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Abstract
This paper presents an automatic method for producing stipple renderings from photographs, following the style
of professional hedcut illustrations. For effective depiction of image features, we introduce a novel dot placement
algorithm which adapts stipple dots to the local shapes. The core idea is to guide the dot placement along ‘fea-
ture flow’ extracted from the feature lines, resulting in a dot distribution that conforms to feature shapes. The
sizes of dots are also adaptively determined from the input image for proper tone representation. Experimental
results show that such feature-guided stippling leads to the production of stylistic and feature-emphasizing dot
illustrations.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Picture/Image Generation]: Display algorithms;
I.3.4 [Graphics Utilities]: Paint systems

1. Introduction

Describing a scene with a set of points has been an impor-
tant and challenging issue in many areas of computer graph-
ics, such as non-photorealistic rendering (NPR), point-based
graphics, image-based rendering, and geometric processing.
In this paper, we focus on point-based scene stylization, in
particular, the problem of generating stylistic stipple illustra-
tions from photographs.

Many of the previous stippling algorithms were devel-
oped and presented in the context of sampling. Assisted by
carefully designed dot spacing schemes, they produce a dot
distribution with reduced visual artifacts, such as aliasing.
When used for image-guided stippling, these algorithms fill
the image with well-spaced dots that properly describe the
local tone. However, they do not in general take into account
the shape or directionality of image features.

In this paper, we focus more on the ‘style’ of stippling
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Figure 1: Hedcut illustrations created by Randy Glass
(www.randyglassstudio.com)

rather than the spectral quality of sampling. We are partic-
ularly inspired by the professional hedcut illustrations (see
Fig. 1), where the dots appear to follow some ‘flow’ along
shapes. That is, the dot formation is strongly affected by the
directionality of image features. As demonstrated by these
illustrations, flow-guided distribution of dots adds to the
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Figure 2: Stipple illustrations created by our method

stylistic look, and also has the effect of enhancing or exag-
gerating important shapes as the dots collectively reflect the
directionality of the features nearby, and it occurs not just
around the features but almost everywhere.

Based on this observation, we develop an automatic dot
placing algorithm that adapts dots to the surrounding shape.
The core idea of our approach is to create ‘feature flow’ by
extracting a distance field and offset lines from image fea-
tures, with which to guide the dot placing along shapes. We
thus call it feature-guided stippling. Fig. 2 shows some of
our stipple rendering results.

1.1. Contributions

Unlike previous stippling algorithms, we pursue a new style
of stippling where stipple dots collectively follow the near-
est image feature direction. To the best of our knowledge, the
concept of ‘directional stippling’ is new in the field and has
not been attempted. Imitating the visual quality of hedcut il-
lustrations is particularly challenging as it demands artistic
intuition and finesse in creating flow as well as in arranging
dots. As a computerized solution, we propose a constrained
Lloyd algorithm that uses a set of lines offset from the fea-
ture lines. We also develop a weighted centroid computation
method to provide adaptive control of the influence from off-
set lines to the Voronoi cells. In addition, our method allows
for an intuitive control of rendering style with just a few pa-
rameters.

2. Related Work

2.1. Digital image halftoning

Image halftoning refers to a technique that approximates
the original image with a limited number of intensity lev-
els, typically black and white [FS76, Ost01]. Since an out-

put of halftoning is often a collection of black dots (pix-
els) on a white image, it may be viewed as a kind of stip-
ple illustration. While halftoning is a visual approximation
technique, stippling is more of an artform. In general, more
freedom is given to stippling in controlling the size, density,
shape, style, orientation, and intensity of the dots. Deussen
et al. [DHVOS00] also pointed out that additional lines (such
as feature lines) are often used in stippling to allow dots to
interact with those lines.

(a) Non-directional (b) Directional (ours)

Figure 3: Non-directional vs. Directional dot placing. (a)
produced by the method of [Kopf et al. 2006]. (b) our
method. In both figures, the same line drawing is superim-
posed onto the output of stippling.

2.2. Stippling

Salisbury et al. [SWHS97] presented a pen-and-ink illus-
tration technique, which is capable of producing stipple il-
lustrations when pen strokes are replaced with dots. They
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Figure 4: Process overview: For better visualization, in the dot optimization step, the dots in the background are not shown.

use a difference image algorithm to produce a roughly
even dot distribution in local neighborhood. Deussen et
al. [DHVOS00] presented a stipple drawing method based
on Lloyd algorithm (i.e., construction of a centroidal
Voronoi diagram) for more rigorous dot spacing, resulting
in an exquisite illustration. Secord [Sec02] later modified
this algorithm to produce a weighted centroidal Voronoi di-
agram that protects image features better than the constant-
weighted version.

