
TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Video Painting based on a Stabilized 3D Flow Field

Jong-Chul Yoon In-Kwon Lee Henry Kang

Abstract

We present a method for generating a 3D feature flow field from a video and its application to video stylization.
Our method extracts smoothly aligned 3D vectors that describe the smallest variation of colors in both spatial and
temporal dimensions of the video, and thus efficiently preserves both spatial and temporal coherence in a relatively
inexpensive manner. We use this flow field forms the basis of a particle-based video stylization technique which can
produce feature-enhancing painting-style renderings of a video. Furthermore, we show our method is performed in
real-time using the GPU based implementation.

Index Terms

non-photorealistic rendering, flow-based filtering, video abstraction, painterly rendering.

I. INTRODUCTION

Non-photorealistic rendering (NPR) generally involves abstraction and stylization of a scene: NPR could
extract important visual cues that convey the essence of the scene more effectively. Certain existing NPR
techniques [1], [2], [3], [4], [5], [6], [7], [8] have been specifically designed to process video, re-rendering
it in artistic styles such as painting or cartoon-like abstraction. In painterly rendering, brush strokes are
used as the basic primitives to describe a scene, while cartoon rendering often consists of smoothed or
flattened regions.

To produce a painterly rendering of a video, painting algorithm designed for still images must be
extended to cope with a sequence of frames in a coherent manner. Individual brush strokes are usually
placed along some 2D feature flow field in each frame [1], [2], [4] so as to generate consistent and visually
pleasing brush patterns. While such a smooth 2D feature flow field naturally suits the purpose of painting,
it has also proved useful for other stroke-based rendering effects such as stippling, mosaics, engraving,
pen illustration, and so on [9], [10], [11], [12]. Moreover, it can even improve the spatial coherence of
smoothed regions and boundary lines in cartoon-style rendering [13], [8], [14], [15].

On the other hand, the bigger challenge in video painting is achieving temporal coherence of primitives
between frames. A conventional solution is to extract a smooth motion field along the time axis [1], [2],
[4], [7], and then to move the primitives along the flow. However, we argue that such separate treatment
of spatial and temporal flow fields are less effective not only in terms of the computational cost but
also the consistency of shapes both within and across frames. In case of cartoon-style video stylization,
while keeping the primitives (smoothed regions) temporally coherent across frames would be less of a
hassle [5], [6], these solutions are not applicable to a more general stroke-based video stylization problem.
This motivates our work to develop a unified approach to deal with both spatial and temporal data flow
in painting video.

In this paper, we introduce the notion of 3D flow field for video, and show how it helps process both
spatial and temporal alignment of primitives in a unified manner. We extend a nonlinear 2D vector field
stabilization technique to video and generate a 3D vector field that conforms to both spatial and temporal
data flow. We first extract the gradient vector field using a 3D Sobel operator in a local spatio-temporal
volume, and then stabilize the gradient directions using saliency features and color similarities. We then
compute the partial differentials of the gradient vectors in the local volume, which we use to account
for both spatial and temporal data flow. As an application of this 3D flow field, we introduce a new

Jong-Chul Yoon is with Kangwon National University at Dogye, Korea
In-Kwon Lee is with Yonsei Univsersity, Korea
Henry Kang is with University of Missouri, St. Louis.

TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

particle-based video painting technique that retains the major spatial and temporal shapes of the original
video cube. In terms of artistic styles, both cartoon style abstraction and painting style are obtainable, as
will be shown in the experimental results.

In comparison to the previous video painting techniques, our unified flow-driven approach provides a
couple of advantages: (1) improved feature preservation and enhancement, due to the nature of our spatio-
temporal feature-preserving flow; (2) real time performance, as the flow field construction algorithm is
computationally less involved than the typical motion estimation procedure.

The rest of this paper is organized as follows: In Section 2, we review the related work on image-
and video-based stylization methods and briefly discuss their use of feature-preserving or feature-tracking
flow fields. In Section 3, we present our method for extracting and stabilizing a 3D flow field from video.
Section 4 describes the application of the 3D flow field to video painting, and Section 5 a strategy for
accelerating the computation required by our system. In Section 6, we presents some experimental results.
We conclude this paper and suggest future work in Section 6.

