
cout << setw (20) << "Hello World!" << endl;
cout.setf (ios::scientific, ios::floatfield);
cout.setf (ios::showpoint | ios::showpos);
cout << setprecision (10) << 123.45678 << endl;
cout.unsetf (ios::floatfield);
cout << setprecision (10) << 123.45678 << endl;

int n = 12;
cout.unsetf (ios::showpos);
cout << hex << n <<’ 7 <K oct << n <<’ ? <K< dec << n << endl;

}

e Available manipulators

Input/Output 5

Manipulator ios member function
setfill fill

setw width
setprecision precision
setiosflags setf
resetiosflags unsetf

hex

oct

dec

e The only saving grace compared to C I/O handling is that C++ completely avoids the mismatch between the format
string and the data type

Using files for 1/0

e You must include the header file fstream.h

e To open a stream attached to a file

ifstream is ("input.txt", ios::in);
ofstream os ("output.txt", ios::out);

e The classes ifstream and ofstream are derived from istream and ostream

— An [io]fstream object is an [io]lstream object with added capabilities

— You can use all the [io]stream functions (<<, get, putback) with [io]fstream objects

e Example to read something from terminal and put it to a file

#include <iostream.h>
#include <fstream.h>

main()

{
char ch, 1line[80];

// Open output stream for file outfile
ofstream os ("outfile", ios::out);
while ('(ch = cin.eof()))
{
cin.getline (line, sizeof(line));
0s << line << endl;
}

// Close the output stream

os.close();

— If a file cannot be opened, the [io]fstream variable gets 0 and can be checked

if (! os)
cerr << "Error opening file" << endl;

Input/Output 6

Error states
e All 1/O streams have a state associated with them from the set
{good, end-of-file, fail, bad}
o Fail state
— Occurs because of a logical error, such as trying to read an integer when the next character is a letter
e Bad state
— Occurs because of a physical error, such as a hardware failure or memory exhaustion

e The stream state is reported by four access functions

1. good()
2. eof ()
3. bad()
4, fail()

e fail() is true if the stream is in “fail” or “bad” state
e cof () is true if the end of file is reached and the stream is not in a failed state

e The states can be tested with the rdstate member function
if (s.rdstate() & ios::failbit)
e The stream can be reset to “good” state with
s.clear();
or to “fail” with

s.clear (ios::failbit | s.rdstate());

— You may need to clear the state if you want to continue reading after the state has been set to “bad” or “fail”

— You may need to set the state to “bad” to report problems in the user-defined operator>>

Attaching streams to strings

e Equivalent to sscanf

e Achieved by the string stream package

#include <iostream.h>
#include <strstream.h>

main()

{
char 1ine[80];
int 1i;
double d;

istrstream si (line, sizeof (line));

Input/Output

while (cin.getline (line, sizeof (line)))

{
si >> i > d;
si.seekg (ios::beg); //reset to start
cout << i1 << ? 7 << d << endl;

}

}
e The output stream is declared with
ostrstream so (line, sizeof (line), ios::out);
and is reset with

so.seekp (ios::beg);