Stippling algorithms often rely on sophisticated sampling
principles. In particular, many of them reduce aliasing arti-
facts by seeking a sampling property known as blue noise
spectral characteristics. A dart throwing algorithm [Coo86]
is a simple method to generate such point sets. Cohen et
al. [CSHD03] presented a Wang-tile-based method to pro-
duce blue noise dot distribution, assisted by Lloyd relax-
ation. Kopf et al. [KCODL06] later proposed a recursive
Wang tiling method for dynamic control of the point set den-
sity. Ostromoukhov et al. [ODJ04] introduced a fast blue
noise sampling algorithm based on Penrose tiling, which
was later improved by Ostromoukhov [Ost07] using recti-
fiable polyominoes for better spectral quality. These latter
algorithms [KCODL06,ODJ04,Ost07] are all very fast, pro-
ducing millions of dots per second, as the Lloyd relaxation
step is preprocessed. Mould [Mou07] recently presented a
stippling algorithm based on graph search (instead of Lloyd
relaxation) for improve protection of image features such as
edges.

While all of these cited algorithms are capable of produc-
ing high-quality stipple illustrations, they do not provide an
important characteristic we are looking for – the collective
dot alignment with local shapes. That is, they basically take
into account the tone but not the shape of the surrounding re-
gion, and thus the resulting dots do not by themselves reveal
any sense of directedness. This is illustrated in Fig. 3. While

some algorithms [DHVOS00, Sec02, Mou07] do protect im-
age features, they do not go as far as guiding all of the dots
along some smooth feature flow.

2.3. Tile mosaics

Hausner [Hau01] showed that the centroidal Voronoi dia-
gram, when computed with Manhattan distance metric, can
constrain rectangular tiles to align with some user-defined
feature lines and the associated direction field. While our
problem at hand is similar to that of tile mosaics, distribut-
ing dots as in hedcut illustrations requires much more rigor
and finesse as it calls for strict alignment of dots almost ev-
erywhere (see Fig. 1).

We thus build on Hausner’s constrained Lloyd algorithm
and adapt it to handle the feature-guided distribution of cir-
cular dots, rather than rectangular tiles. In particular, we in-
corporate a new set of constraints based on offset lines, to
enable tight alignment of dots which directly improves the
quality of the resulting illustration.

2.4. Engraving

Ostromoukhov [Ost99] addressed the problem of feature-
driven tone representation in the context of facial line en-
graving. While his system generates a beautiful set of en-
graving lines flowing across the facial surface, it requires
considerable user interaction as the line directions are de-
termined by the user’s interpretation of the facial structure.
We aim to build an automatic and general method that can
handle images of arbitrary scenes.

3. Overall Process

Fig. 4 illustrates the overview of our stippling scheme. We
first process the input image to get it ready for the main stip-
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pling procedure. This initial process includes tone map and
line map creation. The tone map controls the tone-related
dot attributes such as size, while the line map dictates the
shape-related dot attribute, that is, location. In the next step,
we form feature flow by extracting a distance field and a set
of offset lines from the line map. The system then optimizes
the regularly sampled initial dots using constrained Lloyd al-
gorithm, for which we use offset lines as constraints so that
the dots can closely follow the feature flow. Upon computing
the sizes of dots, the system produces the target illustration
by rendering dots together with the feature lines.

4. Preprocessing

4.1. Tone map construction

We use a grayscale image I(x) as input, where x = (x,y) de-
notes an image pixel. In case I is too dark or of low contrast,
we perform brightness adjustment and/or contrast stretching
on I. The resulting image is denoted T (x), which we call a
tone map. We let T (x) range in [0,1]. The tone map is used
to control the tone-related dot attributes such as size and/or
intensity.

4.2. Line map construction

From T (x), we find a set of feature lines that will be used
to guide stippling. We employ the line drawing method pre-
sented by Kang et al. [KLC07], which produces stylistic and
coherent lines. Fig. 5 shows an example input and the result-
ing line drawing image. We denote the resulting black-and-
white line map by L(x) ∈ {0,1}, where 0 (black) represents
line.