II. RELATED WORK

Many of the existing techniques for image stylization employ a smoothly varying 2D vector field that
preserves the dominant feature directions in the neighborhood. Such a feature flow field is especially
useful in providing smooth alignment of primitives in stroke-based rendering. For example, the pen-
and-ink illustration system by Salisbury et al. [9] allows the user to “paint” a direction field to ensure
feature-preserving alignment of pen strokes. For oil painting style, scattered orientation interpolation has
been successfully used to create such fields [1], [4] while an interactive approach [16] is also available.
The digital facial engraving system by Ostromoukhov [10] relied on a user-provided direction field to
align engraving lines. Hausner [11] performed distance transform from feature lines in order to align
rectangular tile primitives, a technique that was later modified by Kim et al. [12] to locate circular stipple
dots in a more rigorous manner. The versatility of 2D feature flow goes beyond stroke-based rendering.
Kang et al. [13] suggested the use of 2D feature flow field to generate a spatially coherent set of lines
from an image. Later, this idea was extended to provide improved feature preservation and enhancement
in cartoon-style re-rendering of images and video [8], [14], [15].

In order to extend the image stylization techniques to video, one must address the problem of keeping
temporal coherence of the graphical primitive across frames. The standard solution has been to estimate
object motion by constructing an optical flow field [1], [2], [4]. While these approaches use optical flow to
track individual brush strokes, Bousseau et al. [7] proposed an optical-flow-based texture advection method
to enable video watercolorization. For non-stroke-based video stylization, a variety of approaches have
been suggested. Agarwala [17] used curve evolution to track the boundary lines in cell animation. Later,
Agarwala et al. [18] presented a rotoscoping method to track object motion and produce a highly stylistic
animation. Wang et al. [5] generated temporally coherent cartoon-style video abstraction by segmenting
regions from a space-time video volume. As an alternative, Winnemöller et al. [6] controlled the sharpness
of region boundaries in each frame based on the variation in local color.

We note that many of these previous approaches, especially these for stroke-based rendering, indepen-
dently solve the two important issues in video stylization: preserving spatial features and maintaining
the coherence of temporal features. For example, in Litwinowicz’s video painting system [1], the spatial
flow is extracted from each frame without considering the temporal movement of strokes, while the
temporal flow is extracted without considering the spatial alignment of strokes. As a result, time-consuming
postprocessing of each frame is required to re-align strokes, and also to re-distribute strokes by addition
and deletion. It seems inevitable that separate treatment of spatial and temporal data flow will cause mutual
conflicts and thus could require significant effort to resolve them. In contrast, extracting a 3D flow field
directly from the video not only saves processing time but also avoids the subsequent need to reconcile
the spatial and temporal coherence of features.

TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

1 1 1

1

1

1 1

14

-1

-1

-1

-1

-1

-1

-1

-1

-4

1 1 1

1

1

1 1

14

111 11111 1 11111111 1111111111 111 1111111111 11

111

1

11

1111111111111 111 11111111 11

111

1111111

1111111111111111

111

111

11111111

11

111

4444444444444444444444444444444444411111111111

11111111111111111111111111111

44411 44444444444444444444444444444444444

11 111111111111111111111111111111111111 11 1111

1

1 1

1

111

11

1

44

1

-1

-1-1

-1

-1

-4

-1

-1

-1

-1

-1

-1 -1 -1

-1

-1

-1 -1

-1-4

1

1

1

1

1

1

1

1

4

-1 -1 -1

-1

-1

-1 -1

-1-4

g x g y g t

Fig. 1. 3D Sobel operators are used to calculate the 3D gradient vectors. We assign a Gaussian weight to each axis and calculate gx, gy
and gt.

