
The C Preprocessor

Preprocessing

• Set of actions performed just before the compilation of a source file

• Inclusion of other files, definition of symbolic constants and macros, conditional compilation of program code, and
conditional execution of preprocessor directives

• Compiler control lines

– Also known as directives
– Lines beginning with the character #

∗ Preprocessor is not free-format
∗ All preprocessor commands must begin in column 1

– Cause the programs to be modified before compilation

∗ Before preprocessor application
#define LEN 100
int main()
{

printf ("%d\n", LEN * LEN);
}

∗ After preprocessor application
int main()
{

printf ("%d\n", 100 * 100);
}

– Caution

1. Preprocessor commands are not terminated by a semicolon but by the end of line
2. Preprocessor syntax is different from C syntax

– In case of trouble, run the program through preprocessor and view the inputs to the actual compiler by using the
following command

gcc -E prog.c

Independent compilation

• Preprocessor runs before compilation, or as first pass of compilation

– Preprocessor removes the comments from the source even before executing compiler directives

• Large programs are difficult to maintain

• Problem solved by breaking the program into separate files

• Different functions placed in different files

• The main function appears in only one file, conventionally known as main.c

• Advantages

– Reduction in complexity of organizing the program
– Reduction in time required for compilation

∗ Each file is compiled separately
∗ Only those files are recompiled that have been modified

C Preprocessor 2

• Compiler creates object files corresponding to each source file

• The object files are linked together to create the final executable

• Compilation time is reduced because linking is much faster than compilation

• Source files are compiled separately under Unix using the -c option to the compiler

gcc -c main.c

• The entire sequence of commands to create an executable can be specified as

gcc -c main.c
gcc -c func.c
gcc -o prog main.o func.o

Header files and the #include preprocessor directive

• Used to keep information common to multiple source files

• Files need the same #define declarations and the same type declarations (struct and typedef)

• More convenient to declare these declarations in a single header file

• The #include directive

– Used to include the contents of a file
– Written in either of the two following forms:

#include "filename.h"
#include <filename.h>

– Standard directory for the files is /usr/include
– "filename" directs the compiler to search in the current directory and if it is not found there, to look into the

standard directories
– #include files often contain function prototypes, #defines, and macros
– Useful for storing constants and data structures when a program spans several files
– Also useful for information passing when a team of programmers is working on a single project

• Such a process avoids duplication and allows for easier modification since a constant or type declaration need only be
changed in one place

• Guidelines for good header file usage

– Header files should contain only

∗ Constant definitions
∗ Type declarations
∗ Macro definitions
∗ Extern declarations
∗ Function prototypes

– Header files should not contain

∗ Any executable code
· No function definitions

∗ Definition of variables
· Only exception is to declare variables
· Every variable declaration should be an extern declaration
· Inclusion of variable definitions in header file causes multiple definitions of the same symbol which is a

linkage error

C Preprocessor 3

• Organization of header files

– More a matter of style
– Preferable to have a logical organization
– By convention, the files have a suffix .h but it is not required by the C preprocessor

∗ It is also recommended as some utilities (such as make) distinguish between C source files and header files
using this convention

– Advisable to split the header file into multiple header files for large projects

∗ const.h – for constant definitions
∗ types.h – for type definitions
∗ extern.h – for external varible declarations

· Common to define all global varibles in the file main.c

– Preferable order of inclusion

∗ Include files in the following order
#include <stdio.h>
#include "const.h"
#include "types.h"
#include "extern.h"

∗ Important because types may need constants, and extern declarations may need types

• Preprocessor trickery

– Alternative to defining all global variables in main.c
– Use a preprocessor trick to cause extern.h to both declare and define global variables
– The file of extern declarations has entries like

extern int x;

– The variables are not defined in main.c or any other file; instead the lines of code shown below are placed in
main.c (or the source file containing main())

