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Abstract—Live-wire type techniques for interactive image segmenta-
tion are of practical use for various applications such as medical image
analysis, digital image composition, etc. Intelligent scissors [5] and live
wire [8] are the representative techniques of this type, which are based
on a graph search over an entire image. Another technique called live
lane [8] is also based on a graph search but localizes the search domain
to give an interactive feedback. Compared to the live wire, the live
lane trades off the repeatability of segmentation for its time efficiency.
In this paper, we present a novel image segmentation technique called
enhanced lane, a modified version of the live lane that ensures both effi-
ciency and repeatability. By restricting the search domain and updat-
ing the path map incrementally, the enhanced lane can extract objects
from an image interactively with its efficiency comparable to that of
the live lane while also keeping its repeatability comparable to that of
the live wire. Based on the live lane paradigm, our technique also dif-
fers from the time-efficient version of live wire called live wire on the
fly [9]: the enhanced lane always guarantees strictly bounded response
time regardless of the image size and follows the target boundary with
little digression which leads to better repeatability.

Keywords—Interactive image segmentation, Livewire, Dynamic pro-
gramming, Graph search

I. Introduction

A. Motivation

Interactive image segmentation techniques are of practical
use for various applications including image analysis, im-
age composition, key extraction, etc. Compared to fully au-
tomated image segmentation, interactive segmentation ex-
ploits user’s knowledge on the target object for tracing its
boundary. In particular, live-wire type techniques provide
the users with tight control in segmentation while yielding
preciseness [5], [6], [8], [9].

The representative live-wire type techniques such as intel-
ligent scissors [5] and live wire [8], are based on a graph
search over an entire image. Another technique called live
lane [8] is also based on a graph search but localizes the
search domain to give an interactive feedback. These two
complementary techniques, the live wire and the live lane
trade-off between their time efficiencies and repeatabilities,
as pointed out in [8]. That is, the live wire preserves the
repeatability at the cost of its speed, while the live lane sac-
rifices its repeatability to gain better time efficiency.

In this paper, we propose a novel live-wire type technique
called enhanced lane, that ensures both repeatability and

time efficiency. By restricting the search domain to the user-
controlled local window and updating the path map incre-
mentally, the enhanced lane can extract object boundaries
from an image interactively with its efficiency comparable
to that of the live lane while also keeping its repeatability
comparable to that of the live wire. Based on the live lane
paradigm, our technique also differs from the time-efficient
version of live wire called live wire on the fly [9]: the en-
hanced lane always guarantees strictly bounded response
time regardless of the image size, and follows the target
boundary with little digression which leads to better repeata-
bility.

B. Related Work

Image segmentation is a process of partitioning an image
into a set of disjoint regions with similar characteristics such
as intensity, color, texture, etc. Many researchers in ar-
tificial intelligence or computer vision, have concentrated
on achieving fully automated image segmentation [1], [2],
[18], [19], [20]. However, fully automated segmentation of-
ten fails to detect the target boundary, due to the lack of
the global knowledge on the objects. Moreover, when the
image itself is noisy or contains many objects of complex
shape, the exact target boundaries are hard to identify au-
tomatically. Therefore, user-guided semi-automatic image
segmentation techniques have been proposed in this con-
text [5], [8], [6], [7], [9], [10], [11], [13], [14], [15].

Interactive segmentation techniques can be either region-
based or boundary-based. The typical example of region-
based techniques is the so-called magic wand [16], which is
available in many commercial painting systems. The magic
wand enables a user to interactively select a seed point to
grow a region by adding adjacent neighboring pixels which
satisfy some similarity criteria on pixel attributes such as in-
tensity color value. The region growing is automatically ter-
minated when no more adjacent pixels satisfying the criteria
are left available. The resulting region boundary is usually
postprocessed since the region growing does not provide in-
teractive visual feedback as pointed out in [5].

Among the boundary-based interactive segmentation tech-
niques, active contour (also called snake) is one of the most
popular and well-studied [13]. Snake requires a user to pro-
vide an initial curve that approximates the target boundary.



With an initial snake curve placed near a boundary, the curve
automatically locks on to the boundary by minimizing an
energy functional. The energy at a point on a curve is a
combination of internal force such as the curvature at the
point and external forces such as its image gradient. The
snake facilitates automated boundary tracing, and thus the
final shape of the boundary is hard to control interactively.
If the resulting boundary is not acceptable, boundary tracing
must be repeated with a new initial curve, or the boundary
must be postprocessed.

Gleicher proposed an image snapping technique which is es-
sentially a snake applied to individual points [15], for auto-
matically attracting current mouse cursor position to nearby
features such as edges. Image snapping is guided only by the
external force of snakes, which is the gradient on the low-
pass filtered feature map of an image. By connecting ad-
jacent snapped points in sequence, the target boundary can
be interactively traced. However, the line segment between
two consecutive snapped points is not guaranteed to lie on
the target boundary, which could affect the accuracy of seg-
mentation and smoothness of the resulting boundary.

