1 Basics

\mathbb{N} denotes the set of natural numbers 0,1,2,3,..., and let \mathbb{Z} and \mathbb{Q} denote the sets of integers and rational numbers.

We accept as known the fact that these sets are linearly ordered: *ie.* there is a relation \leq with the usual properties. (See Rosen 6.6 for the notions of linear ordering) Also the operations of addition and multiplication are compatible with \leq in familiar ways. For example, if $a > b$ and $c > 0$, then $a + c > b$ and $ac > bc$.

A frequently used result will be the

Archimedean Property 1.1. If r and s are two positive rational numbers, then there exists a positive integer n such that $nr > s$.

Proof. Supply a proof. □

An axiom that we accept for \mathbb{N} is

Well-Ordering Principle (WOP) 1.2. Any non-empty subset of \mathbb{N} contains a least element.

This is closely related to two other axioms:

Principle of Mathematical Induction (PMI) 1.3. Suppose A is a subset of \mathbb{N} possessing the following two properties:

1. $0 \in A$.
2. If $k \in A$ then $k + 1 \in A$.

Then $A = \mathbb{N}$.

Second Principle of Mathematical Induction 1.4. Let A be a subset of \mathbb{N} possessing the following two properties:

1. $0 \in A$.
2. If $\{0, 1, \ldots, k\} \subseteq A$, then $k + 1 \in A$.

1
Then $A = \mathbb{N}$.

Proposition 1.5. The above three axioms are equivalent.

Proof.

WOP implies Second PMI: you supply the proof.

Second PMI implies PMI: you supply the proof.

PMI implies WOP: We assume PMI is true. Instead of directly proving WOP let us first consider the following statement (call it $P(k)$.)

Any non-empty subset of $\{0, 1, \ldots, k\}$ has a least element.

We will establish that $P(k)$ is true for every integer $k \geq 0$, using PMI. Indeed, if $k = 0$, any non-empty subset of $\{0\}$ must be $\{0\}$ itself and 0 is its least element. So $P(0)$ is true.

Assume now that $P(k)$ is true. As usual we will show that $P(k + 1)$ is true. Let C be a non-empty subset of $\{0, 1, \ldots, k, k + 1\}$. If C does not contain $k + 1$, then since it is a non-empty subset of $\{0, 1, \ldots, k\}$, it has a least element by $P(k)$. On the other hand, if $k + 1 \in C$ and C has other elements, then $C - \{k + 1\}$ is a non-empty subset of $\{0, 1, \ldots, k\}$, and hence $C - \{k + 1\}$ contains a least element which is also the least element of C. Lastly, if $k + 1 \in C$ and C has no other elements, then $k + 1$ is the least element of C. Thus in each of the three cases, we have shown that C contains a least element, hence $P(k + 1)$ is true. Hence by PMI, $P(k)$ is true for every integer $k \geq 0$.

Now back to our task. Suppose B is a non-empty subset of \mathbb{N}. Hence it contains a number k. Consider the subset B' of B consisting of all numbers in B which are $\leq k$. By $P(k)$ which we just proved, B' contains a least element l. Clearly l is also a least element in B. □

The Division Algorithm 1.6. Let $a, b \in \mathbb{Z}$ with $b > 0$. Then there exist integers q, r where $0 \leq r < b$ and $a = qb + r$. Furthermore, q, r are unique for given a and b.

Proof. I will sketch a proof and let you write it up: First case: $a \geq 0$. Then let n be the least natural number such that $qb \geq a$. (why does n exist?). Choose q to be $n - 1$ and establish that if $r = a - qb$ then $0 \leq r < b$.

Second case: if $a < 0$ the first case leads you to an answer in the second case by considering $a' = -a$ which is in the first case. Uniqueness: Suppose q', r' are other possible solutions. Suppose $q > q'$. Then $q \geq q' + 1$, hence $r = a - qb \leq a - (q' + 1)b = r' - b < 0$, a contradiction! Likewise, $q' > q$ leads to a contradiction. Etc, etc, etc. □
Definition 1.7. If $a, b \in \mathbb{Z}$, we say that ‘a divides b’ if $\exists k \in \mathbb{Z}$ such that $ak = b$, and we denote is as $a|b$.

Lemma 1.8. If $n|a$ and $n|b$ then $n|(ra + sb)$ where all letters denote integers.

Proof. Supply the proof. \hfill \Box

Definition 1.9. If $a, b \in \mathbb{Z}$, not both zero, then the greatest common divisor of a and b is a positive integer d (denoted (a, b)) satisfying

- $d|a$ and $d|b$.
- If $c \in \mathbb{Z}$ and $c|a$ and $c|b$, then $c|d$.