#define extern /* Define extern to nothing */
#include "extern.h"
#undef extern /* Revert to no change for safety */

∗ The first line defines extern to nothing or whitespece
∗ This has the effect of deleting all occurrences of the word extern in the header file
∗ Any extern declaration without the keyword extern is a definition
∗ In all files except main.c, the variable x is qualified by extern, and the global variables are defined exactly

once

– Disadvantages of this technique

∗ Global variables cannot be easily initialized at compile time
∗ Initializations can be included with more preprocessor trickery but may not be worth the trouble

extern int x /* no semicolon */
#ifdef extern

= 2 /* initialize */
#endif

; /* end of declaration */

∗ This is the template to declare each variable

• Header files of function prototypes

– Function prototypes need to be included to allow proper type checking
– Prototypes are strongly recommended to remove the problem of [accidentally] using a function before it is defined

C Preprocessor 4

– Omission of function prototypes loses all type checking of function arguments and may cause compiler or run-time
errors

– It is strongly recommended to maintain a header file containing a prototype for every function
– No strict need to include prototypes in the files where the functions are defined but this is useful in checking that

the declarations in the header file match the actual definitions

• Automatic generation of header files

– Possible by using the grep and sed utilities to extract all function definitions
– All you need to do is to extract the function definitions and add a semicolon at the end
– Assumptions

∗ Function definitions start at the first character of a line
∗ The entire list of function parameters are on a single line

The #define preprocessor directive for symbolic constants

• Used to create symbolic constants with the format

#define identifier replacement-text

• Enables the programmer to create a name for the constant and use that name throughout the program, making the program
self-documenting

• The constant can be modified by another #define directive

• Exemplified by

#define PI 3.14159265358

replaces all subsequent occurrences of the symbolic constant PI with the numeric constant 3.14159265358

• Be careful not to put a semicolon at the end of the statement

• The statement terminates with the end of line but can be extended on to another line by using a backslash character (’\’)

The #define preprocessor directive for macros

• A macro is an operation defined in a #define preprocessor directive with or without parameters

• A macro without parameters is processed just like a symbolic constant

• A macro with parameters is expanded with its parameter list

• Example

#define max(x,y) x > y ? x : y
main()
{

int i, j;
float a, b;
printf ("Enter two integers and two real numbers: ");
scanf ("%d %d %f %f", &i, &j, &a, &b);
printf ("Maximum values: %d %f\n", max(i,j), max(a,b));

}

• However, it is preferable to define the above macro as

C Preprocessor 5

#define max(x,y) ((x) > (y) ? (x) : (y))

as this macro can now be used in more complicated contexts such as

a = 1 + max (b = c + 2, d);

• Not good for efficiency but gives correct result

• A \ can be used to extend the #define to the next line so that the definition can be arbitrarily long

• Scope rules for macros

– Different from proper program identifiers
– In effect from the definition till the end of file or a line of the form

#undef macro-name

• Example

int N = 100; /* external variable */
main()
{

printf ("%d\n", N); /* 100 */
#define N 123

printf ("%d\n", N); /* 123 */
f();

}

int f (void)
{

printf ("%d\n", N); /* 123 */
#undef N

printf ("%d\n", N); /* 100 */
}

• Macros may be used to replace a function call with inline code prior to execution time, eliminating the overhead of a
function call

Conditional compilation

• Used to compile only a portion of a program

#if constant-expression
...
#else
...
#endif

• constant-expression must not contain variables or function calls

• If constant-expression evaluates to non-zero, the first part of the program is compiled

• The #else part is optional

• The #if constant-expression part can be replaced by #ifdef identifier

– Tests to see if the identifier has been defined by using a #define directive

C Preprocessor 6

• Similar effect is achieved by
#ifndef identifier

• Used for declaring an identifier DEBUG to assist in debugging

– Leave the debugging statements in the source code but do not compile them in the product