Another well-known boundary-based techniques are those
of the live-wire type [5], [6], [7], [8], [9], [10], [11], [14].
Mortensen et al. proposed intelligent scissors based on
global graph search [5], [6], and Falcão et al. presented a
slightly different version called live wire [8]. With a seed
point initially planted, a path map is constructed to provide
the minimum-cost path from the seed to every point in the
image. By interactively moving a cursor near the bound-
ary of an object, the live wire is extended according to the
path map to form a boundary segment. A sequence of seed
points can possibly be chosen when the image is noisy or
contains complex objects. Whenever a new seed point is se-
lected, the path map starting from this point is computed for
the entire image to replace the previous map. While provid-
ing highly interactive visual feedback, this type of tools is
time-consuming to reconstruct the path map when the im-
age size is large. Some interactive segmentation tools based
on live-wire techniques have recently been available in com-
mercial imaging software, such as Adobe PhotoshopTM [16]
or ProntoMaskTM [17].

Originated from the live wire, another technique called live
lane [8] is proposed to increase the efficiency of boundary
construction. The live lane restricts the search domain to
construct a path map within a local window centered at the
current seed point. This map records the minimum-cost path
from the seed to every point in the window. As a cursor
moves in this window, the corresponding boundary segment
is interactively displayed according to the path map. When
the cursor crosses the window, the boundary segment from
the seed point to the crossing point is automatically frozen.
The crossing point becomes a new seed point, and a new
path map is constructed within the window centered at this
point. That is, a new seed point is added whenever the cur-
sor crosses the current window. Hence, the live lane requires
more seed points than the live wire, especially when the win-

dow size is small. Moreover, these seed points may not lie
exactly on the target boundary, which may degrade the re-
peatability of the live lane.

Falcão et al. further extended the original idea of the live
wire and proposed a new scheme called live wire on the
fly [9]. The main goal of this tool is to improve the time
efficiency of the live wire, while retaining its basic philoso-
phy of global graph search. Exploiting the basic properties
of Dijkstra’s shortest path algorithm, the live wire on the fly
incrementally expands the shortest path map only up to the
cumulative cost of the current cursor position, thus avoid-
ing the unnecessary computation for the paths with bigger
cumulative costs. This idea has resulted in much faster seg-
mentation for large images even on low-powered comput-
ers. However, the response time tends to get longer for a
large image as the cursor moves far away from the seed point
since the overall path map gets bigger. Also, the live wire
on the fly traces a globally optimal path between two points,
which may not necessarily correspond to the target boundary
and thus require more seed points to plant. Restricting the
search domain under user guidance, the live lane has some
inherent merits such as locality and controllability over the
live wire on the fly, which have not fully explored yet. Ex-
ploiting those merits, we develop a new segmentation tech-
nique based on the live lane.

C. Overview

We present a novel live-wire type segmentation technique
called enhanced lane that ensures both time efficiency and
repeatability. Adopting the philosophy of local search from
the live lane, our segmentation technique computes a path
map only within a local window centered at the seed point
to provide time efficiency regardless of image size and seed
point location. Also, the enhanced lane incrementally ex-
tends the path from the current seed point to every pixel
in each successive window containing the cursor, to form
a cumulative path map. Since no boundary segment is fixed
when the cursor crosses the current window boundary, there
is no need to plant a new seed at the crossing point. Like the
live wire, the enhanced lane selects a new seed only when
the boundary segment from the seed point to the cursor di-
gresses from the target boundary. We also show that the
enhanced lane always finds a locally optimal path in the cu-
mulative region formed by the sequence of windows.

The remainder of this paper is organized as follows. Sec-
tion II describes both the live wire and the live lane, the two
complementary segmentation tools based on graph search,
in detail. In Section III, we present the basic idea and al-
gorithm of our tool together with detailed analysis and dis-
cussion, to compare it with other tools including the live
wire, the live lane, and also the live wire on the fly. Sec-
tions IV and V deal with some implementation issues and
experimental results with various test images, respectively.
We conclude this paper in Section VI.
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Fig. 1. Live Wire: (a) a digression occurs (b) a new seed
point is planted (c) the complete boundary is identified

II. Live-wire type techniques: Live wire and Live lane

In [8], Falcão et al. proposed two techniques for extracting
the boundary of an object in an image. Like intelligent scis-
sors, both of them utilize path maps represented by weighted
graphs. An image (or a portion of an image) is considered
as a directed graph in which pixel corners and oriented pixel
edges represent the vertices of the graph and its arcs, respec-
tively. To each oriented pixel edge, a set of features is as-
signed to give its cost (or weight). Then, the problem of con-
structing the best boundary segment between any two points
specified on the boundary is reduced to that of finding the
minimum-cost path between the two vertices in the graph.
By using oriented pixel edges, it is possible to trace the
boundary of an object without distractions from closely run-
ning boundary segments even with one pixel apart. More-
over, the directed nature of the graph distinguishes boundary
segments that have opposite orientations but otherwise have
very similar properties.

The authors incorporate features such as intensities on each
side of an edge and its orientation-sensitive gradient mag-
nitude. They provide various functions to transform those
features to their corresponding costs for the edge. The over-
all cost of an edge is given as a linear combination of those
costs that can effectively discriminate, from the others, the
pixel edges belonging to the boundary. They also developed
a training technique to find an optimal set of features and
transform functions for an application at hand. While their
training scheme requires a separate training phase, the au-
thors of [5], [6] proposed a more practical idea for training
which can be done on the fly.

