Structures

Non-elementary data type

e Also known as aggregates
e Allow the collection of different types of variables into one object

e Compared to arrays

— In an array, all the elements are of the same type and are indexed
— In a structure, each element (field) is named and has its own data type

Structure definitions
e Each structure is equivalent to a record, with each element of the structure being a field in the record
e Derived data types
— Can be constructed by using the objects of other known data types

e Structure to represent information about a person

Name < 30 characters
Year of birth integer
Height integer

e Above can be declared in C as

struct person_info
{
char name[31];
int vyr_of birth;
int height; /* in inches =/
}
people[1007];

e person_info is the fag or symbolic name for the structure and can be omitted

— Only the variables declared at the end of the structure declaration, (people in the above case),
can have that structure type

e people[100] is the variable of type person_info and may be omitted as well
e Preferred way of declaration

— Declare the structure type in the header file (the .h file) as

struct person_info
{
char name[31];
int vyr_of_birth;
int height; /* in inches x/

}i

Strings 2

— Declare the variable as
struct person_info people[100];

— The keyword st ruct must not be omitted

e The structure can be defined as a type obviating the need for using the keyword st ruct as follows:

typedef struct
{

char name[31];

int vyr_of_birth;

int height; /* in inches =*/
} person_info_t;

The variable can now be declared as
person_info_t people[100];

e Structures may not be compared

— Structure members may not be necessarily stored in consecutive bytes

— There also may be “holes” in a structure because computers may store specific data types only
on certain memory boundaries, such as halfword, word, or doubleword boundaries

— Example

struct example
{
char c;
int i;
} samplel, sample?2;

on a 2-byte word machine, may get allocated as

Byte Contents

0 01100001
1 Unused

2 00000000
3 01100001

Initializing structures

e The variables can be initialized if their memory space is permanent (external or static)

static person_info_t
leader = {"Bill Clinton", 1948, 73},
president,
people[100] = {
{"Joe Smith", 1952, 70},
{"John Doe", 1961, 65}
bi

Strings 3

e If the initializer is shorter than the structure being initialized, the remainder structure is filled with Os

e The entire contents of a structure can be copied from one variable to another by using the simple
assignment statement

president = leader;

Accessing members of structures

e The individual elements in the structure can be referred to as variable.fieldname (by using the dot
operator)

president .name
people[i] .height
people[i] .name[7]

The last one is to be read as (people[i] .name) [J]
e Pointers and structures

— Consider the following declaration
person_info_t * ptr, people[l00];

— The statement
ptr = peoplel[i];

allows us to have access to the ith element in the array as xptr
— An individual field in the element can be then referred as (*ptr) .height
* The parentheses around the pointer are required because . has a higher precedence than

— C allows us to refer to such fields by using the —> operator as pt r—>height (using the arrow
operator)

* —> is known as dereference and access member operator

— The individual characters in the name field can be referred to as ptr—>name [j]

Functions and structures

e Structures may be passed to functions by either of the following mechanisms

— Passing individual structure members
— Passing an entire structure
— Passing a pointer to a structure

e The first two mechanisms are used to pass the structure using call-by-value
— Members of a caller’s structure cannot be modified by the called function

e Arrays of structures, like all other arrays, automatically get passed by reference

e Structures can be used to pass arrays by value

Strings 4

— Create a structure with the array as a member
— Pass this structure by value

e Passing structures call by reference is more efficient than passing structures call by value as the latter
requires an entire structure to be copied

e Example

— Imagine that you have an array people [100] with each element of the type person_info_t
— The following function scans the array and returns the information about the first person with
the same height as input, or returns a null value if it cannot find any such person (p is the array
containing the information and np is the number of elements in the array; ht is the height of the

person)

person_info_t x find (person_info_t *x p, int np, int ht)

{

int 1i; /* Counter =/
for (1 = 0; 1 < np; i++)
if (pl[i].height == ht)
return (p+i);

return (NULL);
}

— NULL is implicitly converted to type pointer to person_info_t; the explicit conversion
would have the last statement written as

return ((person_info_t %) NULL);

e Caution

1. Never assume that structures, like arrays, are automatically passed call by reference, and try to
modify the caller’s structure values in the called function