(a) Input (b) Line map

Figure 5: Line map construction

5. Feature Flow Construction

By a ‘feature flow’, we mean a smoothly varying vector
field that describes the direction of the nearest feature for
each pixel. We perform distance transform from the feature
lines to achieve this. The constructed distance field is then
adaptively smoothed to reduce potential visual artifacts in
the rendering result. Finally, we extract offset lines from the
smoothed distance field.

5.1. Distance transform

The line map L(x) may contain some isolated black pixels
due to image noise. We first remove these noise pixels by
binary morphological opening on L(x) with a circular struc-
turing element of radius 1∼ 3.

We then apply jump flooding method [RT06] to construct
a distance field, denoted D(x), using the black pixels in
L(x) as seeds (zero distance). Jump flooding is so named as
it propagates information in the manner of ‘jumping’ from
pixel to pixel. Let k denote the jump (step) size. In each
round of jumping, each pixel x = (x,y) inspects nine pixels
located at (x+ i,y+ j) where i, j ∈ {−k,0,k}, and computes
distances to their associated seeds. The minimum of these
distances and the corresponding seed are recorded at D(x).
This jumping is repeated by halving k in each round. There-
fore, the distance field is completed after logn rounds for
an image of size n×n. Since this algorithm operates locally
on each pixel, it can be dramatically accelerated when im-
plemented on a GPU. More importantly, it provides constant
time complexity, regardless of the number of seeds. Inter-
ested readers are referred to [RT06] for more details on the
algorithm. Fig. 6b shows a distance field obtained by jump
flooding.

The computed distance field serves as our feature flow.
Note a distance field can be viewed as a vector field, where
each pixel x is associated with a vector pointing to the neigh-
boring pixel that has the same distance value. This vector
represents the feature direction at x.

5.2. Adaptive smoothing of the distance field

When we obtain an offset line image, a crude distance field
may result in some undesirable visual artifacts such as wob-
bly lines and sharp corners (see Fig. 6c). It is desirable to
reduce such artifacts as they may become noticeable in the
final rendering and hence divert the viewer’s attention. We
resolve this by obtaining offset lines from Gσ ∗D(x), the
Gaussian-smoothed distance field. We use the distance value
at each pixel x to determine its smoothing kernel size σ(x).
That is, σ(x) = c ·min{D(x)/Dc,1}, where Dc is the dis-
tance for the maximum kernel size c. In our implementation,
c = 9 and Dc = 120. The reason for the distance-adaptive
smoothing is because it is desirable to closely follow the
structure of features in a low-distance area but less so else-
where. The adaptive distance filtering results in a set of
smooth offset lines and rounded corners (see Fig. 6d), which
could help reduce visual artifacts in the final stipple illustra-
tions.

5.3. Extracting offset lines

Given the smoothed distance field, Gσ∗D(x), the offset lines
are extracted by regularly sampling distance values. Let m
denote the sampling interval, and l denote the desired width
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(a) Input (b) Distance field

(c) Offset lines (d) Offset lines

Figure 6: Feature flow construction. In (c) and (d), offset
lines are drawn in black.

of each offset line. To create an offset line image, we mark a
pixel if its distance is within [m · i− l/2,m · i + l/2], where i
is a positive integer. Typical values we use are m = 6, l = 4.
As shown in Fig. 6c and 6d, the collection of offset lines
clearly describe the feature flow. Such an offset line image is
used to line up dots within the set of white lanes, called offset
lanes. The width of each offset lane, denoted o, is obtained as
o = m− l. The use of a smaller o results in stricter alignment
of dots.

6. Dot Optimization

Given the offset lines and feature lines, the system now per-
forms actual stippling. We first scatter the initial distribution
of dots, which is then optimized by the Lloyd relaxation.
Here we use the offset lines to constrain the Lloyd algorithm
so that the dots strictly follow the feature flow.

6.1. Dot initialization

For fast initialization, we regularly sample the image pix-
els (in both x and y directions), except on the feature lines
where no dots are sampled. The sampling interval, denoted r,
is automatically computed using m, the distance between the
adjacent offset lane centers, such that the entire image can be
filled with a disjoint set of circles of diameter m (that is, typi-
cally r = m). By matching the sampling interval of dots with
that of the offset lanes, we can force the distances between

the adjacent dots to be roughly identical in both intra-lane
and inter-lane directions, after relaxation. The intra-lane di-
rection corresponds to the feature flow direction, and the
inter-lane direction refers to its perpendicular direction.