III. 3D FLOW GENERATION AND STABILIZATION

We will now describe how to generate a smooth 3D flow field for a given input video I(x), where
x = (x, y, t) is a pixel in the space-time video volume.

A. Stabilization of the Gradient Vector Field
To generate the 3D gradient vectors g(x) = ∇I(x), we use a 3D Sobel operator with a cubic mask.

Separate operators are used to calculate gx(x), gy(x) and gt(x) (see Figure 1), which represent the degree
of color variation along the x, y and t axes respectively. However, direct application of the Sobel operator
is unstable due to video noise as well as the presence of homogeneous regions. Therefore we first stabilize
the gradient vector field to address this and also to enhance the coherence of the gradient vectors.

While there are several existing ways to stabilize a vector field [19], [4], [20], [13], we build on the
method by Kang et al. [13] to produce a 3D vector field that smoothly aligns with the dominant gradient
directions in the neighborhood, and also to trace color similarities from frame to frame.

In regularizing g(x), we define two types of neighborhoods: a spatial neighborhood Ω(x) that consists
of neighboring pixels in a frame, and a temporal neighborhood Ψ(x) that consists of pixels in a sequence
of adjacent frames from t− v to t+ v, where t is the index of the current frame. Figure 2 shows the two
types of neighborhood for a gradient vector g(x). We perform nonlinear vector smoothing by applying
data-driven weights to the neighboring vectors in Ω(x) and Ψ(x):

g(x)new =
1

K

 ∑
y∈Ωu(x)

φ(x,y)g(x)wm(x,y)wd(x,y)

+
∑

y∈Ψv(x)

φ(x,y)g(x)wc(x,y)wm(x,y)wd(x,y)

 , (1)

y

t frameth

(t-2) frame
th

(t-1) frame
th

(t+1) frameth

(t+2) frameth

)x(Ψ

)x(Ω

t

x
f(x)

Fig. 2. Spatial and temporal neighborhoods: Ω(x) is a spatial neighborhood and Ψ(x) is a temporal neighborhood.

TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

where u and v denote the radii of the kernels Ω(x) and Ψ(x) respectively, and K is a vector normalizing
term. We use three weight functions wm, wd and wc to assign smoothing weights adaptively according to
the similarity between the gradient vectors at the center x and a neighbor y.

We first define a magnitude weight function wm for feature preservation:

wm(x,y) = (ĝ(y)− ĝ(x) + 1)/2, (2)

where ĝ(·) denotes the normalized gradient magnitude. Note that wm is within the range [0, 1], and this
weight function monotonically increases with respect to the difference in magnitude between g(x) and
g(y). Therefore, wm is larger when the neighboring pixels y has a higher gradient magnitude than the
central pixel x. This ensures the preservation of dominant gradient directions in the neighborhood.

Next, we define wd, a directional weight function that reduces the variation of gradient vectors with
similar orientations:

wd(x,y) = |g(x) · g(y)|, (3)

where g(·) is the normalized gradient vector. The value of wd increases with the degree of alignment of
the two vectors, and decreases if they become more orthogonal.

The color weight function wc is used to smooth the gradient directions of the temporal neighborhoods:

wc(x,y) = 1− |Î(x)− Î(y)|, (4)

where Î(·) denotes a normalized color value in the range [0, 1]. This weight function increases as the color
distance between the central pixel x and a neighboring pixel y become smaller. As a result, wc reduces
the variation of gradient vectors with similar color values, and improves the temporal coherence between
gradient vector fields in successive frames.

Additionally, to ensure that the vectors are aligned in the same direction, we reverse the direction of
g(y) if the angle between two gradient vectors is larger than 90·, using the sign function φ(x,y):

φ(x,y) =

{
1 if g(x) · g(y) > 0,
−1 otherwise.

(5)

The whole process of vector regularization is as follows: We start by assigning unit length to the
gradient vector g0(x) and then stabilize it iteratively using Equation (1), and update the gradient vector
incrementally: gi(x)→ gi+1(x). This usually involves two or three iterations.

