The C Preprocessor

Preprocessing

e Set of actions performed just before the compilation of a source file

e Inclusion of other files, definition of symbolic constants and macros, conditional compilation of program code, and
conditional execution of preprocessor directives

e Compiler control lines

— Also known as directives
— Lines beginning with the character #

* Preprocessor is not free-format
* All preprocessor commands must begin in column 1

— Cause the programs to be modified before compilation

* Before preprocessor application
#define LEN 100
int main ()
{
printf ("%d\n", LEN % LEN);
}
* After preprocessor application
int main ()
{
printf ("%d\n", 100 % 100);
}

— Caution

1. Preprocessor commands are not terminated by a semicolon but by the end of line
2. Preprocessor syntax is different from C syntax

— In case of trouble, run the program through preprocessor and view the inputs to the actual compiler by using the
following command

gcc —E prog.c

Independent compilation

e Preprocessor runs before compilation, or as first pass of compilation
— Preprocessor removes the comments from the source even before executing compiler directives

e Large programs are difficult to maintain

Problem solved by breaking the program into separate files

Different functions placed in different files

The main function appears in only one file, conventionally known asmain.c

Advantages

— Reduction in complexity of organizing the program
— Reduction in time required for compilation

* Each file is compiled separately
* Only those files are recompiled that have been modified

C Preprocessor

Compiler creates object files corresponding to each source file
The object files are linked together to create the final executable
Compilation time is reduced because linking is much faster than compilation

Source files are compiled separately under Unix using the —c option to the compiler

gcc —c main.c

e The entire sequence of commands to create an executable can be specified as

gcc —-c main.c
gcc —c func.c
gcc -o prog main.o func.o

Header files and the #1include preprocessor directive

e Used to keep information common to multiple source files

e Files need the same #define declarations and the same type declarations (st ruct and typedef)

e More convenient to declare these declarations in a single header file

e The #include directive

Used to include the contents of a file

Written in either of the two following forms:
#include "filename.h"

#include <filename.h>

Standard directory for the files is /usr/include

"filename" directs the compiler to search in the current directory and if it is not found there, to look into the
standard directories

#include files often contain function prototypes, #de fines, and macros
Useful for storing constants and data structures when a program spans several files
Also useful for information passing when a team of programmers is working on a single project

e Such a process avoids duplication and allows for easier modification since a constant or type declaration need only be
changed in one place

e Guidelines for good header file usage

Header files should contain only

Constant definitions
Type declarations
Macro definitions
Extern declarations
Function prototypes

S SR

Header files should not contain

* Any executable code
- No function definitions
* Definition of variables
- Only exception is to declare variables
- Every variable declaration should be an extern declaration

- Inclusion of variable definitions in header file causes multiple definitions of the same symbol which is a
linkage error

C Preprocessor 3

e Organization of header files

— More a matter of style

Preferable to have a logical organization

By convention, the files have a suffix . h but it is not required by the C preprocessor

* It is also recommended as some utilities (such as make) distinguish between C source files and header files
using this convention

Advisable to split the header file into multiple header files for large projects

% const .h — for constant definitions
* types.h — for type definitions
* extern.h - for external varible declarations

- Common to define all global varibles in the file main. c

Preferable order of inclusion

* Include files in the following order
#include <stdio.h>
#include "const.h"
#include "types.h"
#include "extern.h"
* Important because types may need constants, and extern declarations may need types

e Preprocessor trickery

Alternative to defining all global variables in main.c

Use a preprocessor trick to cause extern . h to both declare and define global variables

The file of extern declarations has entries like

extern int x;

The variables are not defined in main. c or any other file; instead the lines of code shown below are placed in
main.c (or the source file containing main ())

#define extern /* Define extern to nothing =/
#include "extern.h"
#undef extern /+ Revert to no change for safety =/

The first line defines extern to nothing or whitespece

This has the effect of deleting all occurrences of the word extern in the header file

Any extern declaration without the keyword extern is a definition

In all files except main. c, the variable x is qualified by extern, and the global variables are defined exactly
once

o R

— Disadvantages of this technique

* Global variables cannot be easily initialized at compile time
* Initializations can be included with more preprocessor trickery but may not be worth the trouble

extern int x /* no semicolon */
#ifdef extern

=2 /* initialize */
#endif

H /* end of declaration */

+ This is the template to declare each variable
e Header files of function prototypes

— Function prototypes need to be included to allow proper type checking
— Prototypes are strongly recommended to remove the problem of [accidentally] using a function before it is defined

C Preprocessor 4

— Omission of function prototypes loses all type checking of function arguments and may cause compiler or run-time

€Irors

— It is strongly recommended to maintain a header file containing a prototype for every function
— No strict need to include prototypes in the files where the functions are defined but this is useful in checking that

the declarations in the header file match the actual definitions

e Automatic generation of header files

— Possible by using the grep and sed utilities to extract all function definitions
— All you need to do is to extract the function definitions and add a semicolon at the end
— Assumptions

* Function definitions start at the first character of a line
* The entire list of function parameters are on a single line

The #define preprocessor directive for symbolic constants

e Used to create symbolic constants with the format

#define identifier replacement-text

Enables the programmer to create a name for the constant and use that name throughout the program, making the program
self-documenting

The constant can be modified by another #de fine directive

Exemplified by

#define PI 3.14159265358

replaces all subsequent occurrences of the symbolic constant P I with the numeric constant 3.14159265358

Be careful not to put a semicolon at the end of the statement

The statement terminates with the end of line but can be extended on to another line by using a backslash character (* \ ")

The #define preprocessor directive for macros

A macro is an operation defined in a #def ine preprocessor directive with or without parameters