The difference between the two techniques lies in their graph
search strategies and user interaction schemes. In both
methods, the user is required to place a starting seed point
on the target boundary. The live wire, which is based on
a global graph search, constructs a path map containing the
minimum-cost paths from the seed point to all the vertices in
the image. Based on the global path map thus constructed,
the user selects a desired boundary segment by interactively
moving the other end of the path called free point (which
is also controlled by the cursor). As the free point moves
in proximity to the target boundary, the live wire displays
the optimal path from the seed point to the free point, which
gives the impression that the live-wire automatically snaps at

(a) (b) (c)

Fig. 2. Live Lane: (a) the search region is restricted by a
local window (b) new seed points created at the crossing
points (c) the complete boundary is identified

the target boundary (See Figure 1)1. When the optimal path
from the free point digresses from the desired object bound-
ary, a new seed point is placed interactively or automatically
to re-initiate the new path map construction, as shown in
Figure 1(b)2. This causes a new boundary segment to be ex-
tended from this seed point while fixing the boundary seg-
ment computed up to the seed point. A complete boundary
is identified via a set of consecutive boundary segments each
detected in this fashion.

In the live lane, a path map is initially constructed only in the
square window containing the seed point planted at its center
(see Figure 2). As the free point starts from the seed point
and moves inside the window, the boundary segment linking
the two points is interactively displayed. If the free point
crosses the window boundary, the crossing point automati-
cally becomes a new seed point, fixing the current boundary
segment in the window. A new path map is then constructed
in a window centered at the new seed point, from which the
boundary segment is extended. Unlike the live wire, the tar-
get boundary is detected only if the user correctly steers the
cursor in the vicinity of the boundary within a lane of certain
width. The lane width is either fixed or varied adaptively
along the boundary, making it larger for strong boundary
segments and smaller for uncertain ones. Since the users
usually steer the cursor faster near a strong boundary seg-
ment, the width can be controlled in terms of the speed and
acceleration of the cursor motion.

In evaluating the performance of boundary construction
methods, the authors considered three factors to be of prime
importance: speed, repeatability, and accuracy. Accuracy
means the degree of agreement of the extracted boundary
with the target boundary. In general, the use of better cost
functions in constructing the path map could lead to better
accuracy in tracking strong edge features. Unfortunately,
it is hard to define the target boundary itself since it is not
always composed of the edges with the strongest features.
Thus, a manually traced boundary is often considered to be
a good approximation as the target boundary. However, the
credibility of manual tracing is still questionable since its

1 As a cost function for Figure 1 and Figure 2, we employed the gradient
magnitude with the inverted linear transformation function [8].

2 In this simple input image, it may be possible to reduce some digres-
sions by applying training schemes [5], [8].
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Fig. 3. Enhanced Lane: (a) The digression is avoided by
restricting the search region (b) A new seed point is cre-
ated where the digression is inevitable (c) The complete
boundary is identified

repeatability is worse than that of the live wire or live lane.
This results from the fact that machines are usually better
than human beings in preciseness. Hence the authors eval-
uated the performance of segmentation methods as a func-
tion of only speed and repeatablility. Speed is given by the
inverse of the amount of time required to extract an object
boundary. Repeatability is inversely proportional to the vari-
ation over the boundaries extracted from repetitive experi-
ments. As evaluated in [8], the live lane is better than the
live wire in speed by localizing the search domain, espe-
cially when the image size is large. The live wire, on the
contrary, has better repeatability than the live lane since the
live lane usually requires more seed points which may not
lie on the target boundary.

III. Enhanced lane

In this section, we explain the mechanism of enhanced lane
and discuss how it preserves both speed and repeatability.

A. Basic Idea

Inspired by the paradigm of the live lane, the enhanced lane
also localizes the search domain while extending path map
incrementally. With a seed point planted, the initial path
map is constructed only inside a local window centered at
the point. Thus, the optimal path from the seed point to ev-
ery point in the window is computed and recorded in the
path map. Starting from the seed point, a free point is then
moved along the boundary of an object within the window
and the boundary segment between two points is interac-
tively displayed using the path map. Unlike the live lane,
the free point of the enhanced lane serves as the center point
of the window, so that the window goes along with it. As the
free point moves, we fill in the portion of the new window
not overlapping the previous one to incrementally extend the
path map. This incremental extension of the path map en-
ables the path to grow from one window to another without
reinitializing the map (see Figure 3).

B. Boundary construction

As given in [8], an image is represented as a graph, where
vertices and arcs correspond to pixel corners and pixel

edges, respectively. Also, each pixel edge is assigned a lo-
cal cost in a similar way to that for the live wire or the live
lane, considering various edge features (gradient magnitude,
intensity on each side of the pixel edge, etc.) and cost as-
signment functions (inverted linear, inverted Gaussian, etc.).
The optimal boundary segment in this graph search formu-
lation is defined as the minimum cumulative cost path from
a start vertex to a goal vertex where the cumulative cost of a
path is the sum of the local pixel-edge costs on the path.

Let T = (t0, t1, ..., tn) be a sequence of time instances
where ti represents the ith time instance at which the po-
sition of the cursor is sampled. For any ti, let v(ti) and
w(ti) denote, respectively, the vertex pointed to by the cur-
sor and the window to which the path map construction is
performed. The path map construction is based on a dy-
namic programming technique that constructs a shortest-
path tree on a graph by successively choosing a vertex to as-
sign its optimal cost and path information [4], [5], [8]. Upon
selection of the seed point v(t0), the initial path map is con-
structed inside w(t0) that is centered at v(t0). Initially, both
the seed v(t0) and the free point v(ti) of the boundary seg-
ment are located at v(t0). As the cursor moves from v(t0),
we extend the path map to include the successive windows
w(t1), w(t2), ..., and so on. Accordingly the boundary seg-
ment is extended. At each time instance ti, the boundary
segment connecting v(t0) and v(ti) is displayed guided by
the extended path map, where v(ti) denotes the vertex lo-
cated at the center of w(ti).