B. 3D Flow Field Generation
The flow vectors we are looking for are orthogonal to the gradient vectors, because they must be in the

direction of minimum color variation. In 2D, such a flow field can be easily obtained by creating vectors
perpendicular to the gradient vectors. In 3D, however, an infinite number of vectors are perpendicular
to the tangent planes which have the gradient vectors as normals. We therefore introduce a new way to
extract the flow vectors from the 3D gradient vectors.

Basically, we derive a flow vector f(x) by taking partial derivatives of the nearby gradient vectors
g(x). As shown in Figure 3(a), these gradient vectors follow the directions of maximum color variation,
and should therefore be perpendicular to most of the edges in the image. If the gradient vector field is
sufficiently smooth, and each gradient vector is of unit length, then we can obtain the tangent of an edge
curve by determining the difference between nearby gradient vectors (see Figure 3(b)). An approximation
to the tangent vector of the edge can thus be constructed from the partial derivatives of the gradient
vectors and, this tangent vector will be aligned with the direction of minimum color variation. Using this
configuration, we calculate the flow vector by taking the second-order partial derivatives of the color value
I(x), as follows:

f(x) =

(
∂2I

∂x2
,
∂2I

∂y2
,
∂2I

∂t2

)
. (6)

TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

(a) (b) (c)

Fig. 3. Derivation of a flow field from a gradient vector field: (a) the gradient vectors on an edge points in the direction of maximum color
variation; (b) a single flow vector (blue arrow), which can be obtained from the partial derivatives of nearby gradient vectors; (c) successive
flow vectors.

We obtain f(x) by applying the 3D Sobel operator to the gradient vector field. Ordinary second
derivatives of gradient vectors would produce mixed terms, so we simplify the computation by obtaining
the partial derivatives from the projections of the gradient vectors on to each axis.

To enhance the spatial and temporal coherence of the flow field further, we iteratively apply the
stabilization filter of Equation (1), and update the flow vector incrementally: f i(x)→ f i+1(x). In practice,
this requires just one or two iterations. We also make sure that the directions of the flow field are aligned
with the temporal axis t by reversing the direction of f(x) if ft(x) < 0. After stabilization, the flow
field f(x) describes directions which cross the boundary of the spatially dominant shapes with minimum
temporal variation.

IV. VIDEO STYLIZATION USING A FLOW FIELD

We now apply our 3D flow field to video stylization, with a particular focus on two styles: abstraction
and painting.

A. Video Abstraction by Particle Simulation
The mechanism of our video stylization technique resembles that of particle simulation. In essence, we

treat each pixel I(x) in a video as a particle and let it flow in the direction of the flow field. The colors
of these particles accumulate on a pixel grid in proportion to the extent that they overlap each cell of that
grid, in a similar manner to trilinear interpolation. These accumulated colors generate a smoothly colored
pattern aligned with the flow directions. Because our flow field is temporally smooth, the color pattern is
also coherent from frame to frame.

Since the vectors in the flow field are normalized, we need to assign a speed to each pixel particle.
Lower speeds preserve details more faithfully (Figure 4(b)), and higher speeds produce more abstract
results (Figure 4(c)). This leads us to formulate the following equation for flow-based particle simulation:

I(x)← αI(x + vgvcf(x)) + (1− α)I(x), (7)

where vg and vc are the velocity control parameters of each pixel particle, and α is a weight term which
controls the rate of accumulation. The value of α, which is in the range [0, 1], is determined by the volume
of the region of overlap between I(x) and I(x + vgvcf(x)). The degree of abstraction is controlled by
vg, which is the mean of the magnitudes of the gradients in a small region:

vg = 1− 1

W (x)

∑
x∈W
||g(x)||, (8)

TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

(a) (b) (c)

Fig. 4. The effect of particle velocity vg on the degree of abstraction: (a) is an input image; (b) vg = 0.5; (c) vg = 2.

