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WAVELET TRANSFORM

AND ORTHOGONAL DECOMPOSITION OF L2 SPACE

ON THE CARTAN DOMAIN BDI(q = 2)

QINGTANG JIANG

Abstract. Let G =
(
R∗+ × SO0(1, n)

)
n Rn+1 be the Weyl-Poincaré group

and KAN be the Iwasawa decomposition of SO0(1, n) with K = SO(n). Then
the “affine Weyl-Poincaré group” Ga =

(
R∗+ × AN

)
n Rn+1 can be realized

as the complex tube domain Π = Rn+1 + iC or the classical Cartan domain
BDI(q = 2). The square-integrable representations of G and Ga give the
admissible wavelets and wavelet transforms. An orthogonal basis {ψk} of
the set of admissible wavelets associated to Ga is constructed, and it gives
an orthogonal decomposition of L2 space on Π (or the Cartan domain
BDI(q = 2)) with every component Ak being the range of wavelet transforms
of functions in H2 with ψk .

1. Introduction

The wavelet transform is associated to the square-integrable representation of
a locally compact group. Let G be such a group with left Haar measure dx and
x→ U(x)(x ∈ G) be an irreducible unitary representation of G in a Hilbert space
H. A vector ψ ∈ H is said to be admissible if it satisfies the following “admissibility
condition”:

0 < cψ :=

∫
G

|(ψ,U(x)ψ)|2dx/(ψ, ψ) <∞,(1.1)

where (·, ·) is the inner product of H. We denote the set of all such vectors by AW .
If AW 6= ∅, then the representation U is called square-integrable. For ψ ∈ AW ,
f → (f, U(x)ψ) is called the “continuous wavelet transform” of f ∈ H (cf. [4], [5]),
and

f =
1

cψ

∫
G

Wψf(x)U(x)ψdx.(1.2)

(1.2) is usually called the reconstructing formula, and it is one of the main moti-
vations for the study of the wavelet transform. In this paper we will consider the
wavelet transform associated to the Weyl-Poincaré group and its quotient group,
and then give an orthogonal decomposition of L2 space on the Cartan domain
BDI(q = 2).
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Let C := {(x0, x1, · · · , xn) : x2
0 − x2

1 − · · · − x2
n > 0, x0 > 0} be the forward light

cone (the Lorentz cone) and Π := Rn+1+iC. The complex tube domain Π is an (un-
bounded) realization of the Cartan domainBDI(q = 2) (SO0(n, 2)/SO(n)× SO(2))
(see [13], [15]). Let G :=

(
R∗+ × SO0(1, n)

)
n Rn+1 be the Weyl-Poincaré group;

it is the automorphism group of Π, and G modulo a maximal compact subgroup
SO(n) is isomorphic to Π. Motivated by the work on quantization on the Cartan
domain BDI(q = 2) in [13], [14] and on wavelet transform in [1], we considered in
[7] the wavelet transform associated to G and its homogeneous space Π.

Denote

H2 := {f(y) : supp f̂ ⊂ C, f ∈ L2(Rn+1, dx)},(1.3)

where C is the closure of C. In [7], from the square-integrable representation of the
Weyl-Poincaré group G on H2, we got the corresponding admissibility condition:

0 <

∫
C

|ψ̂(x)|2 dx

r(x)
n+1

2

<∞.