Given the path map constructed up to ti, we extend the path
map to include w(ti+1). The domain of path map expan-
sion, denoted D(ti+1), certainly contains the vertices in the
non-overlapping region of w(ti+1) with the previous win-
dows since they have not been explored yet (Figure 4(a)).
D(ti+1) may also contain some vertices in the overlapping
region. As shown in Figure 4(b), the paths to the latter ver-
tices can move into w(ti+1) through some vertices on the
border of w(ti) contained in w(ti+1) and get back to them
later to lower their costs. Clearly, their current costs should
not be lower than that of the minimum-cost vertex, denoted
vs(ti+1), on the border of w(ti) contained in w(ti+1). Here,
we put into D(ti+1) the vertices in the previous windows
contained in w(ti+1) whose costs are higher than that of
vs(ti+1). This is equivalent conceptually to backtracking
the path map construction to the point where vs(ti+1) has
been about to be expanded. Once the domain D(ti+1) is de-
fined in this way, the path map is constructed to interactively
display the boundary segment to the free point v(ti+1).

If the path is observed to digress from the target boundary,
a new seed point, again denoted v(t0), is planted where the
digression begins. The new seed point freezes the previous
boundary segment and starts finding the next boundary seg-
ment. This process repeats until the complete target bound-
ary is identified by a sequence of boundary segments (See
Algorithm 1).

Since the update domain is restricted to the inside of the
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Fig. 4. Enhanced lane: (a) The boundary segment enters
a non-overlapping region in w(ti+1). (b) The bound-
ary segment is allowed to pass through one of the pre-
vious windows in w(ti+1). Lightly painted is a non-
overlapping region, and a darkly painted region con-
tains the vertices with higher costs than that of vs(ti+1).

Algorithm 1 Enhanced Lane
INPUT : An initial vertex vs and a goal vertex vg

OUTPUT : A set of boundary segments forming an optimal path from vs

to vg

1: v(t0) := vs

2: k := 0
3: while v(tk) �= vg do
4: if k = 0 then
5: vs(tk) := v(tk)
6: D(tk) := w(tk)
7: else
8: Get v(tk)
9: vs(tk) := the minimum-cost vertex in the border of w(tk−1) in

w(tk)
10: D(tk) := the non-overlapping region in w(tk) ∪ the region con-

taining the vertices of the previous windows in w(tk) whose costs
are higher than that of vs(tk)

11: end if
12: Construct a path map in D(tk) starting from vs(tk)
13: Display a boundary segment from v(t0) to v(tk) according to the

path map
14: if v(tk) is a new seed then
15: freeze the previous boundary segment from v(t0) to v(tk)
16: v(t0) := v(tk)
17: k := 0
18: else
19: k := k + 1
20: end if
21: end while

current local window, the time for the path map construc-
tion at each time instance is bounded by the local window
size. We assume that the window sequence does not miss
the target boundary, that is, for any time instance ti, the ver-
tex on the border of w(ti) over which the target boundary
crosses should be inside of w(ti+1). This assumption, how-
ever, does not necessarily mean that a new seed point should
be planted whenever a window misses the target boundary.
Rather, a simple cursor movement would suffice to get it
back on track as will be discussed in section 4.

C. Analysis

We claim that our algorithm always produces the same result
as that of the live wire assuming that the window sequence
completely contains the target boundary in the right order.

This can be formally stated as follows: The enhanced lane
can find a globally optimal path PG if a window sequence
W = (w(t0), ..., w(tn)) completely contains PG in the right
order, that is, for any time instance ti, the vertex on the bor-
der of w(ti) over which PG crosses is inside of w(ti+1).

Our proof will be an induction on time ti, 0 ≤ i ≤ n, to
show the following property holds true for each ti: In the
the path map constructed up to ti by the enhanced lane, the
boundary segment ending at the vertex on the boundary of
w(ti), denoted v(PG, ti), through which PG passes from
w(ti) to w(ti+1), is the same as the initial segment of the
globally optimal path PG ending at v(PG, ti).

For the first window w(t0), the boundary segment starting
from the seed point v(t0) and ending at v(PG, t0) is defined
by the initial path map construction. This segment should
be the same as the target path segment between v(t0) and
v(PG, t0) since otherwise there would be a better path con-
necting the seed point and v(PG, t0), which contradicts the
assumption that the target path is globally optimal. Note that
any segment of a globally optimal path connecting the seed
point and an intermediate vertex is itself a globally optimal
path, according to Bellman’s principle of optimality [3].

Now suppose that the property holds for all i such that 0 ≤
i ≤ k < n − 1. That is, the boundary segment ending
at v(PG, ti) which is constructed up to ti by the enhanced
lane, is the same as the target path segment connecting the
seed point and v(PG, ti), for 0 ≤ i ≤ k < n − 1. Now, we
will show that this also holds true for i = k + 1.