A macro without parameters is processed just like a symbolic constant

A macro with parameters is expanded with its parameter list

Example

#define max(x,y) X >y ? X : y
main ()

{

int i, 7J;

float a, b;

printf ("Enter two integers and two real numbers: ");
scanf ("%d %d $f %f", &i, &3, &a, &b);

printf ("Maximum values: %$d $f\n", max (i, j), max(a,b));

e However, it is preferable to define the above macro as

C Preprocessor 5

#define max (x,y) ((x) > (y) 2 (x) : (y))
as this macro can now be used in more complicated contexts such as
a=1+max (b=c¢c+ 2, d);

e Not good for efficiency but gives correct result
e A\ can be used to extend the #define to the next line so that the definition can be arbitrarily long

e Scope rules for macros

— Different from proper program identifiers
— In effect from the definition till the end of file or a line of the form

#undef macro-name

e Example
int N = 100; /* external variable */
main ()
{
printf ("%d\n", N); /* 100 */
#define N 123
printf ("%d\n", N); /*x 123 %/
£0;
}
int £ (void)
{
printf ("%d\n", N); /* 123 %/
#undef N
printf ("%d\n", N); /* 100 =/

e Macros may be used to replace a function call with inline code prior to execution time, eliminating the overhead of a
function call

Conditional compilation
e Used to compile only a portion of a program
#if constant-expression
felse
#égdif
e constant-expression must not contain variables or function calls
e If constant—expression evaluates to non-zero, the first part of the program is compiled

e The #else part is optional

e The #if constant-expression partcan be replaced by #ifdef identifier

— Tests to see if the identifier has been defined by using a #define directive

C Preprocessor 6

e Similar effect is achieved by
#ifndef identifier

e Used for declaring an identifier DEBUG to assist in debugging

— Leave the debugging statements in the source code but do not compile them in the product

#define DEBUG
#ifdef DEBUG

printf ("Variable values for debugging\n");
#endif DEBUG

e Example

/**/
/+* File a.h */
#define N 1000

/**/

/x File a.c */
#include "a.h"
main ()
{
#ifndef N
printf ("#define-line for N missing in file a.h\n");
exit (1);
#else
#if N > 100
printf ("Matrix needs too much memory: N too large\n");
exit (1);
#else
float matrix[N] [N];
/* rest of program x/
fendif
#endif

}

/**/

e Symbols can also be defined on the command line when compiling
gcc -DDEBUG —-o prog prog.c
defines the symbol DEBUG without a need to include it within the program

The #error and #pragma preprocessor directives

e Both #error and #pragma directives are rarely used
e The #error directive causes the preprocess to print a diagnostic error message, using the argument as a part of the
message
— Useful to trap incorrect conditions in conditional compilation
— Compilation is aborted when this directive is invoked
— Example
#if ! defined(UNIX) && ! defined(DOS)

#error No version chosen. Define UNIX or DOS.
#endif

e The #pragma directive is the standard way to introduce local non-standard directives

C Preprocessor

Assertions

Unrecognized #pragma directives are ignored
Intended to enhance the portability of C programs

e Defined in assert . h header file

e Tests the value of an expression

If the value of the expression is false (0), assert prints an error message and calls abort to terminate program
Useful debugging tool for testing if a variable has a correct value
If < 10 during the execution of a program

assert (x <= 10)

prints an error message if the condition is false with the line number and file name
If symbolic constant NDEBUG is defined, subsequent assertions are ignored

The # and ## operators

e The stringize macro operator #

Special operator that can only be used in macro definitions
Used when it is necessary to place a macro argument inside quotes — for example, inside a print format string
Example

#define assert (EXP) if (!'(EXP)) printf ("EXP is false\n")

is incorrect because the identifier EXP is inside double quotes and will not be expanded
Corrected example

fdefine assert (EXP) if (! (EXP)) printf (#EXP " is false\n")

When the macro is called, the # operator expands out the parameter EXP and places quotes around it
The call

assert (x !'= 0);
becomes:
if (! (x !'= 0)) printf ("x != 0" " is false\n");
The two string literals are concatenated together by the compiler, and considered as if they were just one string
if (! (x !=0)) printf ("x != 0 is false\n");
The example has a bug

* If the condition contains a % character, the printf call may crash
x The completely debugged example is

#define assert (EXP) if (!(EXP)) printf("%s is false\n", #EXP)

e The token pasting macro operator # #

Special operator to be used only in macro definitions

Very very rarely used

Used when two tokens are to be joined together to make one token
Example — Macro to declare a variable

#define declare (x) 1int var##x

C Preprocessor 8

— The macro call
declare (10);
becomes

int varlO0;

Line numbers

e Another one of the rarely used directive is #1ine
e Useful for utilities that create C code, such as yacc

o Allows the compiler to generate error messages meaningful to the original text file, and not to the C source file created
by the utility program

e The format is:
#1line number "name"

which causes the compiler to think that the current line number is given by number and the current file name is given
by name

e The filename is optional, line number couting begins at the new number

Predefined symbolic constants

A small number of symbolic names is reserved for special purposes

e Each of these symbols is distinguished by two underscores on either side of a sequence of letters

These symbols cannot be undefined or redefined by the preprocessor

e The full list is:
__LINE__ Line number of file being compiled
__FILE__ Filename of file being compiled
__STDC___ Standard C flag (1 if ANSI-compliant compiler
_ DATE___ Current date
__ _TIME__ Current time

The symbols __LINE___and __ FILE__ are useful in the assert macro which must print out which line of which file
the assertion failed

e _ DATE__ expands out as the string literal in the format "Mmm dd yyyy",suchas "Apr 17 1997"

e _ TIME__ expands to a string literal in the format "hh:mm:ss"