For such ψ, (1.2) holds, i.e. for any f ∈ H2, it is reconstructed from functions
Wψf(g) on G. In fact it doesn’t need so many variables for its reconstruction,
which is very important in applications. On the other hand, from the viewpoint
of the decomposition of L2 on Π = Rn+1 + iC via the wavelet transform, we
need a wavelet transform Wψ such that Wψf(z) are functions on Π. Therefore
we considered there the wavelet transform associated to the homogeneous space Π
(such a wavelet transform was just the one considered in [1]). In order that for any
f ∈ H2 it can be reconstructed from Wψf(z), the admissibility condition in this
case is that∫

C

|ψ̂(Λyx)|2dy/r(y)n+1
2 =

∫
C

|ψ̂(y)|2dy/r(y)n+1
2 for all x ∈ C,(1.4)

and is finite, where Λy is an element in R∗+ × SO0(1, n) such that Λyω = y.
The condition in (1.4) is troublesome if we wish to give an orthogonal basis for

the set of admissible wavelets which can give an orthogonal decomposition of L2

on Π (or on the Cartan domain BDI(q = 2)). In this paper we will consider again
the wavelet transform associated to G/SO(n) such that the condition (1.4) can be
removed.

In §2 we introduce the wavelet transforms associated to G and to G/SO(n) and
a kind of generalized wavelet transform. The main part of this paper is §3 and §4.
In §3, we give a correspondence from Π to the quotient (“affine ”) group Ga :=(
R∗+ ×AN

)
n Rn+1 of G from the Iwasawa decomposition of SO0(1, n) = KAN ;

then from the square-integrable representation of Ga on H2 we define the associated
wavelet transform and get that the admissibility condition is

0 <

∫
C

|ψ̂(y0, y1, y∗)|2 dy0dy1dy∗
(y0 + y1)n−1r(y)

<∞.

In §4, by Laguerre polynomials, Jacobi polynomials and spherical harmonics we
give an orthogonal basis for the set of the admissible wavelets which turns out to
give an orthogonal decomposition of L2 on Π.

2. Square-integrable group representation

Let tM denote the transpose of a matrix M , and display a vector x ∈ Rn+1

formally as a column vector in the form x = t(x0, x
∗) = t(x0, x1, · · · , xn). Let In
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denote the n× n identity matrix and let

J :=

(
1 0
0 −In

)
∈ GL(Rn+1).

For any x, y ∈ Rn+1, let x · y or [x, y] be the bilinear form

x · y := [x, y] := txJy = x0y0 − x1y1 − · · · − xnyn,

and r(x) := x · x; also let xy := (x, y) :=
∑n
i=0 xiyi be the usual Euclidean inner

product of Rn+1.
The Lorentz group SO(1, n) is the subgroup of Λ ∈ GL(Rn+1) satisfying detΛ =

1 and tΛJΛ = J (equivalently [Λx,Λy] = [x, y] for any x, y ∈ Rn+1). Let SO0(1, n)
denote the connected component of the identity of SO(1, n), and let G0 := R∗+ ×
SO0(1, n). Then the Weyl-Poincaré group G is the semi-product G0 nRn+1. Write
g ∈ G as g = (a,Λ, b) with a > 0,Λ ∈ SO0(1, n), b ∈ Rn+1 then the group law of G
is given by

(a,Λ, b)(a′,Λ′, b′) = (aa′,ΛΛ′, aΛb′ + b)

for any (a,Λ, b), (a′,Λ′, b′) ∈ G, and one can see the left invariant measure dµ(g) of
G is a−(n+2)dadΛdb; here dΛ is the invariant measure of SO0(1, n). As in §1 let C
denote the forward light cone (the Lorentz cone) and Π = Rn+1 + iC the complex
tube domain over C. The actions of G0 on C and G on Π are given respectively by

(a,Λ)y = aΛy, (g, b)(x+ iy) = g(x+ iy) + b.

Then G0 acts transitively on C, and measures r(y)−
n+1

2 dy on C and r(y)−(n+1)dxdy
on Π are invariant under the actions of G0 and G respectively; here dy, dx denote
the Lebesgue measure on Rn+1.