We first observe the case where the target path does not meet
any previous window in w(tk+1) after it passes through
v(PG, tk) (Figure 5(a)). In this case, the boundary seg-
ment to extend at tk+1 is entirely contained in the non-
overlapping region of w(tk+1) with any previous windows.
Since this region has not been explored, our algorithm takes
the vertices of this region into the domain D(tk+1). There-
fore, the boundary segment that has been constructed up
to v(PG, tk) is extended to reach v(PG, tk+1) and contains
the target path segment between v(PG, tk) and v(PG, tk+1).
This path segment lies in w(ti+1) by assumption. If a dif-
ferent boundary segment were obtained, the live wire also
would take that segment, contradicting the assumption that
PG is globally optimal.

The second case is that the boundary segment does meet
one or more previous windows overlapping w(tk+1) after it
passes through v(PG, tk) (Figure 5(b)). In this case, some
vertices in the previous windows are to be updated to have
lower costs. Note that any vertices in the previous windows
which have been assigned higher costs than v(PG, tk) will
be updated. All of these vertices are included in D(tk+1)
by the algorithm since their costs will be higher than that
of vs(tk+1), which should be less than or equal to that of
v(PG, tk). By a similar argument to the previous case, the
new boundary segment in w(tk+1) that leads to v(PG, tk+1)
is the same as the target path segment between v(PG, tk)
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Fig. 5. Enhanced lane: (a) The 1st case: the (k + 1)th boundary segment is entirely contained in a non-overlapping region in
w(tk+1). (b) The 2nd case: The (k + 1)th boundary segment passes through to one or more previous windows in w(tk+1).
(c) The process is terminated at tn. Lightly painted is a non-overlapping region, and a darkly painted region contains the
vertices with higher costs than that of vs(tk+1).

and v(PG, tk+1). Hence, we can conclude that the enhanced
lane constructs the boundary segment leading to v(PG, ti)
that is the same as the target path segment connecting the
seed point v(t0) and v(PG, ti) for all i such that 0 ≤ i ≤
n − 1.

Finally, the boundary segment from v(PG, tn−1) to the goal
vertex v(tn) is obtained at tn, and it is also the same as
the target path segment between v(PG, tn−1) and v(tn).
Note that all the vertices on this final segment are con-
tained in D(tn) since PG is globally optimal and hence these
vertices must have been assigned higher cost than that of
v(PG, tn−1) (Figure 5(c)). This completes the proof of our
assertion that the boundary segment between the seed and
cursor (free) vertices generated by the enhanced lane is the
same as that of the globally optimal path PG as long as the
window sequence completely contains PG in the right or-
der.3

The time complexity of the enhanced lane is dependent upon
the size and the number of local windows used. Mortensen
et al. showed that the path map construction time for a given
image can be reduced to O(N) where N is the number of
image pixels for which optimal paths have been computed
from the pixel to a seed point [5], [6]. In our algorithm, the
number of vertices in the domain D(ti) at each time instance
ti, is always bounded by the size of the corresponding local
window w(ti). Hence, the time complexity for the path map
construction at ti by our algorithm is O(M), where M is the
number of vertices in w(ti). If we let L be the total num-
ber of windows used, then the overall time complexity for
constructing a boundary segment will be O(ML), assuming
that the local window size is fixed. Since M (and also ML)
is usually much smaller than N (the total number of vertices
in the entire image), the overall computation time is much

3 We note that our proof is based on the assumption that the globally
optimal path is unique. If there are multiple globally optimal paths between
seed and cursor (free) vertices, that is, the paths with the same least cost but
different vertex sequences, our algorithm always chooses one of them that
satisfies our assumption.

less than the case of global graph search.

D. Comparison with live wire on the fly

In this section, we make detailed comparison between the
enhanced lane and the live wire on the fly, the time-efficient
version of the live wire. Both techniques update their path
maps incrementally as the cursor moves. However, their
ways of achieving incremental update are quite different.
The live wire on the fly confines path map construction up to
the path length (cost) of the current cursor position to avoid
unnecessary computation. Meanwhile, the enhanced lane
accelerates the construction by restricting the search domain
within a local window.

Suppose that the target path is globally optimal. Then the
live wire on the fly can trace this path, adopting the search
paradigm from the live wire. The enhanced lane can also
trace it, as long as the window sequence completely con-
tains the path in the right order. If the target path is not
globally optimal, the live wire on the fly may require extra
seed points to prevent the boundary segment from digress-
ing from the target path. However, the enhanced lane does
find the desired path without digression if the target path is
locally optimal within the union of the local windows used.4

Thus, the enhanced lane can trace the target path between
the start and goal points, by interactively steering the local
window. This effectively keeps the boundary segment from
snapping at nearby features not on the target path, to reduce
the number of seed points. Therefore, the enhanced lane can
also achieve better repeatability of segmentation since the
seed points are inherently not guaranteed to lie on the target
path.

