
Characters and Strings

Constants

• Characters are the fundamental building blocks of source programs
• Character constants

– One character surrounded by single quotes
– ’A’ or ’?’
– Actually an int value represented as a character in single quotes

• Special characters and non-graphic characters

– Denoted by preceding other characters with a backslash \

\n newline
\t horizontal tab
\v vertical tab
\b backspace
\r carriage return
\f form feed
\\ backslash
\’ single quote
\a alert

– Another form \ddd where each d is an octal digit
∗ ddd specifies the desired internal value of a character

– NULL character
∗ Indicated by the escape sequence \0
∗ All bits corresponding to the character are zero
∗ Not the same as the ASCII character 0 which is represented by hexadecimal sequence 30

• String constants

– Also known as literals
– Sequence of characters surrounded by double quotes
– Backslash can be used for special characters
– Double quotes within the string written as \"
– "ABC" or "%d\n\n"
– A null character (\0) is added immediately after the final character of a string

∗ "ABC" is stored in four bytes as "ABC\0"
∗ String constant "A" is different from character constant ’A’

– String constant "ABC\nDEF" is a two-line string
– Important: A character constant is enclosed in single quotes while string constants are enclosed

in double quotes

Fundamentals of strings and characters

Strings 2

• String is accessed via a pointer to its first character
• String is also viewed as an array of characters, with ’\0’ being used to terminate the string
• A string variable is declared as a pointer to character (or array)

char color[] = "blue";
char * color_ptr = color;

– What is the number of bytes reserved for the string in the above cases?
– You must declare enough space for the string (especially if you intend to increase the size of the

string later on)
– Never forget to account for the NULL character when allocating space for strings

• Assigning a string to another variable

– Since strings are implemented by a pointer to the first element of the character array, they cannot
be copied by a simple assignment

– color_ptr = color does not copy the string into color_ptr but merely copies the
pointer value

– You may have to use a function such as strcpy to actually achieve the copy operation
– Assuming that color_ptr has enough memory allocated, the following function can also

achieve the string copy

void copy_string (char * color_ptr, char * const color)
{

char * in = color;
char * out = color_ptr;
while (*out++ = *in++);

}

• A string can be read by using scanf and the %s format specifier, but we will resort to using fgets
to read strings from stdio and files, and sscanf to read them from within memory

• Be careful about mixing characters and strings, especially when passing them as parameters to func-
tions

• Initializing strings

– Can be done using either array or pointer notation
– char color[] = "blue";

∗ Compiler allocates the space and copies literal into that space
∗ This string can be modified

– char * color = "blue";

∗ Compiler just creates a pointer to the string literal
∗ This string cannot be modified

Character handling library

• Standard library in C to work with characters and strings

Strings 3

• You must include the header file ctype.h to use these functions
• In the following table, the type of variable c is an int, with its value restricted to that in an
unsigned char (or that of the predefined constant EOF)

Character classification macros or Predicates
isalpha(c) c is a letter, [a–z] or [A-Z]
isupper(c) c is an uppercase letter, [A-Z]
islower(c) c is an lowercase letter, [a-z]
isdigit(c) c is a digit [0-9]
isxdigit(c) c is a hexadecimal digit, [0-9], [a-f], or [A-F]
isalnum(c) c is an alphanumeric character, a letter or a digit
isspace(c) c is a whitespace character, ’ ’, ’\t’, ’\r’, ’\n’, ’\f’, or vertical tab
ispunct(c) c is a punctuation character (neither control nor alphanumeric)
isprint(c) c is a printing character
iscntrl(c) c is a control character or ’\b’
isascii(c) c is an ASCII character, code less than 0200
isgraph(c) c is a visible graphic character

Character conversion macros
toascii(c) Masks c with an appropriate value so that c is guaranteed to be in the

ASCII range 0 through 0x7f
Character conversion functions

toupper(c) Convert c to its uppercase equivalent
tolower(c) Convert c to its lowercase equivalent

• Program to illustrate the character functions

/**/
/* char_fns.c : Program to illustrate different character functions */
/* Author: Sanjiv K. Bhatia */
/* Date : January 13, 1997 */
/* Last modification on : January 13, 1997 */
/**/

#include <stdio.h>

int main()
{

int foo;

printf ("Please type in a hex integer: ");
scanf ("%x", &foo);

printf ("The decimal value of %x is %d\n", foo, foo);

if (isalpha (foo))
{

printf ("%x is a letter\n", foo);
printf ("The character equivalent of %x is %c\n", foo, foo);
printf ("%x is a %s letter\n", \

foo, isupper(foo) ? "uppercase" : "lowercase");
}

if (isdigit (foo))
printf ("%x is a digit\n", foo);

if (isxdigit (foo))
printf ("%x is a hexadecimal digit\n", foo);

if (isalnum (foo))
printf ("%x is an alphanumeric character\n", foo);

if (isspace (foo))
printf ("%x is a whitespace character\n", foo);