6.2. Constrained Lloyd relaxation

The initial dots then go through the Lloyd relaxation. That
is, we iterate the process of: (1) constructing Voronoi dia-
gram from dots, (2) moving dots to the updated centroids of
Voronoi cells.

6.2.1. Constructing a Voronoi diagram

For constructing a Voronoi diagram, we again use the jump
flooding algorithm, this time however with respect to the
dots as seeds. Note the jump flooding algorithm creates not
only distance field but also Voronoi diagram as it records
which seed each pixel is associated with. As opposed to the
conventional polygon-based z-buffering algorithm for con-
structing Voronoi diagram [HKL∗99], jump flooding pro-
vides constant time complexity regardless of the number of
dots. We use the Euclidean distance in creating a Voronoi
diagram with jump flooding.

6.2.2. Updating centroids

The centroid c of a Voronoi cell is computed as follows:

c = ρ
−1

∑
i

wi ·xi (1)

where xi denotes the i-th pixel in the cell, wi associated
weight, and ρ = ∑i wi a weight normalization term. In the
basic Lloyd algorithm, wi = 1 for all pixels in the cell.

In our approach, we use offset lines as constraints so as the
Voronoi cells to line up with those lines (see Fig. 7). For this
we modify Hausner’s idea which he used to push rectangular
tiles away from the feature lines [Hau01]. When a part of a
Voronoi cell is occluded by an offset line, we remove the
part in computing the updated centroid of the cell. We can
easily achieve this by setting wi = 0 in Eq. 1 for all the pixels
within offset lines. If a Voronoi cell is divided by an offset
line, the resulting non-occluded pieces may occupy different
offset lanes. Among the pieces, we pick the closest one to
the previous centroid, then compute the new centroid of the
cell using this selected piece only. That is, in Eq. 1, we set
wi = 1 for all pixels in the selected piece, and wi = 0 for
all other pixels in the cell (including the offset-line pixels).
However, this case of multiple pieces hardly happens in our
setting where the dot sampling interval r is the same as the
offset line sampling interval m.

This strategy has the effect of moving the centroid towards
to the center of an offset lane. It also ensures that once the
centroid moves into a particular offset lane, it stays in there.
Fig. 8 shows the evolution of an entire Voronoi diagram, con-
strained by the offset lines. Note our offset-line-based con-
straint is stronger than Hausner’s in that it ‘strictly’ aligns
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(a) (b) (c)

Figure 7: Voronoi cell alignment using offset lines. Con-
strained Lloyd relaxation pushes each cell’s centroid to-
wards the center of its associated offset lane, as shown from
(a) to (c). For visualization purpose, the offset lines are
drawn thinner than they actually are.

dots with the nearest feature lines (see Fig. 9 for compari-
son).

(a) Input (b) Initial configuration (c) Final configuration

Figure 8: Evolution of a dot distribution. See how the con-
strained Lloyd algorithm re-organizes the initial dots to fol-
low the feature flow.

(a) Hausner’s method (b) Our method

Figure 9: Comparison with Hausner’s method. Our method
produces a better aligned dot distribution.

We provide an additional control to prevent the dots from
looking ‘too structural’ especially in the middle of an area
far away from the feature lines. We accomplish this by
weakening the offset-line constraints in the middle area (see
Fig. 10). That is, instead of setting wi = 0 for all offset lines,
we give weights proportional to their distance values. The
weight wi for an offset-line pixel xi is thus redefined as:

wi = min{D(xi)/Dw,1}, (2)

whereDw is the distance value for which the offset-line con-
straints have no effects. By default, Dw = 100. Since higher

weight is given to the offset lines in a distant area, their con-
straints get weaker and the Voronoi cells there should align
less strictly along the offset lines (see Fig. 10b).

(a) No control (b) Control with distance

Figure 10: Adaptive control of the influence of offset lines
Besides the offset lines, we also use the feature lines (i.e.,

black lines in L(x)) as constraints so that the dots do not
directly overlap with those lines and thus we can protect the
features better. For this we set wi = 0 in an area enclosing
the feature lines, whereD(x) < ξ (with default value ξ = 2).

6.2.3. Iteration

We typically iterate the Lloyd algorithm t1 times without
offset-line constraints, then t2 times by alternating Lloyd al-
gorithm with/without constraints (by default t1 = 10, t2 =
30). The first t1 iterations is for spreading the initial set
of dots over the image. The reason for toggling the con-
straints on and off afterwards is similar: to avoid clustering
and spread the dots more evenly across the image.