5 iterations 15 iterations 30 iterations

Fig. 5. The effect of the number of iterations on the degree of abstraction.

where W (x) are the pixels in a spatial neighborhood around the central point x. As a region of high
gradients is likely to correspond to an edge or other important features, we assign low velocities to the
pixel particles in these regions to preserve detail. If the region contains low gradients, we assign high
velocities to the pixel particles to increase the smoothness of the image. We used a window W of size
8× 8.

We define a further velocity vc, based on color difference, which we use to avoid the incursion of pixel
particles across an edge:

vc = 1− |Î(x + vgf(x))− Î(x)|, (9)

where Î(·) denotes a normalized color value in the range [0, 1]. This term prevents the destruction of
edge features because the value of vc decreases as the color difference between the original pixel and the
translated pixel increases.

One advantage of this particle simulation approach is that it reduces the computational cost below that
of kernel-based approaches. In addition, the use of a 3D feature flow does a good job of preserving the

TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

(a) (b) (c)

Fig. 6. Stroke texture map generation:(a) is the initial texture map t0(x); (b) is a texture map simulated using the flow field from the input
video; (c) is a composite image by overlaying the stylized video and the stroke texture map.

spatial and temporal structure of objects in the video. Particle simulation can be applied iteratively, in a
similar way to filter-based video abstraction [6], allowing control of the degree of abstraction (see Figure
5).

B. Flow-guided Stroke Texture Mapping
We extended our the flow-based particle simulation to produce a painting-style abstraction. In particular,

we enhanced the directional feature of the abstraction using flow-guided stroke texture mapping. Previous
research on painterly rendering has generally used stroke textures to mimic artists’ methods [21], [22],
[23], [4]. Extending this approach to video naturally introduces the problem of frame-to-frame coherence,
which can be addressed by using the optical flow technique [4] to track the sampled points. However,
since the stroke texture is relatively large, and can have a different orientation in each frame, artifacts
may remain (e.g. flipping and the shower-door effect). To reduce these sorts of artifacts in video painting,
Bousseau et al. [7] introduced an advection-based texture mapping technique which applies a temporally
coherent stroke texture to each pixel. Since a pixel can be expected to be smaller than the texture of a
stroke, this greatly reduces the number of artifacts introduced by texture translation.

We use a similar pixel-based approach to generate a painterly video. An initial stroke texture map t0(x)
is filled with pseudo-random numbers in the range [0, 1], as shown in Figure 6(a). Using Equation (7),
we apply particle simulation to t0(x) using the flow field of the input video. We call the result of this
simulation ti(x), where i is the number of iterations. We then update the stroke texture map ti(x) with
the same number of iterations of the stylization process, as shown in Figure 6(b). Finally, ti(x) is overlaid
with the stylized video producing the result in Figure 6(c).

Stroke texture mapping enhances the directional features of a video, and produces a brush-like smoothing
aligned with the flow field. Since the flow field is temporally aligned with the movement of color, there
are few temporal artifacts.

V. IMPROVING COMPUTATIONAL EFFICIENCY

In this section, we introduce the multi-resolution approach for particle simulation and a GPU-based
implementation for efficient computation.

A. Multi-resolution particle simulation
The multi-resolution approach is well-known and has been used for multi-level stylization of image

and video [1], [24], [4], [25]. We have adapted the multi-resolution method to our flow-based particle
simulation system.

TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

(a) (b)

(d)(c)

Fig. 7. The result of stylization using different video resolutions: (a) input video; (b) stylization result from I0 - the same size as the
original input video; (c) and (d) are stylization results from I1 and I2 respectively.

(a) (b)

Fig. 8. Comparison between stylization results using (a) single-resolution video and (b) multi-resolution video.

First of all, we prepare low-resolution versions of an input video. We call these versions I l, where l
is a resizing parameter which reduces the scale of the input video by a factor of 1/2l. We first extract
the flow field of each I l and then apply flow-based stylization to each I l separately. Figure 7 shows the
result of applying the particle simulation process to I0, I1 and I2 of an input video. Since, the size of a
particle is determined by the size of a pixel, applying the particle simulation process to a low-resolution
video produces a more abstract result (see Figure 7(c) and (d)). If we superimpose the stylized versions
of each I l with a coarse-to-fine then we obtain a stylized video with particles of different size.