2. Never attempt to assign a structure of one type to a structure of different type

typedef

e Allows a programmer to define own variable types

e Can also be used to create synonyms (or aliases) for previously defined data types

— There is no Boolean data type in C
— Use typedef to declare a new data type

typedef int boolean;
— Could have been achieved by
#define boolean int
— typedef allows for the definition of more complex objects as well

typedef int groupll0];
Now, there exists a new type called group denoting an array of ten integers

Strings 5

/****‘k**********************‘k**********************‘k***************************/
/% Creating and initializing a variable array with enumerated type */
/***********‘k**********************‘k******‘k************************************/
int main ()
{

typedef int group[10];

group totals;

int 1i;

for (1 = 0; 1 < 10; totals[i] = i++);

}

— Simple rule: The new type name is always the identifier on the right
e Mostly used with st ruct so a structure tag is not required
e Also good for portability of the code

— A program requiring 4-byte integers may use type int on one system and type 1ong on another
system

— Problem can be solved by using preprocessor commands to declare a type integer that will
behave appropriately on either system

Nested structures

e Structures can be used to build more complex structures

e Let us think of a structure employee_t that holds information about employees in a company

typedef struct
{

int month;

int day;

int year;
} date_t;

typedef struct
{

char first_name[20];
char middle_init[2];
char last_name[20];

} name_t;

typedef struct

{
name_t name; // Name of employee
date_t dob; // Date of birth
date_t joining_date; // Date when started with company
} employee_t;
typedef struct
{
employee_t employee;
char dept [20];

} manager_t;

Strings 6

Unions

e Derived data structure just like a st ruct, to hold one of more fields or attributes
e With structures, all members are physically present in the memory at the same time

e For some applications, this is not necessary because at each moment, only one of them contains
useful information

e Consider the development of a package where the package has to keep space for different types of
vectors but work with only one type at any time

struct vector
{
int i;
double J;
struct complex
{
double rl,
im;
} k;
}i

e In general, this vector wastes space as only one of the members is required at any time
e Better to have variants rather than members such that the variants occupy the same memory space

e Accomplished by unions

e Only one member, and thus one data type, can be referenced at a time
— The compiler will allocate space to hold the largest element in the union

e Above structure can be declared as

union wvector

{
int i;
double I
struct complex

{
double rl1,
im;

i
union vector u, *p;
e As with structures, the following are valid:

u.i u.] u. (k.rl)
p—>i p->3 p-—>(k.rl)

Strings 7

e The sequence of statements

u.i = 123;
u.j = 3.14;

results in the value in u to be 3. 14 because u. 1 occupies the same space as u. j, or at least a part
of it
e A union occupies as much memory space as its largest variant

e We can also declare functions that will return a union
union vector * read_vector ();

e Operations on unions

— Assigning a union to another union of the same type
— Taking the address (&) of a union
— Accessing union members using the structure member operator and the structure pointer operator
— In a declaration, a union may be initialized only with a value of the same type as the first union
member
union vector vec = { 10 };

— The following declaration will be invalid

union vector vec = { 3.14 };
e Cautions

— Referencing with the wrong type, data stored in a union with a different type, is a logic error

— If data is stored in a union as one type and referenced as another type, the results are implemen-
tation dependent

— Comparing unions is a syntax error because of the different alignment requirements on various
systems

— Initializing a union in a declaration with a value whose type is different from the type of the
union’s first member is an error

— The amount of storage required to store a union is implementation dependent

Bit Operations

e Bit or flag

— Smallest unit of information
— Can take on the value 1 (true) or O (false)

— Used to manipulate the bits of integral operands, char, short, int, and 1ong, both signed
and unsigned

— Used to control the machine at the lowest level, specially in pixel-level graphics

e Byte

Strings 8

— Collection of 8 bits

— Can be represented as two hexadecimal numbers by using OxHH where H is a hexadecimal
number

e Bit operators

— Allow a programmer to manipulate individual bits in integer or character data types

Operator Semantics
& Bitwise and
| Bitwise or
" Bitwise exclusive or
Complement
<< Shift left
>> Shift right