#define DEBUG
#ifdef DEBUG

printf ("Variable values for debugging\n");
#endif DEBUG

• Example

/**/
/* File a.h */
#define N 1000
/**/
/* File a.c */
#include "a.h"
main()
{
#ifndef N

printf ("#define-line for N missing in file a.h\n");
exit(1);

#else
#if N > 100

printf ("Matrix needs too much memory: N too large\n");
exit (1);

#else
float matrix[N][N];
... /* rest of program */

#endif
#endif
}
/**/

• Symbols can also be defined on the command line when compiling
gcc -DDEBUG -o prog prog.c
defines the symbol DEBUG without a need to include it within the program

The #error and #pragma preprocessor directives

• Both #error and #pragma directives are rarely used

• The #error directive causes the preprocess to print a diagnostic error message, using the argument as a part of the
message

– Useful to trap incorrect conditions in conditional compilation
– Compilation is aborted when this directive is invoked
– Example

#if ! defined(UNIX) && ! defined(DOS)
#error No version chosen. Define UNIX or DOS.
#endif

• The #pragma directive is the standard way to introduce local non-standard directives

C Preprocessor 7

– Unrecognized #pragma directives are ignored
– Intended to enhance the portability of C programs

Assertions

• Defined in assert.h header file

• Tests the value of an expression

– If the value of the expression is false (0), assert prints an error message and calls abort to terminate program
– Useful debugging tool for testing if a variable has a correct value
– If x ≤ 10 during the execution of a program

assert (x <= 10)

prints an error message if the condition is false with the line number and file name
– If symbolic constant NDEBUG is defined, subsequent assertions are ignored

The # and ## operators

• The stringize macro operator #

– Special operator that can only be used in macro definitions
– Used when it is necessary to place a macro argument inside quotes – for example, inside a print format string
– Example

#define assert(EXP) if (!(EXP)) printf("EXP is false\n")

is incorrect because the identifier EXP is inside double quotes and will not be expanded
– Corrected example

#define assert(EXP) if (!(EXP)) printf(#EXP " is false\n")

When the macro is called, the # operator expands out the parameter EXP and places quotes around it
– The call

assert (x != 0);

becomes:

if (! (x != 0)) printf ("x != 0" " is false\n");

– The two string literals are concatenated together by the compiler, and considered as if they were just one string

if (! (x != 0)) printf ("x != 0 is false\n");

– The example has a bug

∗ If the condition contains a % character, the printf call may crash
∗ The completely debugged example is

#define assert(EXP) if (!(EXP)) printf("%s is false\n", #EXP)

• The token pasting macro operator ##

– Special operator to be used only in macro definitions
– Very very rarely used
– Used when two tokens are to be joined together to make one token
– Example – Macro to declare a variable

#define declare(x) int var##x

C Preprocessor 8

– The macro call

declare(10);

becomes

int var10;

Line numbers

• Another one of the rarely used directive is #line

• Useful for utilities that create C code, such as yacc

• Allows the compiler to generate error messages meaningful to the original text file, and not to the C source file created
by the utility program

• The format is:

#line number "name"

which causes the compiler to think that the current line number is given by number and the current file name is given
by name

• The filename is optional, line number couting begins at the new number

Predefined symbolic constants

• A small number of symbolic names is reserved for special purposes

• Each of these symbols is distinguished by two underscores on either side of a sequence of letters

• These symbols cannot be undefined or redefined by the preprocessor

• The full list is:

__LINE__ Line number of file being compiled
__FILE__ Filename of file being compiled
__STDC__ Standard C flag (1 if ANSI-compliant compiler
__DATE__ Current date
__TIME__ Current time

• The symbols __LINE__ and __FILE__ are useful in the assert macro which must print out which line of which file
the assertion failed

• __DATE__ expands out as the string literal in the format "Mmm dd yyyy", such as "Apr 17 1997"

• __TIME__ expands to a string literal in the format "hh:mm:ss"