To abstract a full-resolution video, we usually used twenty iterations of the particle simulation process.
But we can obtain similar results from the multi-resolution approach by performing only five iterations on
versions at three levels of resolution (see Figure 8). Because we used fewer iterations and stylizing the low-
resolution versions requires fewer particles, this multi-resolution approach reduces the computational cost
by 30%, compared with the direct approach, even though additional computation is required to calculate
the flow field at each level. An additional benefit is the creation of a multi-resolution output video.

TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

B. GPU implementation
We implemented both a GPU version of our painting technique using BSGP [26], and a CPU version

using OpenCV. The test environment was a PC with an Intel Core2 Quad 2.40GHz processor with 2Gb
of memory, running Windows XP, and a Geforce 9600GT.

The computation times required for CPU-based bilateral filtering and the CPU-based version of our
method are shown in Table I. Performance mainly depends on the resolution of the input video and the
size of the kernel used in stabilizing the flow field. In all of our tests, we performed three iterations to
stabilize the gradient vector field and one iteration to stabilize the flow field. The kernel sizes for the
neighborhoods Ω(x) and Ψ(x) in the stabilization step were u = 5 and v = 5, respectively.

Our flow-based particle simulation approach has a complexity of O(n), where n is the number of pixels,
whereas filtering approaches have a complexity of O(µ × n), where µ is the kernel radius. Our results
demonstrate that our method is faster han the filtering approach. Also, since it mainly depends on the
repetition of a local operation, it is easy to implement to BSGP.

Bilateral Particle
Resolution Flow filtering simulation

stabilization for 20 iterations for
(µ = 15) 20 iterations

740× 480 1.932 sec. 2.576 sec. 0.992 sec.

TABLE I
TIME REQUIRED TO GENERATE STYLIZED VIDEO (PER FRAME).

The computation times required for GPU-based acceleration using BSGP are shown in Table II.
Implementing the multi-resolution approach on the GPU allowed stylization to run at up to 14 frames per
second, suggesting that our approach will be suitable for real-time applications.

Resolution Single-resolution Multi-reolution
approach approach with three steps

740× 480 11.4 frames/sec. 14.2 frames/sec.

TABLE II
TIME REQUIRED TO GENERATE STYLIZED VIDEO USING BSGP (FRAMES PER SECOND).

VI. EXPERIMENTAL RESULTS

We tested our system with various videos which we obtained commercially [27].
Our source video, shown in Figure 9(a), has a resolution of 740 × 480. Figure 9(b) shows the results

obtained using the flow-based particle simulation with stroke texture mapping.
Figure 10 compares the results of applying our flow-based stylization to a still image with those

obtained by bilateral filtering. To apply our method to a still image, we first extracted the 2D flow field
from the image using the same scheme that we use in 3D, and then applied the stylization. To extend
the comparison, we prepared abstractions using bilateral filtering based on both isometric and anisotropic
kernels. To generate the anisotropic kernel-based results, we used the flow-based bilateral (FBL) filter [15].
Because a general bilateral filter uses an isotropic kernel for smoothing, it does not enhance the directional
features of the image very well (see Figure 10(b)). However, the FBL filter can generate abstracted results
which preserve the directional features of an image in a similar way to our technique (see Figure 10(c)

TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

and (d)). However our method is better at enhancing features both spatially and temporally. In addition,
of course, it can be extended to video applications whereas the FBL filter cannot.

Figure 11 compares the results of stroke-based painterly rendering [4] and our flow-based painterly
rendering method. Since the stroke texture of previous work is relatively large and it has a fixed shape,
the results of stylization lose the directional details. However, our flow-based method can preserve these
details, and it causes the more natural stylization. Furthermore, our flow-based method can perform in
real-time, whereas stroke-based method requires dozens of seconds per frame to generate the stylized
results.

