Debugging

Interactive debugging

Based on a source code, statement-level debugger

Allows to discover values of variables by using their names in the source program, tracing their execution one statement
at a time

The C files are compiled with the —g flag in effect

— Allows the inclusion of extra symbol table information in the binary files

Names and locations of all variables

Names of all functions and their arguments

Data types of all objects declared in the program

Path names of the source code files used to compile the program

L R

xxgdb debugger

Provides a windows-oriented graphical user interface to gdb under the X window system

Provides mouse selection for various text commands

Allows user to control program execution through breakpoints

Consists of the following windows

* File window

- Displays the full pathname of the file displayed in the source window
- Also displays the line number of the caret

Source window

*

- Contents of a source file
+* Message window
- Execution status and error messages of xxgdb
Command window

*

- List of common gdb commands
- Commands invoked by clicking the left mouse button in the box

*

Dialog window
- Typing interface to gdb

*

Display window
- Window to display variable values

*

Popup windows
- Windows for displaying variables
— Text selection
C expression selected by clicking on the left mouse button
Based on the resource delimiters to determine the set of characters that delimit a C expression

*
*

* Also possible to select text by holding down the left mouse button and dragging
* Pressing shift key with left mouse button click displays the value of the variable

— Scrollbar

* Press left mouse button to scroll text forward
* Press right mouse button to scroll text backward
* Drag the middle mouse button to change the thumb position of the text

— Command buttons

* run
- Begin program execution



Debugging

cont
- Continue execution from where it stopped
next
- Execute one source line, without stepping into any function call
step
- Execute one source line, stepping into a function if the source line contains a call to a function
finish
- Continue execution until the selected function returns
- Use current function if none is selected
break

- Stop program execution at the line or in the function selected

- Place the caret at the start of source line or on the function name
- Click the break button

- A stop sign appears next to the source line

tbreak

- Set a breakpoint enabled for only one stop
- Same as the break button except that the breakpoint is automatically disabled after the first time it is hit

delete
- Remove the breakpoint on the source line selected, or the breakpoint number selected
show brkpts
- Show the current breakpoints (both active and inactive)
stack
- Show a stack trace of functions called
up
- Move up one level on the call stack
down
- Move down one level on the call stack
print
- Print the value of a selected expression
print =
- Print the value of the object the selected expression is pointing to
display
- Display the value of a selected expression in the display window, updating it every time execution stops
undisplay
- Stop displaying the value of the variable in the display window
- If the selected expression is a constant, it refers to the display number associated with an expression in the
display window
args
- Print the arguments of the selected frame
show display
- Show the names of currently displayed expressions
locals
- Print the local variables of the selected frames
stack
- Print a backtrace of the entire stack



