File Processing

Files

e Used for permanent storage of large quantity of data

e Generally kept on secondary storage device, such as a disk, so that the data stays even when the computer is shut off

Data hierarchy

e Bit

— Binary digit
— true or false
— quarks of computers

e Byte

Character (including decimal digits)

— Atoms

Smallest addressable unit (difficult to get by itself)

Generally, eight bits to a byte though there used to be 6-bit bytes in the 60s

e Word

Collections of bytes

Molecules

Smallest unit fetched to/from memory at any time
— Number of bits in word is generally used as a measure of the machine’s addressability (32-bit machine)

Field

— Collection of bytes or even words
— Exemplified by the name of an employee (30 characters/bytes, or 8 words on a 32-bit machine)

e Record

— structinC
— Collection of fields

— Collection of records

— Each record in the file identified with a unique [set of] field[s], called key

— T use student name as a key to keep the file of grades

— The payroll of a large company may use the social security number as the key
— Sequential file

* Records follow one after the other
— Random access file

* The location of a record is a function of the key
* Mostly used in databases

— Indexed sequential file

* The location of a record is dependent on an index kept in a separate file

Input and Output 2

Files and streams

e C views each file simply as a sequential stream of bytes
e Each file ends with a special end-of-file marker, CTRL-D in Unix, CTRL-Z in Windows

Streams

— Any source for input or any destination for output
— Communication channels between files and programs
— Accessed through a file pointer of type FILE *

Opening a file

— Equivalent to associating a stream with the file
— Returns a pointer to a FILE structure
* Defined in <stdio.h>
* The pointer structure contains information used to process the file

- file descriptor — Index into the operating system array called open file table
- Each element in the open file table contains a file control block that is used by the 0S to administer the
corresponding file

* FILE structure is dependent upon the operating system
- Members of the structure vary among systems based on how each system handles its files
— Three files and their associated streams are automatically opened at the beginning of program execution
1. stdin — Standard input
* Stream to read data from the keyboard
2. stdout — Standard output
* Print data on the screen
3. stderr - Standard error
+ Prints data on screen as soon as it is available

— Standard streams can be redirected by using the feature from operating system
— A file must be opened before it is referred to in the program

* The standard streams (stdin, stdout, and stderr) are automatically opened whenever you run a program

e Standard library

Provides many functions for reading data from files and for writing data into the files
fgetc (£d)
* Reads one character from the file stream associated with £d

* If there is no more data in the file, it returns the constant EOF
* getchar () can also be written as fgetc (stdin)

- fputc (ch, fd)

* Writes the character ch into the file stream associated with £d
% putchar (ch) canalso be written as fputc (ch, stdout);
* ch is actually of type int but only the least significant 8 bits are considered

fgets (str, n, stream)

* Get a string st r containing n characters from the st ream
+ If the line terminates by reading in \n before n characters, fgets stops reading at that point
* gets (str) isthe equivalent function to read in a string st r from stdin

fputs (str, stream)

* Put the string st r on the stream

Input and Output 3

* Does not need the specification of size but keeps writing until it encounters the end of string character 7 \ 0’
* puts (str) isthe equivalent function to write a string to stdout

— Other file 1/0 functions include fscanf, fprintf, fread, and fwrite

Creating a sequential access file

e No file structure imposed by C, therefore, structure of a file is entirely up to the programmer
e The file variable name must be declared with the FILE =« type

e Every file is handled by a separate FILE =« variable, or file descriptor

e Opening a file

— Process of connecting a program to a file, or associating a stream with a file
— Use the function fopen

fd = fopen (name, mode);

* FILE * fdis the file descriptor or the file variable

% char = name is the actual name of the file (vectors.dat)

% char =mode indicates if the file is to be read or written into
Different modes are

r Read. Only to be used for existing files

W Write. If the file already exists, its old contents are lost;
otherwise, the file is created

a Append. If the file does not exist, it is created

r+ Update an existing file (read and write)

w+ Same as w but reading also possible

a+ Same as a but reading also possible

— If fopen succeeds, it returns a pointer to be used to identify the stream in subsequent operations
— If fopen fails, it returns a NULL

if ((£fd = fopen ("vectors.dat", "w")) == NULL)

{
printf ("Error opening the file vectors.dat\n");
return (1);

}

— Once the file is open, actual reading and writing can be done by several functions, including fscanf, fgets,
fputs, and so on