7. Rendering

Once the locations of dots have been finalized, they are ren-
dered as black circles, together with the feature lines. The
dot size is inversely proportional to T (x), meaning small
dots are placed on bright area, and big dots on dark area.
The dot size s at pixel x is thus a function of T (x), which we
define as follows:

s(x) = smax · (1−T (x))γ, (3)

where smax is the maximum possible dot size and depends
on the rendered image size. γ is used to incorporate gamma
correction for tone control. With a larger value of γ, we can
have higher contrast of tones in the stippled image (γ = 1.2
by default). In the brightest area, where s(x) is less than a
small threshold, no dot is drawn. To improve the quality for
printing, it is often a good idea to use a set of huge dots
rendered in an expanded image space and scale down the
rendered image. We typically render on an image which is
six times bigger than the input.

8. Results

In Fig. 11, we show various results can be obtained from an
input image using different values of parameters, m (offset
lane interval) and γ (gamma correction value). The results
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demonstrate that the overall stipple density and tone contrast
can be intuitively controlled by m and γ, respectively, while
preserving the feature-guidance of the stipple distribution.

(a) m = 5(γ =
1.3)

(b) m = 6(γ =
1.3)

(c) m = 7(γ =
1.3)

(d)
γ = 1.0(m = 6)

(e) γ = 1.5(m =
6)

(f) γ = 2.0(m =
6)

Figure 11: Parameter control
Fig. 13 shows the stipple illustrations we produced from

photographs in Fig. 12. Note the stipple dots are clearly
shown to align with the feature flow, while the sizes of dots
gradually vary according to the tone.

We implemented and experimented with our system on a
Pentium 4 PC with an nVIDIA GeForce 8800 GT graphics
card. For a 640× 480 image, it takes about one minute to
create a stipple illustration (using CPU implementation of
jump flooding). With default parameters, typically 8,000 ∼
12,000 dots are created for a 640×480 image. The number
of dots, however, does not directly affect the performance of
stippling, largely due to the use of jump flooding for distance
computation.

9. Discussion and Future work

When artists create hedcut illustrations, they often use an
imaginary 3D surface wrapping around the target shape, and
place dots along the feature-following contours regularly
sampled on the surface (see Fig. 1). Similarly, the engraving
scheme of Ostromoukhov [Ost99] allows users to create, de-
form, and place uv-parametric surfaces such that they fit the
given facial structure, then the system automatically places
engraving lines along u-contours and v-contours of the sur-
faces (Fig. 14b illustrates this scenario for a cone). In this
case, the directions of lines (or dots) are more faithful to the
3D geometry of the face, and thus the resulting illustration
provides more convincing look.

Figure 12: Input photographs

As our method does not rely on any 3D information, the
resulting dots may not properly reflect the actual 3D struc-
ture of the surface, especially when the surface does not have
any interior texture or features lines (see Fig. 14b). More-
over, our method aligns dots along the feature lines, but not
necessarily along their perpendicular directions. Along with
these issues, a quantitative analysis of our result in compari-
son with professional hedcut illustrations and other comput-
erized stipple renderings could make a valuable theme for
future research, as exemplified by the recent work of Ma-
ciejewski et al. [MIA∗08].

(a) Input (b) Wire-frame
rendering

(c) Our result

Figure 14: Lacking the sense of 3D. Our stippling result may
not properly reflect the 3D geometry of the surface.

For a good-quality print, the stipple illustration must be
generated using an appropriate number of dots with proper
size and density, so that it fits the size and resolution of the
printing area. Otherwise its aesthetic merit (as a dot illustra-
tion) could be diminished. One way to resolve this is to sup-
port resolution independence (i.e., progressive zoom-in and
zoom-out while maintaining the apparent dot size and den-
sity) as in [KCODL06]. In our case, we should also maintain
the directionality of dots, for which some hierarchical struc-
turing of feature flow is in order.
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Figure 13: Our stippling results

Another possible future work may involve extension of
our scheme to 3D objects or video. 3D feature-guided stip-
pling calls for the development of an algorithm to create
a feature flow field on an object surface, as in 3D hatch-
ing [HZ00,ZISS04]. Video stippling is a non-trivial problem
as it poses a different set of challenges often seen in stroke-
based animation, such as providing temporal coherence of
dots between frames, as well as avoiding temporal artifacts
including shower door effect, flickering, and swimming dots.
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