Still let H2 denote the space defined by (1.3) and let (·, ·) or (·, ·)H2 denote its
inner product. Let Ug be the unitary representation of G on H2 given by

Ugf(x) := a−
n+1

2 f(Λ−1x− b

a
).(2.1)

Taking the Fourier transform with respect to x in both sides of (2.1), we get

(Ugf)∧(ξ) = a
n+1
2 ψ̂(atΛξ)e−iξb,

and therefore we know Ug is irreducible on H2. By the Plancherel formula,∫
G

|(ψ,Ugψ)|2dµ(g) =

∫
G

|an+1
2

∫
ψ̂(ξ)ψ̂(atΛξ)eiξbdξ|2 dadΛdb

an+2

=

∫
R∗+×SO0(1,n)×Rn+1

|ψ̂(ξ)ψ̂(atΛξ)|2 dadΛdξ
a

=

∫
C

∫
R∗+×SO0(1,n)

|ψ̂(atΛξ)|2 dadΛ
a

|ψ̂(ξ)|2dξ.

In the above equations, a constant 1/(2π)n+1 is dropped. In the following, for
simplicity, we also drop this constant in some equations when we use the Plancherel
formula.

For ξ ∈ C, there exists Λξ ∈ SO0(1, n) such that Λξω = ξ/r(ξ)
1
2 (see [16, p.505]);

here

ω := (1, 0, · · · , 0).
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By the left invariant property of dΛ and the fact that tΛξ = JΛ−1
ξ J ∈ SO0(1, n),

we have ∫
R∗+×SO0(1,n)

|ψ̂(atΛξ)|2 dadΛ
a

=

∫ ∞

0

∫
SO0(1,n)

|ψ̂(atΛω)|2 dΛda
a

.

From the “Euler angles” expression of Λ ∈ SO0(1, n) as given in [16, p.508] and
the “spherical coordinates” expression of x ∈ C as given in [16, p.504], we can get
that for any ξ ∈ C∫

R∗+×SO0(1,n)

|ψ̂(atΛξ)|2 dΛda
a

=

∫ ∞

0

∫
SO0(1,n)

|ψ̂(aJΛ−1Jω)|2 dadΛ
a

=

∫
C

|ψ̂(x)|2 dx

r(x)
n+1

2

.

Therefore the admissibility condition is

0 < cψ =

∫
C

|ψ̂(x)|2 dx

r(x)
n+1

2

<∞.(2.2)

Let AW denote the set of all admissible wavelets, i.e.

AW := {ψ : ψ ∈ H2, ψ satisfies (2.2)}.
For α > −1, let ψ be a function in H2 defined by

ψ̂(ξ) =

{
r(ξ)αe−ξ0 , for ξ ∈ C,
0, elsewhere;

(2.3)

then ψ ∈ AW by a direct calculation. Thus the unitary irreducible representation
given by (2.1) is square-integrable. For ψ ∈ AW , the map f → Wψf(g) := (f, Ugψ)
is the wavelet transform, and it is an isometry (up to a constant) from H2 into
L2(G, dµ(g)). One can get

Theorem 2.1. Let ψ, φ ∈ AW . Then for any f, h ∈ H2,

〈Wψf,Wφh〉 = (K− 1
2φ,K− 1

2ψ)(f, h),

where 〈, 〉 is the inner product of L2(G, dµ(g) and K is the positive operator given
by

(Kψ)∧(ξ) = r(ξ)
n+1

2 ψ̂(ξ).

Theorem 2.2. Let ψ ∈ AW . Then for any f ∈ H2,

f(x) =
1

cψ

∫
G

Wψf(g)Ugψ(x)dµ(g).

For ψ ∈ AW , it is a (generalized) state in H2 which can be written as ψ〉. Then
{Ugψ}g∈G = {Ug|ψ〉}g∈G is a coherent state system [9]. Denote

Aψ := {〈f |Ug|ψ〉 : f ∈ H2} = {Wψf(g) : f ∈ H2},
i.e. Aψ is the matrix coefficient space of the representation Ug or the range of the
wavelet transform Wψ of H2 with ψ. Then Aψ is a Hilbert space with reproducing
kernel.
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Theorem 2.3. Let Kψ(g, g′) denote the reproducing kernel of Aψ. Then

Kψ(g, g′) =
1

cψ
(Ug′ψ,Ugψ).