— Example
[k Ak Ak Ak Ak Ak Ak Ak Ak Ak Ak Ak Ak Ak Ak Ak Ak Ak A kA kA kA kA kA kA kAR Ak kA A A A Ak kA Ak

/* wr_fl.c : Capture user’s inputs from the keyboard into a file */

/**/
#include <stdio.h>

int main ()

{

FILE *fd; /+ File descriptor */
char 1line[100]; /+ Buffer for input */
char filename[] = "testfile"; /* File to keep information =/
/+ Open the file x/
if (! (fd = fopen (filename, "w")))
{

printf ("Sorry, could not not open file\n");

exit (1);

}

/* Get data from the user */

Input and Output

printf ("Please enter the text to write to the file\n");
printf ("Press ctrl-d on a line by itself when finished\n\n");
fgets (line, sizeof (line), stdin);

while (! feof (stdin)) /% Check for end of file character =*/

{
fprintf (fd, "%s", line);
fgets (line, sizeof (line), stdin);

}
fclose (fd);

return (0); /+ Normal termination =/

}

— Cautions

* Opening an existing file with mode "w" discards the current contents of the file without warning

x You must open a file and attach it to a file descriptor before using it in the program
* Never open a non-existent file for reading
* Always check whether the file was opened properly

e Closing a file

— Disconnect the file from the program
— Use the function fclose

fclose (fd);

Writes any buffered data for the named stream FILE * fd and then, closes the stream
Also frees any buffers allocated by the standard 1/0 system

Performed automatically for all open files upon calling exit

Returns O on success

Returns EOF on error (such as trying to write to a file that was not opened for writing)

* Xk X X X

— Example — Copying an ASCII file to another

[Kk ok ok ok ok ok ok ok ok ok k ok k ok k Kk kKA KA KA AKX AR AR AR Ak kkkkkkkkkkk ok ok ok hkh ok k ok khk kA A AKX XXX AKX Ak kkkkkk*k /

/* fcpy.c : Copy a file to another */
/+ Limitations: Only works with ASCII files, with each text line being less */
/* than 100 characters */

[e o e o K ok K ok K ok Kk Kk Kk Kk Kk Kk Kk kK kK ok ok ok ok ok ok ok ok o o ok o ok K ok K ok ok ko ko kK K Rk Rk R ok ok ok ok ok ok ok

#include <stdio.h>
#include <string.h>

int main ()

{

FILE *infile, *outfile; /+ File descriptors =/
char 1ine[100]; /+ Buffer for I/0 */
char file_1[40], file_27[40]; /* File names */
int nj;

/* Get source and destination file names */
printf ("What is the source file? ");

fgets (file_1, sizeof (file_1), stdin);

printf ("What is the destination file? ");

fgets (file_2, sizeof (file_2), stdin);
/* Remove the newline character from the file names */

n = strlen (file_1);
file_1[n-1] = NULL;
n = strlen (file_2);
file_2[n-1] = NULL;

/* Open the files x/

if (! (infile = fopen (file_1, "x")))

{
printf ("Sorry, could not open file %s for reading\n", file_1);
exit (1);

Input and Output 5

if (! (outfile = fopen (file_2, "w")))

{
printf ("Sorry, could not not open file %$s to write\n", file_2);
exit (2);

}

/* Read from input file and write into the output file «/

fgets (line, sizeof (line), infile);
while (! feof (infile))
{

fprintf (outfile, "%s", line);

fgets (line, sizeof (line), infile);

}

/* Close the files x/

fclose (infile);
fclose (outfile);
exit (0); /* Normal termination =/

}
e Other useful functions

freopen (filename, mode, fd) opens the file named by filename and associates the stream pointed
to by £d with it

The mode argument is used just as in fopen

The original stream is closed, regardless of whether the open ultimately succeeds

If the open succeeds, f reopen returns the original value of £d

Typically used to attach the preopened streams associated with stdin, stdout, and stderr to other files

O R

feof (f£d) returns a non-zero if the end of stream £d has been reached, and zero otherwise
* Useful to check end of file

— ferror (£fd) isnon-zero if an error has occurred while reading from or writing into the stream £d

* The error indication lasts until the stream is closed, or the error indication is cleared by clearerr ()

clearerr (f£d) resets the error indication and EOF indication to zero on the stream £d

e File position pointer

Part of the FILE « structure
Always points at the location of the byte in file where the file is to be read from, or written into
The location from the beginning of the file is expressed in number of bytes and is known as the file offset

May be manipulated by several commands
rewind (f£d)