Strings 4

if (ispunct (foo))
printf ("%x is a punctuation character\n", foo);

if (iscntrl (foo))
printf ("%x is a control character\n", foo);

if (isascii (foo))
printf ("%x is an ASCII character %c\n", foo, foo);

else
{

printf ("The ASCII equivalent of %x is %x", foo, toascii(foo));
printf (isprint(toascii(foo)) ? ", or character %c\n" : "\n", foo);

}

if (isgraph (foo))
printf ("%x is a visible graphic character %c\n", foo, foo);

}

String conversion functions

• Available in general utilities library (stdlib)
• Useful to convert a string of digits to integer or floating point values
• In the following table, str represents a string (array) and ptr represents a pointer to a character

atof (str) Convert string to double precision number
strtod (str, ptr) Convert string to double precision number
atoi (str) Convert string to integer
atol (str) Convert string to integer
strtoi (str, ptr, base) Convert string to integer

• A word about the strxto? functions

– If the value of ptr is not (char **)NULL, a pointer to character terminating the scan is
returned to the location pointed to by ptr

– If no number can be formed, *ptr is set to str and 0.0 is returned
– base is of type int and, if its value is between 0 and 36, is used as the base for conversion

∗ 0x or 0X are ignored if base is 16

Standard I/O library functions

• Require the file <stdio.h> to be included
• These functions are: getchar, gets, putchar, puts, sprintf, sscanf
• Writing strings using printf and puts

– Use %s conversion in printf to write strings
– If the NULL character is missing, printf continues printing until it finds a NULL somewhere

in memory
– Use the conversion %.ps to print a part of the string

char str[] = "Hello world";
printf ("First five characters are: %.5s\n", str);

Strings 5

– Elimination of . will print the string in full, if p is less than the string length
– If string is smaller than p characters, it is right justified
– String can be left justified by using -, as in %-ps

#include <stdio.h>

int main()
{

char str[] = "Hello world";
printf ("First five characters are: |%.5s|\n", str);
printf ("Trying to print in five character field gives: |%5s|\n", str);
printf ("Printing in 20 character field gives: |%20s|\n", str);
printf ("Left justification is achieved by: |%-20s|\n", str);
return (0);

}

String manipulation functions

• Require the inclusion of the standard string library <string.h>
• These functions operate on null-terminated strings
• These functions do not check for overflow of any receiving strings
• In the following table, s1 and s2 represent pointers to character type (or strings)

strcat (s1, s2) Appends a copy of strings s2 to the end of string s1
strncat (s1, s2, n) Appends at most n characters from s2 to s1
strcpy (s1, s2) Copies s2 to s1 until the null character
strncpy (s1, s2, n) Copies s2 to s1 until the null character, or n characters
strdup (s) Duplicates string and returns pointer to the new string
strlen (s) Number of characters in s, not including the NULL character

• strcat, strncat, strcpy, and strncpy return a pointer to the null-terminated string s1
• In strcpy and strncpy, if the length of target string s1 is more than the source string s2, s1 is

padded with NULL characters
• strdup automatically allocates space for the new string
• strdup returns a NULL if it cannot allocate space for the duplicate string

String comparison functions

• These functions return an integer which is

0 if the two strings are equal
> 0 if first string is greater than second string (in alphabetic order)
< 0 if first string is smaller than second string (in alphabetic order)

strcmp (s1, s2) Lexicographically compare strings s1 and s2
strncmp (s1, s2, n) Lexicographically compare first n characters of strings s1 and s2
strcasecmp (s1, s2) Same as strcmp but ignore case differences
strncasecmp (s1, s2, n) Same as strncmp but ignore case differences

Strings 6

• The functions do not compare characters following the NULL character in the strings
• Collating sequences are different in ASCII and EBCDIC

String search functions

strchr (s, c) Returns a pointer to the first occurrence of character c in string s
strrchr (s, c) Returns a pointer to the last occurrence of character c in string s
strpbrk (s1, s2)
strspn (s1, s2)
strcspn (s1, s2)
strstr (s1, s2)
strtok (s1, s2)

• strchr and strrchr return a pointer to NULL if the character c does not appear in the string s

Memory functions

• Declared in <memory.h> file

memcpy (s1, s2, n)
memccpy (s1, s2, c, n)
memchr (s, c, n)
memcmp (s1, s2, n)
memset (s, c, n)