Another issue is the response time. For the live wire on the
fly, the response time depends on the number of nodes in

4 The locally optimal path means the minimum-cost path in a given local
region or in the union of those regions. Given a window sequence W =
(w(t0), ..., w(tn)), the enhanced lane finds a path PL if W completely
contains PL in the right order and PL is locally optimal in the union of all
the windows in W (This can be proved in a similar way as in Section C).
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Fig. 6. Dummy windows: (a) The same result is obtained without a dummy window (b) Terminating situation (c) A window is
completely out of the target path

the current shortest path tree. The number of nodes being
expanded at each cursor movement is small at first, but in-
creases as the size of the tree gets bigger. That is, the re-
sponse time gets longer as the cursor moves farther away
from the seed point. This will be more noticeable for a large
image as the size of the shortest path tree tends to increase
accordingly.5 In order to maintain the real-time response
in this case, a new seed point needs to be planted even with-
out digression, which could degrade the repeatability of seg-
mentation. For the enhanced lane, however, the response
time is always bounded by the window size, thus guarantees
interactive speed regardless of the image size. Moreover,
whenever a new seed point is planted by a mouse click, the
live wire on the fly needs to take some time for clearing all
the path tree nodes still remaining in the circular queue. The
number of those nodes is also proportional to the size of
the path tree. The enhanced lane, on the contrary, does not
cause such delay since it handles only the nodes lying in the
current window.

IV. Implementation details

As mentioned in the previous section, we assume that for
any time instance ti, the vertex on the border of w(ti) over
which the target boundary crosses lies inside of w(ti+1).
In practice, this rule may be somewhat restrictive for users
since whenever the rule is broken, the path map needs to be
reinitialized with a new seed point. With our algorithm, this
rule can be applied rather flexibly by allowing some dummy
windows to be created during interactive segmentation. A
window in a sequence of windows is called dummy if the
same boundary segment is achieved regardless of it. Fig-
ure 6 shows several cases where dummy windows appear.
In each case, consider a globally optimal path PG. In Fig-
ure 6(a), after PG passes through v(PG, ti−1), the boundary
segment between v(PG, ti−1) and v(PG, ti) is constructed
in w(ti). However, as shown in the figure, PG then directly
goes into w(ti+2) without passing through w(ti+1). This
implies w(ti+1) does not contribute to the construction of
PG, and hence it is a dummy window in this case. That is,

5 In the worst case, the size of the path tree can match the size of the
input image.

our assumption will hold true even if we remove w(ti+1)
from the window sequence, and thus the boundary segment
up to v(PG, ti+2) will be constructed correctly. Note, how-
ever, our algorithm can successfully find PG even with the
existence of w(ti+1), since w(ti+1) does no harm but just
causes some backtracking at ti+2 (to go back to v(PG, ti+1)
which is ahead of v(PG, ti)).

In our proof based on a mathematical induction, after con-
structing the boundary segment from vs up to v(PG, tn−1),
we find the final boundary segment reaching vg at tn. In
fact, while the final boundary segment is constructed at tn
in the path map, it may not yet be completely displayed un-
less the user places the cursor exactly on the goal vertex vg

(Figure 6(b)). That is, it may take a few more steps of cursor
adjustment by the user to place vg exactly at the center of the
window. These additional steps are just needed for display
and do not affect the boundary construction algorithm since
the optimal boundary has already been defined at tn in the
path map. Thus, as shown in Figure 6(b), windows w(ti+1)
and w(ti+2) are dummy.

Figure 6(c) shows a case where PG does not even touch
a window w(ti−1), and our algorithm cannot find PG in
this case since Di−1 does not contain v(PG, ti−2). How-
ever, even this kind of user’s mistake can be permitted if
we slightly modify the domain selecting strategy of the al-
gorithm. That is, we can select the least cost vertex vs(ti)
that defines D(ti), from the boundaries of all the previous
windows lying in w(ti) (denoted as thicker lines in the fig-
ure), rather than just from the boundary of w(ti−1) in w(ti).
This is conceptually equivalent to backtracking the path map
construction to a specific time instance when a vertex with
the lowest cost (vs(ti) in the figure) in all the previous win-
dow boundaries lying in w(ti) was about to be expanded.
Thus, any wrong cursor movement thereafter can be re-
paired. With this strategy, we do not require any new seed
point to be planted and just a simple window movement to-
ward the right path will suffice to get back on track. In an
extreme case, we can backtrack to reach the seed point to
resume the target boundary tracking when the window se-
quence is completely out of the target path and the boundary
segment has been chasing a wrong path for a while.
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When the image is noisy, low contrasted, or contains many
complex objects, the possibility of path digression goes high
with the live wire and live wire on the fly, and excessive seed
points may be required for the entire segmentation. The en-
hanced lane, however, allows an interactive control of win-
dow size to minimize the path digression and hence reduce
the number of seed points needed. In an extreme case, the
number of seed points can be reduced to just ‘one’ (which
is the starting point) provided that the window size is effec-
tively controlled. This enables the enhanced lane to have
better repeatability than the live wire, the live wire on the
fly, and the live lane. However, if the window size gets too
small, the efficiency of user’s interactability can be affected,
degrading the overall performance of the path construction.
To avoid this, we provide a separate window which shows
the magnified view of the local window. Moreover, when
the digression occurs despite the window size control, the
image snapping technique [15] is employed to put the seed
point as close as possible to the target boundary. These ad-
ditional features help improve the repeatability of the en-
hanced lane even more.