Temporal stability is a key issue in video stylization, especially to avoid undesirable flickering in
uniform areas. We compared the stability of our 3D flow based-approach with that of a 2D flow-based
approach which applies a particle simulation to each frame, and then evaluates its temporal stability [28].
We processed 100 frames of video, taken with a static camera, and kept the stylization parameters fixed
to ensure a fair comparison. Figure 12 shows how the intensity of the pixels varies. This result presented
the ability of our 3D flow-based approach to produce a temporally coherent stylization.

VII. CONCLUSIONS

We have presented a method for extracting 3D flow from video and demonstrated its use in video
stylization. By dealing with spatial and temporal flow together, our 3D flow field helps to preserve and
enhance features within and across frames, at a low computational cost. As discussed in Section 1, the
proposed 3D flow should be applicable to other types of stroke-based rendering as well, including stippling,
mosaics, engraving, pen-and-ink illustration, many of which have not yet been attempted on video.

It should be noted that, although our 3D flow improves the temporal coherence of video stylization, it
does not always capture the full detail of object motion. If an object moves a lot between frames, flow-
based trilinear interpolation may produce a noticeable amount of motion blur. This could be undesirable
in certain applications, although we find it often looks acceptable (sometimes even amusing) in a stylized
video. In case a more rigorous motion estimation is desired, optical flow would be a better (albeit more
expensive) choice.

REFERENCES

[1] P. Litwinowicz, “Processing images and video for an impressionist effect,” in Proceedings of ACM SIGGRAPH ’97, 1997, pp. 407–414.
[2] A. Hertzmann and K. Perlin, “Painterly rendering for video and interaction,” in Proceedings of ACM Symposium on Non-photorealistic

Animation and Rendering, 2000, pp. 7–12.
[3] A. W. Klein, P.-P. Sloan, A. Finkelstein, and M. F. Cohen, “Stylized video cubes,” in Proc. Symposium on Computer Animation, 2002,

pp. 15–22.
[4] J. Hays and I. Essa, “Image and video based painterly animation,” in NPAR ’04: Proceedings of the 3rd international symposium on

Non-photorealistic animation and rendering, 2004, pp. 113–120.
[5] J. Wang, Y. Xu, H.-Y. Shum, and M. F. Cohen, “Video tooning,” in Proceedings of SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers,

2004, pp. 574–583.
[6] H. Winnemöller, S. C. Olsen, and B. Gooch, “Real-time video abstraction,” in Proceedings of ACM SIGGRAPH ’06: ACM SIGGRAPH

2006 Papers, 2006, pp. 1221–1226.
[7] A. Bousseau, F. Neyret, J. Thollot, and D. Salesin, “Video watercolorization using bidirectional texture advection,” in Proceedings of

ACM SIGGRAPH ’07: ACM SIGGRAPH 2007 Papers, 2007, p. 104.
[8] H. Zhao, X. Jin, J. Shen, X. Mao, and J. Feng, “Flow-based image abstraction,” The Visual Computer, vol. 24, no. 7, pp. 727–734,

2008.
[9] M. P. Salisbury, M. T. Wong, J. F. Hughes, and D. H. Salesin, “Orientable textures for image-based pen-and-ink illustration,” in

Proceedings of ACM SIGGRAPH ’97, 1997, pp. 401–406.
[10] V. Ostromoukhov, “Digital facial engraving,” in Proc. ACM SIGGRAPH, 1999, pp. 417–424.
[11] A. Hausner, “Simulating decorative mosaic,” in Proc. ACM SIGGRAPH, 2001, pp. 573–578.
[12] D. Kim, M. Son, Y. Lee, H. Kang, and S. Lee, “Feature-guided image stippling,” Computer Graphics Forum, vol. 27, no. 4, pp.