— The and operator

* Compares corresponding bits in the two operands
* Consider the following program
main ()
{
char cl1 = 0x45,
c2 0x71;
printf ("Result of %x & %$x = %x\n", cl, c2, cl & c2);

}

* The operators & and && are different
x Using bitwise operator to check if a number is even

#define even(x) (((x) & 1) == 0)
— The bitwise inclusive or operator
*x Compare two operands and set resultant bit to 1 if either of the corresponding bits is a 1
— The bitwise exclusive or operator

*x Compare two operands and set resultant bit to 1 if either of the corresponding bits is a 1 but
not both

— The not operator
* Also called one’s complement, invert, or bit flip

* Unary operator

* Changes the corresponding bits to 0 if they are 1, or 1 if they are 0
— The left and right shift operators

* Used to move the data a specified number of bits

x Bits shifted out of the left side disappear

* New bits coming in from the right side are zeros
* Example

/**

/+ Printing an unsigned integer in bits

#include <stdio.h>

Strings 9

main ()
{
unsigned int x; /* Number to be printed
void display_bits (unsigned int);
printf ("Enter an unsigned integer: ");
scanf ("%u", &x);

display_bits (x);

void display_bits (unsigned int value)
{

unsigned int i,
display_mask = 1 << (8 x sizeof (unsigned int) -

/* The display_mask contains 1 shifted by the number of bits in i

printf ("%7u = ", value);
for (i =1; 1 <= (8 % sizeof (unsigned int)); i++)

{
putchar ((value & display_mask) 2 "1’ : "0’);
value <<= 1;

if ('(1 %8))
(

putchar ("\n’);
}

/**
e Declaration of bit fields or packed structures

— Consider a structure with the following information:

name < 30 characters
male lor0O
married 1lor0
elderly 1lor0

— The structure can be declared as

struct person
{
char name[31]; /+* 30 characters + end of string =/
unsigned male : 1,
married : 1,

Strings 10

elderly :1;
} people[l1000];
- male,married, and elderly are bit-fields

* The 1 following the colon indicates that each of these fields contains only one bit

* These structure members can only have the values O or 1

x Instead of 1, a greater number of bits may be chosen limited to the number of bits in a single
machine word

— An assignment to bit fields can be made as
people[i] .married = O;
— Bit fields occupy little space in the memory

* In the above example, male, married, and elderly may be bits of a single machine
word

+ Bit fields have no address of their own, and so, we cannot use pointers to them

* & (person[i] .married) is not a valid expression

— Another example of a bit field or packed structure

struct item

{

unsigned int list:1; /* item is in the list */
unsigned int seen:1; /* 1tem has been seen *x/
unsigned int number:14; /* item number *x/

/* at most 16383 items */

}i
— Code to extract data from bit fields is relatively large and slow
— Better for human consumption than bit operators which are complex and error prone

Enumerated types

e Designed for variables that contain only a limited set of values
e Set of integer constants represented by identifiers or tags, known as enumeration constants
e Values in an enumeration start with 0, unless specified otherwise, and are incremented by 1

e Creating a new type months

enum months { JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC },
e To number the months from 1 to 12, the enumeration is specified as

enum months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DI

e The name of the enum type (months above) is optional and can be omitted

e Identifiers in an enumeration must be unique, and are generally written as upper case letters; they can
be any valid C identifiers

Strings 11

e Value of each enumeration constant of an enumeration can be set explicitly in the definition by
assigning a value to the identifier

e Multiple members of an enumeration can have the same integer value

e Using enumeration

/***ﬂ

/* Using an enumeration type
#include <stdio.h>

enum months { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DI
typedef enum months month_t;

main ()

{

month_t month;

char * month_name[] = { "", "January", "February", "March", "April", \
"May", "June", "July", "August", "September",
"October", "November", "December" };

for (month = JAN; month <= DEC; month++)
printf ("%$2d%11s\n", month, month_name[month]);

exit (0);
}

/***‘k‘k‘k********‘ki

e Cautions

— Assigning a value to an enumeration constant after it has been defined is a syntax error