V. Results

(a) Rose (1024x768)

(c) CT image (1024x1024) (d) Satellite image (2048x2048)

(b) Football (1024x768)

Fig. 7. Various test images

We have tested our segmentation technique on more than
200 images of various sizes and complexities. Figure 7
shows some of the test images used to assess the efficiency,
robustness and generality of each method of interest (Live
Wire, Live Lane, and Live Wire On The Fly and Enhanced
Lane)6. A wide variety of images are included, from gray-
scale to color images, some of which are blurry, noisy, low-
contrasted and contain objects with complex boundaries.
The target object in Figure 7(a) has rather a simple shape
with a monotone background. Figure 7(b) contains an object
with highly complex boundary surrounded by a complicated

6 The arrows indicate the target boundaries.

background of arbitrary colors. Figure 7(c) is a CT scan im-
age of a human chest, in which the boundaries between or-
gans are rather blurry. Figure 7(d) is a gray-scale satellite
image of an island. Note that sufficiently large images (with
more than 700,000 pixels) are chosen for the experiments
to show the relative merits of our method over others. All
the experiments have been conducted on Intel PentiumR PC
(P4 2.20 GHz processor with 512 MB memory).

image size measure time (sec.) # seeds repeatability

LW 44.91 9.1 0.956
Rose 1024 × 768 LL 22.16 47.6 0.867

LWOF 16.77 8.7 0.962
EL 9.73 8.5 0.969

LW 167.03 25.3 0.871
Football 1024 × 768 LL 25.68 60.1 0.805

LWOF 29.84 27.2 0.861
EL 21.78 24.8 0.884

LW 115.67 19.1 0.804
CT 1024 × 1024 LL 19.49 43.2 0.751

LWOF 24.65 19.5 0.821
EL 15.69 18.7 0.836

LW 156.10 7.1 0.979
Satellite 2048 × 2048 LL 30.47 107.3 0.835

LWOF 51.27 6.8 0.977
EL 21.87 6.1 0.986

TABLE I
TEST RESULTS ON VARIOUS IMAGES

Table I demonstrates the test results. Three different users
participated in the test, and each of them made three separate
trials of segmentation for each image. In the table, LW, LL,
LWOF, and EL stand for the four segmentation techniques as
mentioned above, respectively. Segmentation time shows the
average computation time taken for constructing the target
boundary. For each image, the time is measured by the sum
of the response times for all cursor movements and mouse
clicks. # of seeds means the average number of the total
seed points planted during segmentation. Repeatability is
measured in the same way as defined in [8] for every pair
of three trials of segmentation for each user. Table II shows
the average repeatability obtained for Figure 7(b). U1, U2,
U3 represent three different users, and T1, T2, T3 denote
their three separate trials, respectively. For the live lane and
the enhanced lane, the window of a fixed size (90 × 90) is

measure user T1,T2 T2,T3 T1,T3 avg.

U1 0.861 0.872 0.874
LW U2 0.903 0.893 0.899 0.871

U3 0.853 0.839 0.845

U1 0.811 0.822 0.827
LL U2 0.842 0.823 0.831 0.805

U3 0.750 0.747 0.794

U1 0.854 0.856 0.839
LWOF U2 0.901 0.889 0.887 0.861

U3 0.840 0.849 0.834

U1 0.893 0.868 0.890
EL U2 0.913 0.904 0.911 0.884

U3 0.843 0.875 0.865

TABLE II
REPEATABILITIES FOR THE ‘FOOTBALL’ IMAGE
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used, and the image snapping technique is not employed for
planting seed point. As the cost function, we employed the
gradient magnitude with the inverted linear transformation
function for all the images and methods [8].7
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Fig. 8. Comparison of the response time between LW and
LWOF

As shown in Table I, the enhanced lane takes the least seg-
mentation time. The live wire takes considerable response
time at each mouse click (seed point planting), to construct
a new path map over the entire image. The live lane, like
the enhanced lane, bounds each of its response time by the
local window size, but the sum of all response times is gener-
ally longer than the enhanced lane, since the live lane moves
slowly near the border of every window to generate a large
number of mouse events. In the case of the live wire on the
fly, the response time is rather small at first but increases as
the cursor moves away from the seed point. Figures 8 and 9
show the patterns of response time for different techniques,

7 The use of different cost functions may produce different time, num-
ber of seed points, and repeatability for each segmentation method, but the
relative superiority between methods remained the same.
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Fig. 9. Comparison of the response time between EL, LL
and LWOF

size measure time (sec.) # of seeds repeatability

LW 5.51 14.8 0.826
256 × 256 LL 2.75 16.7 0.782

LWOF 3.08 14.5 0.838
EL 4.02 14.6 0.831

LW 26.33 18.2 0.814
512 × 512 LL 10.35 24.5 0.782

LWOF 13.62 18.0 0.805
EL 9.46 17.5 0.830

LW 115.67 19.1 0.804
1024 × 1024 LL 19.49 43.2 0.751

LWOF 24.65 19.5 0.821
EL 15.69 18.7 0.836

LW 396.35 18.4 0.851
2048 × 2048 LL 29.51 74.5 0.694

LWOF 43.34 18.1 0.863
EL 23.93 16.5 0.895

TABLE III
TEST RESULTS ON THE ‘CT IMAGE’ FOR VARIOUS SIZES

computed along the boundary path length (measured in pix-
els) from the starting point.8 As exhibited in Figure 8, the
live wire yields a peak time at each seed point. The live wire
on the fly takes much less response time at the seed point
than the live wire as expected. However, its response time at
each mouse movement tends to increase as the cursor moves
farther from the seed point. As shown in Figure 9, while the
response time for the live wire on the fly is proportional to
the distance from seed point, the response times for both the
enhanced lane and the live lane are very small and remain
almost constant regardless of the distance.