1209–1216, 2008.
[13] H. Kang, S. Lee, and C. Chui, “Coherent line drawing,” in Proceedings of ACM Symposium on Non-photorealistic Animation and

Rendering, 2007, pp. 43–50.
[14] J. E. Kyprianidis and J. Dollner, “Image abstraction by structure adaptive filtering,” in Proc. EG UK Theory and Practice of Computer

Graphics, 2008, pp. 51–58. [Online]. Available: http://www.kyprianidis.com/go/tpcg-2008
[15] H. Kang, S. Lee, and C. K. Chui, “Flow-based image abstraction,” IEEE Transactions on Visualization and Computer Graphics, vol. 15,

no. 1, pp. 62–76, 2009.

TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

(a) (b)

Fig. 9. Video stylization: (a) is an input video; (b) is the result of a painterly video after flow-guided stroke texture mapping.

[16] S. C. Olsen, B. A. Maxwell, and B. Gooch, “Interactive vector fields for painterly rendering,” in GI ’05: Proceedings of the 2005
conference on Graphics interface. School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada: Canadian Human-
Computer Communications Society, 2005, pp. 241–247.

[17] A. Agarwala, “Snaketoonz : A semi-automatic approach to creating cel animation from video,” in Proceedings of Non-Photorealistic
Animation and Rendering, 2002, pp. 139–146.

[18] A. Agarwala, A. Hertzmann, D. H. Salesin, and S. M. Seitz, “Keyframe-based tracking for rotoscoping and animation,” in Proceedings
of ACM SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers. ACM Press, 2004, pp. 584–591.

[19] C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector flow,” IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 359–369,
1998.

[20] D. Tschumperlé, “Curvature-preserving regularization of multi-valued images using pde’s,” in Proceedings of ECCV, 2006, pp. 295–307.
[21] A. Hertzmann, “Painterly rendering with curved brush strokes of multiple sizes,” in Proceedings of ACM SIGGRAPH ’98, 1998, pp.

453–460.

TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

(a) (b) (c) (d)

Fig. 10. Comparison between the results of bilateral filtering and our flow-based method: (a) is an input image; (b) is an abstraction
obtained by is isotropic bilateral filtering; (c) is an abstraction obtained by flow-based bilateral filtering [15]; (d) is an abstraction obtained
using our method.

[22] ——, “Paint by relaxation,” in CGI ’01: Computer Graphics International 2001, 2001, pp. 47–54.
[23] B. Gooch, G. Coombe, and P. Shirley, “Artistic vision: painterly rendering using computer vision techniques,” in NPAR ’02: Proceedings

of the 2nd International Symposium on Non-photorealistic Animation and Rendering, 2002, pp. 83–90.
[24] D. DeCarlo and A. Santella, “Stylization and abstraction of photographs,” in SIGGRAPH ’02: Proceedings of the 29th annual conference

on Computer graphics and interactive techniques, 2002, pp. 769–776.
[25] M. Grundland, C. Gibbs, and N. A. Dodgson, “Stylized multiresolution image representation,” Journal of Electronic Imaging, vol. 17,

no. 1, pp. 1–17, 2008.
[26] Q. Hou, K. Zhou, and B. Guo, “Bsgp: bulk-synchronous gpu programming,” in SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, 2008,

pp. 1–12.
[27] Stock, “Freestockfootage.com,” 2009, http://www.freestockfootage.com/.
[28] S. Paris, “Edge-preserving smoothing and mean-shift segmentation of video streams,” in ECCV ’08: Proceedings of the 10th European

Conference on Computer Vision, 2008, pp. 460–473.

TO APPEAR IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

(a) (b) (c)

Fig. 11. Comparison between the stroke-based painterly rendering and our results: (a) stroke-based painterly rendering result from [4]; (b)
is a painterly rendering created from a flow-guided stroke texture map.

0 10 20 30 40 50 60 70 80 90 100

-1

-0.5

0

0.5

1

2D flow
3D flow

in
te

n
si

ty
 v

ar
ia

ti
o

n
s

time(in frames)

Fig. 12. Comparison of temporal stability between 3D and 2D flow- based approaches: temporal coherency is better conserved by the 3D
flow field, since those are fewer intensity variations in the stylized video produced using the 3D flow field.