Let SO(n) denote the group of rotations of Rn and in this paper also let it denote
the subgroup of SO0(1, n) fixing the point ω, i.e. every element u of this subgroup
is given by

u =

(
1 0
0 ũ

)
, with ũ ∈ SO(n).

We even let SO(n) denote the subsgroup ({1} × SO(n)) n {0} of G. Then SO(n)
is a maximal subgroup of G and the quotient space G/SO(n) is isomorphic to
the homogeneous space Π. From Theorem 2.2, we know for any f ∈ H2 it is
reconstructed from Wψf(g). The wavelet transform Wψf(g) is a function of n+2+
n(n+1)

2 variables. In fact f doesn’t need so many variables for its reconstruction. We
consider the wavelet transform associated to G/SO(n) or to Π by a correspondence
from Π to G/SO(n).

Recall that the action of g = (a,Λ, b) ∈ G on Π is given by

(a,Λ, b)z = aΛz + b = aΛ(x+ iy) + b.

Denote z0 := 0 + iω ∈ Π. For z = x + iy ∈ Π, there exist a family of g ∈ G such

that gz0 = z. In the following we choose g = (r(y)
1
2 ,Λy′, x), where Λy′ = r(y)−

1
2 Λy

and Λy is given in [14]:

Λy :=

(
y0

ty∗

y∗ r(y)
1
2 I + (y0 + r(y)

1
2 )−1y∗ty∗

)
, with y = (y0, y

∗).(2.4)

Then tΛy = Λy,Λyω = y and Λy′ ∈ SO0(1, n),Λy ∈ G0. For each z ∈ Π, from
(2.1), we define an operator Uz on H2 by

Uzψ(t) := r(y)−
n+1

4 ψ
(
r(y)−

1
2 Λ−1

y′ (t− x)
)

or by

(Uzψ)∧(ξ) := r(y)
n+1

4 ψ̂
(
r(y)

1
2 tΛy′ξ

)
e−ixξ = r(y)

n+1
4 ψ̂(Λyξ)e

−ixξ,(2.5)

since tΛy = Λy from (2.4). Then we define the associated wavelet transform for
f ∈ H2 by

Wψf(z) := (f, Uzψ)(2.6)

or by

(Wψf)∧(ξ, y) := r(y)
n+1

4 ψ̂(Λyξ)f̂(ξ),(2.7)

where (Wψf)∧(ξ, y) denotes the Fourier transform of Wψf(z) with respect to the
variables x.

Any f ∈ H2 also can be reconstructed from the wavelet transform Wψf(z) for
some ψ, i.e. the following formula holds:

f(τ) = c

∫
Π

Wψf(z)Uzψ(τ)dµ(z),(2.8)
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where dµ(z) = dxdy/r(y)n+1 is the invariant measure on Π under G. Let us give
the corresponding admissibility condition for ψ. By the Plancherel formula∫

Π

|Wψψ(z)|2dµ(z) =

∫
Π

|ψ̂(ξ)ψ̂(Λyξ)|2dξ dy

r(y)
n+1

2

=

∫
C

|ψ̂(ξ)|2
∫
C

|ψ̂(Λyξ)|2 dy

r(y)
n+1

2

dξ.