Proposition 1.10. Let $a, b \in \mathbb{Z}$, not both zero. Then (a, b) exists and is unique, and can be found specifically as the smallest positive integer linear combination of a and b.

Proof. Let $I = \{xa + yb|x, y \in \mathbb{Z}\}$. By choosing x and y of the same sign as a and b, we see that I contains positive integers. By WOP, I hence contains a smallest positive integer d. We must show that d satisfies the two conditions of 1.9. Since d is itself of the form $xa + yb$, the second condition is clear from lemma 1.8. Hence we need just show that $d|a$ and leave you to likewise show $d|b$.

Now by the Division Algorithm, $\exists q, r$ such that $a = qd + r$, with $0 \leq r < d$. Now $d = xa + yb$ (for some x, y) so $r = (1 - qx)a + (-qy)b$ which squarely puts it in I. Since $r < d$ and d was the smallest positive element of I, r can only be 0. Thus $a = qd$ or $d|a$.

For the uniqueness of d, if a positive number d' exists with the same two properties as d, I will let you verify that $d|d'$, hence $d \leq d'$ as both are positive etc, etc, etc. \hfill \Box

Lemma 1.11. a and b are called relatively prime if $(a, b) = 1$. Then a and b are relatively prime iff $\exists x, y \in \mathbb{Z}$ such that $ax + by = 1$.

Proof. Fill in the necessary two or three lines. \hfill \Box

Lemma 1.12. Suppose a, b are relatively prime. Then a^n, b^m are relatively prime for any positive exponents n, m.

Proof. Hint: take the $(n + m)$-th power of the linear combination in 1.11. Try some easy examples first like $n = 2, m = 3$ and review the binomial theorem. \hfill \Box
Lemma 1.13. Suppose p is an integer relatively prime to both a and b. Then p is relatively prime to ab. Conversely, if p is relatively prime to ab, then p is relatively prime to both a and b. More generally, the same holds if we replace a product of two integers a, b with the product of any number of integers.

Proof. Supply the proof.

Lemma 1.14. Suppose a_1, a_2 are relatively prime and each divides b. Then a_1a_2 divides b

Proof. Supply the proof.

Proposition 1.15. Suppose that $(p, a) = 1$ and $p|(ab)$. Prove that $p|b$.

Proof. Supply proof.

Proposition 1.16. Suppose $(n, m) = 1$. Then $(a, nm) = (a, n)(a, m)$. In particular, any divisor d of nm can be uniquely factored as $d = d_1d_2$, where $d_1|n, d_2|m$.

Proof. Supply proof.

Definition 1.17. Let a, b be two integers, neither zero. The least common multiple of a and b (lcm(a, b)) is a positive integer l satisfying the following

- $a|l, b|l$.
- If $a|l', b|l'$, then $l|l'$

Proposition 1.18. The lcm of a and b exists, is unique and is given by $|ab|/(a, b)$.

Proof. It is evident from the definitions that the gcd and lcm of a, b are the same as the gcd and lcm of $\pm a, \pm b$ (if the lcm does exist!). So we will assume that a and b are both positive to avoid the absolute value signs.

Now positive common multiples of a and b certainly exist (eg. ab is one), hence by WOP there is a smallest common multiple, call it l. We claim that l satisfies both of the conditions of the definition. The first condition needs no discussion. Now suppose l' is such that $a|l', b|l'$. Using the Division Algorithm, let

$$l' = ql + r, 0 \leq r < l.$$
Then $a|r$ since it divides both l' and l, likewise $b|r$. Our choice of l was such that r being smaller, must be 0. Hence $l|l'$.

For uniqueness, let l' be another number satisfying the definition of the lcm of a and b, in addition to the l we just found. The both l and l' are divisible by a and b. Using the second part of the definition, $l|l'$ and $l'|l$. Since both are positive, $l = l'$.

For the final formula: let $d = (a, b)$. Then $d = ar + bs$ for some r, s. Let $l = ab/d$. Since $d|a$, $l = (\frac{a}{d})b$ is an integer. From this, furthermore, we see that $b|l$. Likewise $a|l$.

Now suppose $a|m, b|m$ for some m. Then $m = am_1 = bm_2$. So $md = mar + mbs = bm_2ar + am_1bs = ab(m_2r + m_1s)$. Hence $m = \frac{ab}{d}(m_2r + m_1s)$. This shows that $l|m$.

Definition 1.19. A positive integer $p > 1$ is called a prime number iff given any integer n, either $p|n$ or $(p,n) = 1$.

Lemma 1.20. Let p be a positive integer greater than 1. Then p is a prime number iff the only positive numbers dividing p are 1 and p itself.