* Function to reset the file position pointer to the beginning of the file
* Does not return a value

e Sequential access files are generally not updated in-place; if the file needs to be modified, it should be completely
rewritten

Line input and output

e char x fgets (char xstr, int n, FILE xfd)

Reads at most n—1 characters from the stream f£d into the array str

Newline character terminates reading after having been read into the str

Returns pointer to str
Returns NULL if end-of-file is encountered and no characters have been read

Input and Output 6

e int fputs (char xstr, FILE xfd)

— Writes the string st r to the stream £d
— A newline character is written only if it is a part of str
— Returns non-zero if an error occurs, otherwise returns zero

e char x gets (char * str)

— Version of fgets to use with stdin
— Reads characters until a newline character is encountered
— The newline character is not placed into str

e int puts (char » str)

— Version of fputs to use with stdout
— A newline character is automatically added

Unformatted I/0 and direct access

e Random access files

Structured so as to allow the positioning of file pointer anywhere within the file in a meaningful manner (generally,
beginning of record)

Preferable to have fixed-size records to easy repositioning

This ensures that records do not have to be searched to find the right one

Ideal for most large databases, such as airlines reservation system, bank accounts, and inventory files

Exact location of the record, relative to the beginning of the file, can be calculated as a function of the record key

You can update a specific record in a random access file without modifying other records

Functions fread and fwrite for buffered binary 1/0

Allows non-ASCII representation of numbers to be written to a file

Binary files

More efficient to write in the format that is used internally in the machine, as no conversion is needed
Take less space than ASCII files

Cannot be directly printed or viewed on screen

Not as portable as the ASCII files

Example to write a binary sequence:

int 1 = 19;
FILE * fd;
fd = fopen (...);

fwrite (&i, sizeof (int), 1, f£d);
e The syntax is:

fread (buf_ptr, size, nitems, stream);
fwrite (buf_ptr, size, nitems, stream);

— fread transfers a specified number of bytes from the location in the file specified by the file descriptor to a buffer
in the memory beginning with the specified address

Input and Output 7

fwrite transfers a specified number of bytes beginning at a specific location in memory to the file in the location
pointed to by the file descriptor

char * buf_ptr — Pointer to a buffer (the address of an object in memory)

int size —The size (in bytes) of one element in the buffer

int nitems — Number of elements in the buffer

FILE * stream — Pointer to the stream

The following two statements achieve the same effect, except for output format (compare number of characters trans-
ferred)

fprintf (f£d, "%d", number);
fwrite (&number, sizeof (int), 1, £d);

Both functions return an integer value, equal to the number of items actually read or written (normally equal to nitems)

If nothing at all can be read, possibly due to an end-of-file, the returned value is 0 (not EOF)

End-of-file can be distinguished from a read error by one of the functions feof or ferror

Direct access (or random access)

Used to update a file (read, modity, write)

Preferable to have all records to be the same length fixed in advance

*
*
*
*

Allows access to a record directly without having to scan through other records
Location of each record can be calculated relative to the beginning of the file
Some records in the file may be empty

Data can be inserted without destroying surrounding data

Locating a position in a file can be accomplished by the function fseek

fseek (FILE % stream, long offset, int whence)

* stream — file pointer
* offset — Position expressed in bytes, relative to a point specified by whence
* whence can have the following three values (defined in stdio.h

SEEK_SET — offset is relative to the beginning of the file; of fset = 0 specifies the first possible
position in file

SEEK_CUR — of fset is relative to the current position; offset = —1 moves the file pointer back one
byte

SEEK_END — of fset is relative to the end of the file (and must therefore be negative)

* Returns zero if the call was successful; non-zero otherwise
* fseek destroys character pushback accomplished through ungetc, if called before the getc call

— The current position of the file pointer can be accessed by the function ftell
— long ftell (FILE x stream)

*

Returns the offset to be used by fseek if we want to return to the same position in the file stream

e Example: Create a credit processing system capable of storing up to 100 fixed-length records. Each record should consist
of an account number that will be used as the record key, a last name, a first name, and a balance. The resulting program
should be able to update an account, insert a new account record, delete an account and list all the account records in a
formatted text file for printing.