Thus in order that (2.8) holds, ψ must be such that
∫
C
|ψ̂(Λyξ)|2dy/r(y)n+1

2 is

independent of all ξ ∈ C; especially, if ξ = ω, then it is
∫
C |ψ̂(y)|2dy/r(y)n+1

2 . Thus
the admissibility condition in this case is that ψ satisfies (2.2) and∫

C

|ψ̂(Λyξ)|2dy/r(y)n+1
2 =

∫
C

|ψ̂(y)|2dy/r(y)n+1
2 for all ξ ∈ C.(2.9)

If n > 1, (2.2) does not imply (2.9), i.e. there are many functions ψ ∈ H2

satisfying (2.2) but not (2.9). If ψ is invariant under the action of SO(n) or “radial”,
i.e. ψ(x0, ρx

∗) = ψ(x0, x
∗) for all ρ ∈ SO(n), then it satisfies (2.9). In fact, in this

case, ψ̂(ξ) is also “radial” and can be written as

ψ̂(ξ) = φ(ξ0, |ξ∗|2) = φ
(
(ξ, ω), (ξ, ω)2 − r(ξ)

)
,

where (·, ·) is the usual Euclidean inner product of Rn+1 as mentioned above. For
ξ, y ∈ C, let Λξ,Λy ∈ G0 = R∗+ × SO0(1, n) be defined by (2.4). Then

(Λyξ, ω) = (ξ,Λyω) = (Λξω, y) = (ω,Λξy),

since tΛy = Λy,
tΛξ = Λξ, and we have∫

C

|ψ̂(Λyξ)|2 dy

r(y)
n+1

2

=

∫
C

|φ ((Λyξ, ω), (Λyξ, ω)2 − r(Λyξ)
) |2 dy

r(y)
n+1

2

=

∫
C

|φ ((ω,Λξy), (ω,Λξy)2 − r(y)r(ξ)
) |2 dy

r(y)
n+1

2

=

∫
C

|φ ((ω, y), (ω, y)2 − r(y)
) |2 dy

r(y)
n+1

2

=

∫
C

|φ(y0, y
2
0 − r(y))|2 dy

r(y)
n+1

2

=

∫
C

|ψ̂(y)|2 dy

r(y)
n+1

2

.

The third equality is from the invariant property of dy/r(y)
n+1

2 under the action of
G0 and the fact that r(y)r(ξ) = r(Λξy). Thus when ψ is “radial”, the admissibility
condition for (2.8) is (2.2).

For ψ satisfying (2.2) and (2.9), define the wavelet transform for f ∈ H2 via (2.6);
then for such a wavelet transform we can establish theorems similar to Theorems
2.1, 2.2, 2.3, but we won’t bother to list them here.

Condition (2.9) is troublesome if we want to give an orthogonal basis for the set
of admissible wavelets. We now introduce, as in [8], a kind of generalized wavelet
transform associated to Π. In this case the admissibility condition is (2.2) and (2.9)
will be removed.

For each z ∈ Π, let us introduce an operator Ũz on H2 similar to Uz defined

above. For z ∈ Π, define Ũz on H2 by (compare with the definition of Uz given
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in (2.5))

(Ũzψ)∧(ξ) := r(y)
n+1

4 ψ̂(Λξy)e
−ixξ,(2.10)

where ψ ∈ H2 and Λξ is given by (2.4) corresponding to ξ ∈ C. Then from (2.10)

we define a kind of generalized wavelet transform W̃ψ of functions f in H2 with
some ψ by

W̃ψf(z) := (f, Ũzψ),

or by (compare with (2.7))

(W̃ψf)∧(ξ, y) := r(y)
n+1

4 ψ̂(Λξy)f̂(ξ).

Let us give the condition on ψ so that for any f ∈ H2 it can be reconstructed

from W̃ψf(z). Of course, W̃ψ must satisfy
∫
Π |W̃ψf |2dµ(z) = C‖f‖2, where dµ(z)

is the invariant measure dxdy/r(y)n+1. We have∫
Π

|W̃ψf |2dµ(z) =

∫
Π

|ψ̂(Λξy)f̂(ξ)|2dξ dy

r(y)
n+1

2

=

∫
C

∫
C

|ψ̂(Λξy)|2 dy

r(y)
n+1

2

|f̂(ξ)|2dξ.