Proof. \Rightarrow: Suppose p is a prime number and suppose a is a positive number dividing p. We will assume that a is neither 1 nor p and get a contradiction. For certainly p does not divide a, yet $(p,a) = a \neq 1$, violating the definition above.

\Leftarrow: Assume that p is not a prime. So there exists an integer n such that $p \nmid n$ and $(p,n) = a > 1$. Then a is a positive number dividing p which is neither 1 nor p itself.

Proposition 1.21. Let p be a prime number and suppose p divides the product of a_1, a_2, \ldots, a_k. Then p divides one of the factors.

Proof. Supply a proof using induction.

The following is called the Unique Factorization Theorem and also as the Fundamental Theorem of Arithmetic.

Unique Factorization Theorem 1.22. Any positive integer greater than 1 can be factored into a product of one or more prime numbers and this factorization is unique up to permutations of the factors.
Proof. (Note that a product of one prime just means the prime itself.)

First we discuss the factoring. If the statement is NOT true, there is some positive integer (> 1) which cannot be factored into a product of one or more primes, and by the WOP, let \(n \) be the smallest such. We will reach a contradiction. If \(n \) is a prime, then \(n \) is a product of one prime. So \(n \) is not a prime \(ie. n \) is composite. So \(n \) has a positive divisor \(a \) which is neither 1 nor \(n \), hence \(n = ab \) where both \(a, b \) are strictly between 1 and \(n \). By our choice of \(n \), the statement is true for each of \(a, b \). Hence each of \(a, b \) is a product of one or more primes and therefore their product is also a product of primes. Contradiction.

Next we work on the uniqueness of the factoring. Again we proceed by contradiction and suppose that \(n \) is the smallest integer > 1 for which the factorization is NOT unique. So

\[
n = p_1 p_2 \ldots p_k = q_1 q_2 \ldots q_l,
\]

has two different factorizations into primes numbers. Now if \(k = 1 \), then \(l = 1 \) as well since \(n = p_1 \) cannot be factored, and then \(p_1 = q_1 \), hence the two factorizations are not different after all. So it must be that both \(k \) and \(l \) are > 1. Now \(p_1|q_1 q_2 \ldots q_l \), hence by the proposition above, \(p_1 \) divides one of the factors which we take to be \(q_1 \) since we can permute the factors. Since \(q_1 \) is a prime, we get \(p_1 = q_1 \). Dividing the equation above by \(p_1 \), we get

\[
\frac{n}{p_1} = p_2 \ldots p_k = q_2 \ldots q_l.
\]

Now \(1 < \frac{n}{p_1} < n \), and hence by our choice of \(n \) the two factorizations of \(\frac{n}{p_1} \) must be the same up to permutations. But this tells us that the two factorizations of \(n \) are also the same up to permutations. Contradiction.

\[\Box\]

Theorem 1.23. Let \(a = \pm p_1^{e_1} p_2^{e_2} \ldots p_k^{e_k}, b = \pm p_1^{f_1} p_2^{f_2} \ldots p_k^{f_k} \) be prime factorizations of two non-zero integers into powers of distinct primes \(p_1, p_2, \ldots, p_k \), where we allow an exponent to be zero if that prime does not divide the integer. Then

\[
(a, b) = p_1^{\min\{e_1, f_1\}} p_2^{\min\{e_2, f_2\}} \ldots p_k^{\min\{e_k, f_k\}}.
\]

Proof. Hint: first use 1.12, 1.16 to show that all you really need to prove is that the gcd of \(p^e \) and \(p^f \) equals the smaller of the two numbers for any prime (or number) \(p \). \(\Box \)
A better way to calculate the gcd of two positive numbers is to use the Euclidean Algorithm. This also allows you to express the gcd as an integer linear combination of a and b. First

Lemma 1.24. Given a and $b = qa + r$, then $(a, b) = (a, r)$.

Proof. Let $d = (a, b), d' = (a, r)$, both of which are smallest positive integer linear combinations by 1.10. So $d = ax + by = a(x + qy) + ry$, a combination of a and r. Hence $d' \leq d$. Likewise we show that $d \leq d'$. □

Algorithm 1.25. (Euclidean Algorithm) Given $0 < a \leq b$,

- use the division algorithm to express b as
- $b = qa + r, \ 0 \leq r < a$;
- If $r = 0$, it means that $a \mid b$ and so $(a, b) = a$. Done.
- If $r \neq 0$, $(a, b) = (r, a)$ by the lemma above.
- Recursively, apply the algorithm to find (r, a).

Proof. A proof is required to show that the algorithm terminates. Each recursive call computes a new remainder which is smaller than the previous. Hence sooner or later, a remainder must become zero. At this point, the algorithm terminates. □