/*‘k**‘k******‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k**‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k***********************/
/* types.h */
/****************************‘k***/

typedef struct

{

int
char
char

float

acct_num;
last_name[15];
first_name[15];
balance;

} client_data_t;

Input and Output

/**/
/* Creating a randomly accessed file */

/* create.c */
/****************************k******k***************k**************************/

#include <stdio.h>
#include "types.h"

int main ()

{
int i; /* Loop counter */
client_data_t blank_client = { 0, "", "", 0.00 };
FILE « client_file;

if ((client_file = fopen ("credit.dat", "w")) == NULL
{

printf ("Could not open file credit.dat\n");

exit (1);

for (1 =0; 1 < 100; i++)
fwrite (&blank_client, sizeof (client_data_t), 1, client_file);

fclose (client_file);

return (0);

}

/e ok K ok K ok Kk K kK Kk Kk K K K Kk K K Kk Kk ko ok ok ok ok ok ok ok ok o ok o ok ok ok Kk kK ko ok Kk K ok kK ok ok ok ok ok ok ok ok ok ok ok ok ok ok

e Using combinations of fseek and fwrite to store data at specific locations in file

/**/
/+ Updating a randomly accessed file */
/* update.c */
/**/
#include <stdio.h>
#include "types.h"

int main ()

{
FILE * client_file;

client_data_t client;
char line[80]; /* Input buffer for stdin */
if ((client_file = fopen ("credit.dat", "r+")) == NULL

{
printf ("Could not open file credit.dat\n");
exit (1);

printf ("Enter account number (valid range: 1 —-- 100; 0 to quit) : ");
fgets (line, sizeof (line), stdin);
sscanf (line, "%d", &client.acct_num);

while (client.acct_num)

{

printf ("Enter last name, first name, and balance : ");
fgets (line, sizeof(line), stdin);
sscanf (line, "%s%s%f", &client.last_name, &client.first_name, &client.balance);

fseek (client_file, (client.acct_num-1)=*sizeof(client_data_t), SEEK_SET);
fwrite (&client, sizeof(client_data_t), 1, client_file);

printf ("Enter account number (valid range: 1 -- 100; 0 to quit) : ");
fgets (line, sizeof(line), stdin);
sscanf (line, "%d", &client.acct_num);

fclose (client_file);

return (0);

}

[/ ok ok ok ok Kk K K Kk K K R KK KK KK Kk Kk k k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK K K KK KK K K Kk Kk k ok k ok ok ok ok ok ok ok ok ok ok ok

o [llustrating fread and feof

/**/
/* Reading data from a random access file */

/* read.c */
/**/

Input and

Output 9

#include <stdio.h>
#include "types.h"

int

{

}

[xx*

Buffering

main ()

FILE * client_file;

client_data_t client;
if ((client_file = fopen ("credit.dat", "r")) == NULL
{
printf ("Could not open file credit.dat\n");
exit (1);
}
printf ("%-6s %-15s %-15s %10s\n", "Acct", "Last name", "First name", "Balance");
while (! feof (client_file))
{
fread (&client, sizeof (client_data_t), 1, client_file);
if (client.acct_num)
printf ("%-6d %$-15s %$-15s $10.2f\n", client.acct_num, \

client.last_name, client.first_name, client.balance);

}
fclose (client_file);
return (0);

ok ok ok ek K kK K K K Kk KK K K Kk Kk k ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK K Rk Kk K K Kk Kk k ok k ok ok ok ok ok ok ok ok ok ok /)

problems

e Buffered 1/0 stores data in a buffer until the buffer is big enough to write to the disk.

e Look at the following two codes

printf ("starting program\n"); | printf ("starting program\n");

do_step_1(); fflush (stdout);

printf ("step 1 completed\n"); | do_step_1();

do_step_2(); printf ("step 1 completed\n");
printf ("step 2 completed\n"); | fflush (stdout);

do_step_3(); do_step_2();

printf ("step 3 completed\n"); | printf ("step 2 completed\n");
fflush (stdout);

do_step_31();

printf ("step 3 completed\n");
fflush (stdout);

In the left code, the print £ puts the output data in a buffer; the buffer gets flushed when it is full, or at the end of
program

In the right code, the £ £ 1ush statement forces the buffers to be flushed
fflush (FILE x stream)

Forces a write of all buffered data for the given output [or update] stream via the stream’s underlying write
function

The open status of the st ream is unaffected
If the st ream argument is NULL, £ f1ush flushes all open output streams

Returns 0 on successful completion and EOF on error, setting the global variable errno to indicate the error (like
not an open stream, or the stream not open for writing)

stdout is line buffered and output will appear whenever a newline character is encountered
scanf flushes stdout before waiting for input

e Related function int fpurge (FILE % stream)