Then by the invariant property of dy/r(y)
n+1

2 under actions of G0, we have∫
C

|ψ̂(Λξy)|2 dy

r(y)
n+1

2

=

∫
C

|ψ̂(r(ξ)
1
2 Λξ′y)|2 dy

r(y)
n+1

2

=

∫
C

|ψ̂(y)|2 dy

r(y)
n+1

2

.

Thus in this case, the admissibility condition is
∫
C
|ψ̂(y)|2dy/r(y)n+1

2 <∞. Let AW
denote the set of all the admissible wavelets, i.e. AW consists of the ψ satisfying
(2.2). Then for ψ ∈ AW , we can prove that any f ∈ H2 can also be reconstructed

from W̃ψf(z).
Though it is easy to check the admissibility condition for this kind of generalized

wavelet transform and to give an orthogonal basis for AW via Laguerre polyno-
mials, Jacobi polynomials and spherical harmonics which will give an orthogonal
decomposition of L2 on Π, still such a wavelet transform does not associate to the
square-integrable group representation and looks artificial. In next section, we will
introduce another kind of wavelet transform from the square-integrable representa-
tion of a quotient group of the Weyl-Poincaré group.

3. Square-integrable representation modulo a subgroup

In this section we will introduce a quotient group of the Weyl-Poincaré group
G = (R∗+ × SO0(1, n)) n Rn+1 and a kind of wavelet transform from the square-
integrable representation of this group. Let K = SO(n) be the rotation group
of Rn; as in §2 it also denotes a subgroup of SO0(1, n) and even a subgroup of
G. Then K is a maximal compact subgroup of G. The quotient group G/K can
realized as the complex tube domain Π via the Iwasawa decomposition of G (in
fact the decomposition of SO0(1, n)).

Let g be the Lie algebra of SO0(1, n); then (see [12, p.222])

g = l ⊕ a⊕ n,
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where l is the Lie algebra of K = SO(n), a is an one-dimensional algebra with
generator

a0 =


0 1 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0


(n+1)×(n+1)

,

and

n = {x =

0 0 ts
0 0 ts
s −s On−1

 : s = t(s2, · · · , sn) ∈ Rn−1}.

Then SO0(1, n) has the Iwasawa decomposition

SO0(1, n) = KAN

with

A = {ar :=

chr shr 0
shr chr 0
0 0 In−1

 : r ∈ R},

N = {ns :=

ρ+ 1 −ρ ts
ρ 1− ρ ts
s −s In−1

 : s = t(s2, · · · , sn) ∈ Rn−1, ρ =
1

2
|s|2}.

The action of ar ∈ A on N is given

ar : ns → arnsa
−1
r = ners.

By a direct calculation, we have arar′ = ar+r′ , nsns′ = ns+s′ and

(ar, ns)(ar′ , ns′) = ar+r′ns′+se−r′(3.1)

for any ar, ar′ ∈ A, ns, ns′ ∈ N .
Let H1 := {x ∈ C : r(x) = 1}, the forward mass hyperboloid. We know

SO0(1, n)/K = AN is isomorphic to H1, and for y′ ∈ H1 there exists a unique
arns ∈ AN such that

arnsω = y′;

also, we have

chr + erρ = y′0, shr + erρ = y′1, s = t(y′2, · · · , y′n).(3.2)

In this way we give a correspondence between AN and H1 by

y′ = t(y′0, y
′
1, y

′
∗) ∈ H1 ↔ arns ∈ AN with e−r = y′0 − y′1, s = y′∗.(3.3)

Denote

Λr,s := arns =

 chr + erρ shr − erρ tser

shr + erρ chr − erρ tser

s −s In−1

 ;(3.4)

then Λr,s ∈ SO0(1, n),Λr,sΛr′,s′ = Λr+r′,s′+se−r′ ,Λ
−1
r,s = Λ−r,−ser and Λr,sω = y′.