As for the other statistics on the table, the live lane con-
sumes the largest number of seed points since a new seed
point is created on the border of each window. The en-
hanced lane creates less seed points than the live wire and
the live wire on the fly since the localization of search do-
main reduces the digression possibility. As the same cost
function is used for all the methods, the level of repeatabil-
ity depends mainly on the number of seed points used. That
is, the repeatability is inversely proportional to the number
of seed points, and thus the enhanced lane shows the highest
repeatability among four test methods.9 Although we used
a fixed window size for all images, the enhanced lane can
possibly achieve even higher repeatability by dynamically
controlling the window size.

Tables III and IV respectively exhibit the test results on the
Figures 7(c) and 7(d) with varying the image size (from
256×256 to 2048×2048). As shown in these tables, the dif-
ferences between segmentation methods become more ob-
vious as the image gets larger. For a large image of size
over 1000 × 1000, the segmentation time for the live wire
is 4.8 ∼ 16.6 times longer than the enhanced lane. The live
lane requires 2.3 ∼ 17.5 times more seed points than the en-
hanced lane, resulting in 0.77 ∼ 0.89 times lower repeata-

8 This experiment is conducted on Figure 7(d).
9 The repeatabilities obtained from our tests are a bit lower than those

reported in [8]. The repeatability (and also the time efficiency) can be af-
fected by various factors such as the usage of different data sets, the choice
of cost functions, testee’s skill, etc.
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size measure time (sec.) # of seeds repeatability

LW 3.41 4.5 0.988
256 × 256 LL 2.95 15.5 0.945

LWOF 2.85 4.3 0.987
EL 3.37 4.5 0.981

LW 11.33 5.7 0.978
512 × 512 LL 8.60 30.5 0.933

LWOF 9.25 5.2 0.975
EL 4.66 5.3 0.981

LW 46.80 6.5 0.957
1024 × 1024 LL 15.96 61.5 0.892

LWOF 18.95 6.7 0.966
EL 9.84 6.4 0.972

LW 156.10 7.1 0.979
2048 × 2048 LL 30.47 107.3 0.835

LWOF 51.27 6.8 0.977
EL 21.87 6.1 0.986

TABLE IV
TEST RESULTS ON THE ‘SATELLITE IMAGE’ FOR

VARIOUS SIZES

bility.10 For the live wire on the fly, the segmentation time
for a large image is much faster than that of the live wire,11

and the repeatability is much better than that of the live lane
by producing almost the same number of seed points as the
live wire. Compared to the live wire on the fly, the enhanced
lane spends less segmentation time (especially for a large
image), due to the strictly bounded response time regard-
less of the image size (1.5 ∼ 2.3 times faster). Also, the
enhanced lane consumes a smaller number of seed points
by its path map localization, which leads to slightly better
repeatability of segmentation (1.01 ∼ 1.03 times better in
repeatability).

VI. Conclusion

We have presented a novel image segmentation tool called
enhanced lane. Based on the live lane paradigm, the en-
hanced lane constructs a path map in a local window cen-
tered at a seed point that is initially planted on the target
boundary. As a cursor moves close to the target boundary,
the minimum-cost path from the seed point to the cursor
point is interactively displayed, which gives an impression
that the path snaps to and wraps around the target bound-
ary. The local window moves along with the cursor point,
and the path map is incrementally updated to extend the
minimum-cost path until the path digresses from the target
boundary. As a new seed point is planted where the digres-
sion occurred, the new path map is created, and the former
path segment is fixed as an identified target boundary seg-
ment. The complete boundary is obtained when a sequence
of these path segments forms a closed path.

10 The repeatability of the live lane can be improved by employing the
seed point snapping technique whenever the cursor crosses the window bor-
der [15], but the resulting boundary still does not guarantees the optimal
target path.

11 The gap of segmentation time between LW and LWOF computed in
our experiments is much smaller than that reported in [9]. This gap can vary
with different input images, and especially depends heavily on the number
of seed points used. The more seed points we use, the bigger becomes the
gap.

We have proven that if the target path is globally optimal,
the enhanced lane can always capture it as long as the local
window sequence contains it. We compare our method with
others such as the live wire, the live lane, and the live wire
on the fly [8], [9] in terms of time efficiency and repeatabil-
ity. While the live wire preserves the repeatability at the cost
of its speed (especially for a large image), the live lane sacri-
fices its repeatability to gain better time efficiency. The live
wire on the fly and the enhanced lane both improve their effi-
ciencies by incrementally updating the path maps. However,
while the live wire on the fly confines path map construction
up to the current path length (cost), the enhanced lane ac-
celerates the construction by restricting the search domain
within a local window. Based on live lane paradigm, the
enhanced lane always guarantees strictly bounded response
time regardless of the image size unlike the live wire on the
fly. Also, our method reduces the number of digressions by
its path map localization, which leads to better repeatability.

Our boundary construction algorithm inherently provides
considerable freedom in cursor movement by allowing
dummy windows created during the interactive process. To
avoid user’s fatigue and low efficiency caused by an ex-
tremely small window, the feature of automatic window
zooming is provided when the window size gets smaller than
some threshold. In conclusion, the enhanced lane is capable
of segmenting complex foreground objects from an arbitrary
background of a noisy, low-contrasted image with interac-
tive speed regardless of its size.
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