Input and Output 10

— Erases any input or output buffered in the given st ream
— For output streams, discards any unwritten output
— For input streams, discards any unread data in the stream, including the data pushed back using ungetc

e Setting buffer size

— Two functions for explicit control over the buffering performed on 1/0 to a file
— Must be called before the first read or write on a file but after opening the file

int setvbuf (FILE xfd, char xbuffer, int mode, int size);
void setbuf (FILE *fd, char xbuffer);

buffer — Contains the address to be used as the new buffer; if a NULL is passed, a new buffer is automatically
created
mode — Can be assigned values declared in stdio.h
_TIOFBF — Full buffering or block buffering
* Characters as saved up and written as a block
_IOLBF - Line buffering
* Characters are saved up until a newline is encountered, or input is read from st din, or the buffer is full
_IONBF — No buffering
* Information appears on the destination file or screen as soon as it is written
size — Specifies the number of bytes to be contained in the buffer

— setvbuf returns zero for success; non-zero for error

— setbuf is similar to setvbuf except that if buf fer is NULL, buffering is turned off; if buf fer is not NULL,
it is used with full buffering and a buffer size equal to BUFSIZ (declared in stdio.h)

— Useful in debugging programs

#if DEBUG
setbuf (stdout, NULL);
#endif

Unbuffered I/0

e Based on system calls
e Conceptually similar to those in the standard library'
e Low-level 1/0 is never buffered

e open system call

— Open an unbuffered file
— Invoked by
#include <sys/types.h>

#include <sys/stat.h>
#include <fcntl.h>

int fd = open (char xfile_name, int flags); /* File already exists
int fd = open (char *file_name, int flags, int mode); /* Create a new file

* File descriptor is an integer and not a pointer
* file_name can be an absolute path or relative to the current directory

I'Standard library functions are generally recommended for portability; System calls are more efficient and may be required in some cases, such as handling
/O for programs that create new processes

*/
*/

Input and Output 11

x flags is an integer with each bit indicating the type of access; defined in fcntl.h or sys/file.h de-
pending on ATT or BSD version of Unix, as follows
O_RDONLY Open for read
O_WRONLY Open for write
O_RDWR Open for read and write
O_CREAT Create if file not found
O_APPEND Write at end of file
O_TRUNC Truncate existing file to zero length, if found
O_EXCL Fail if file exists

* mode is the protection mode of the file; used only when the O_CREAT flag is set, otherwise ignored

— Examples
int in_fd, out_fd; /+ File descriptors */
in_fd = open ("infile", O_RDONLY, 0); /+ Read only */
out_fd = open ("outfile", O_WRONLY|O_CREAT, 0666); /x Write =x/

* Note that the permissions are specified as octal integer constant 0666, and not as a decimal integer 666; the
prefix zero is very important

e creat system call

Create a new file or truncate an existing one
Defined by

int creat (char *filename, int permissions)

Returns the file descriptor of the created file, or -1 on error
The call

creat (filename, mode);
is equivalent to

open (filename, O_WRONLY | O_CREAT | O_TRUNC, mode);
e close system call

— Close the file
— Frees the file descriptor for later use

— Defined by
int close (int fd);
e read system call
— Read a block of data from file
— Defined by
int read (int fd, char xbuffer, int num);

— Returns the number of bytes read; zero if end of file is encountered; -1 if an error occurs
e write system call

Werite a block of data to a file
Defined by

int write (int fd, char *buffer, int num);

Returns the number of characters written

Error is indicated by the returned integer being less than num

Input and Output 12

Designing file formats

e Important to include file type information with each file
e DOS does it by using an extension, such as file.dat
e Unix achieves the same by using a magic number

e Magic number

Identification number for the type of file
The file (1) command identifies the type of a file using, among other tests, a test for whether the file begins with
a certain magic number

Magic number is specified in the file /et c/magic using four fields

Offset: A number specifying the offset, in bytes, into the file of data which is to be tested
Type: Type of data to be tested — byte, short (2-byte), long (4-byte), or string

Value: Expected value for file type

Message: Message to be printed if comparison succeeds

L R

Used by the C compiler to distinguish between source, object, and assembly file formats

Developing magic numbers

Start with first four letters of program name (e.g., list)

Convert them to hex: 0x6c607374

Add 0x80808080 to the number

The resulting magic number is: 0OXECEOF3F4

High bit is set on each byte to make the byte non-ASCII and avoid confusion between ASCII and binary files

* X X X X