From (3.1), let us introduce a group, the “affine Weyl-Poincaré group”,

Ga := {(a, r, s, x)|a > 0, r ∈ R, s ∈ Rn−1, x ∈ Rn+1}
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with group law

(a, r, s, x)(a′, r′, s′, x′) = (aa′, r + r′, s′ + se−r
′
, x+ aΛr,sx

′).

We have g−1 = (a, r, s, x)−1 = ( 1
a ,−r,−ser,− 1

aΛ−1
r,sx), and Ga has the left invariant

measure

dµ(g) = a−(n+2)dadrdsdx.(3.5)

The group Ga defined above is a quotient group
(
R∗+ × SO0(1, n)

)
n Rn+1/K of

G, and it is isomorphic to Π by the following correspondence:

z = x+ iy ∈ Π ↔ (a, r, s, x) ∈ Ga,(3.6)

with

a = r(y)
1
2 , e−r = r(y)−

1
2 (y0 − y1), s = r(y)−

1
2 y∗(3.7)

and Λr,sω = y/r(y)
1
2 (here Λr,s is given by (3.4)).

As usual, for g ∈ Ga, with g−1 =

(
A B
0 1

)
, B ∈ Rn+1, A ∈ R∗+ ×SO0(1, n), g

acts on Rn+1 by g(τ) = Aτ +B. For g = (a, r, s, x), g−1 can be written as(
1
aΛ−1

r,s − 1
aΛ−1

r,sx
0 1

)
,

and thus we have

g(τ) :=
1

a
Λ−1
r,sτ −

1

a
Λ−1
r,sx =

1

a
Λ−1
r,s(τ − x).

The above action of g ∈ Ga on Rn+1 induces a unitary representation of Ga on H2,
still denoted by Ug:

Ugf(τ) := {g′(τ)} 1
2 f (g(τ)) = a−

n+1
2 f

(
a−1Λ−1

r,s(τ − x)
)
.(3.8)

Taking the Fourier transform with respect to τ in both sides of (3.8), we get

(Ugf)∧(ξ) = a
n+1
2

∫
f(Λ−1

r,sτ)e
−iaξτdτe−iξx

= a
n+1
2

∫
f(Λ−1

r,sτ)e
−ia(tΛr,sξ)Λ−1

r,sτdτe−iξx = a
n+1

2 f̂(atΛr,sξ)e
−iξx;

thus we know Ug is irreducible on H2. We can get the admissibility condition (see
the Appendix):

0 < Cψ :=

∫ ∞

0

∫
R

∫
Rn

|ψ̂(y0, y1, y∗)|2 dy0dy1dy∗
(y0 + y1)n−1r(y)

< +∞.(3.9)

When n = 1, (3.9) is just (2.2). Let

AAW := {ψ : ψ ∈ H2, ψ satisfies (3.9)}.
Then by a direct calculation, we know the function ψ defined by (2.3) is in AAW ;
thus the representation of Ga given by (3.8) is square-integrable on H2. Let ψ ∈
AAW , and define the wavelet transform for f ∈ H2 from the square-integrable
representation of Ga by

f → (f, Ugψ).(3.10)
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For such a wavelet transform, we can establish theorems similar to 2.1, 2.2 and 2.3;
here the invariant measure of Ga is dµ(g) given in (3.5). We wouldn’t list them
here.

By the correspondence given by (3.6) and (3.7), for each z ∈ Π, we define Uz by
(3.8), i.e.

Uzf(τ) := r(y)−
n+1
4 f

(
r(y)−

1
2 Λ−1

r,s(τ − x)
)
,

where r, s are given by (3.7) and Λr,s = arns by (3.4). Then for any fixed ψ ∈ AAW ,
or state ψ〉, applying Uz to it, we get a coherent system {Uz|ψ〉}z∈Π [9]. Wavelet
transforms of functions f ∈ H2 defined by (3.10) are functions on Ga. We now
define the wavelet transform via Uz :

Wψf(z) := 〈f |Uz|ψ〉 = (f, Uzψ), for f ∈ H2,(3.11)

then Wψf(z) are functions on Π, and f ∈ H2 can be reconstructed from Wψf(z).
Let dµ(z) be the invariant measure on Π:

dµ(z) := dxdy/r(y)n+1, with z = x+ iy;

then we have

Theorem 3.1. Let ψ, φ ∈ AAW . Then for any f, h ∈ H2,

〈Wψf,Wφh〉 = (K− 1
2φ,K− 1

2ψ)(f, h),(3.12)

where 〈, 〉 is the inner product of L2 (Π, dµ(z)) and K is the positive operator given
by

(Kf)∧(ξ) = (ξ0 + ξ1)
n−1r(ξ)f̂ (ξ).

Theorem 3.2. Let ψ ∈ AAW . Then for any f ∈ H2,

f(τ) =
1

Cψ

∫
Π

Wψf(z)Uzψ(τ)dµ(z).(3.13)

For ψ ∈ AAW , denote

Aψ := {〈f |Uz|ψ〉 : f ∈ H2} = {Wψf(z) : f ∈ H2}.(3.14)

Then Aψ is a subspace of L2(Π, dµ(z)) with a reproducing kernel.

Theorem 3.3. Let Kψ(z, z′) denote the reproducing kernel of Aψ. Then

Kψ(z, z′) =
1

Cψ
(Uz′ψ,Uzψ).

In Theorem 3.1, (3.12) is also true for any ψ, φ ∈ H2 satisfying (K− 1
2ψ,K− 1

2φ) <

∞. Clearly if ψ, φ ∈ AAW , then (K− 1
2ψ,K− 1

2φ) < ∞. With the identification
(3.6) and (3.7), the tube domain Π inherits the Ga group structure and (3.12) is in
fact the Moyal formula; see [2]. For completeness, the proof of Theorem 3.1 will be
also given in the Appendix.

In Theorem 3.2, (3.13) is true at least “in the weak sense”, i.e., taking the inner
product of both sides of (3.13) with any g ∈ H2 and commuting the inner product
with the integral over z in the right hand side leads to a true formula, which is
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(3.12) with φ = ψ. The convergence of the integral in (3.13) also holds in the
following “strong sense”:

lim
δi→0,A,B→+∞

‖f(τ)− C−1
ψ

∫
|x|<A,δ1<y0<B,δ2<r(y)/y2

0

Wψf(z)Uzψ(τ)dµ(z)‖2 = 0.

(3.15)

Here the integral stands for the unique element in H2 that has inner product with
g ∈ H2 given by ∫

|x|<A,δ1<y0<B,δ2<r(y)/y2
0

Wψf(z)(Uzψ, g)dµ(z);

since the absolute value of this is bounded by∫
|x|<A,δ1<y0<B,δ2<r(y)/y2

0

‖f‖2‖Uzψ‖2
2‖g‖2

dxdy

r(y)n+1

≤ cnA
n+1‖f‖2‖g‖2‖ψ‖2

2

∫
δ1<y0<B

∫
r≤√1−δ2y0

rn−1

(y2
0 − r2)n+1

drdy0

≤ cn
n+ 1

An+1

δn+1
2

(
1

δn+1
1

− 1

Bn+1

)
‖f‖2‖g‖2‖ψ‖2

2,

where cn is a constant, the integral in (3.15) stands for a function in H2 by the
Riesz lemma. The proof of (3.15) will be given in the Appendix. Under some

conditions on the decay properties at infinity of ψ, ψ̂, then for bounded f(x) ∈ H2,
(3.13) holds pointwise at every point x where f is continuous. We will not give the
details on them here.

The reproducing kernel in Theorem 3.3 can be gotten from Theorem 3.2. In fact,
from Theorem 3.2,

Wψf(z) = (f, Uzψ) =
1

Cψ

∫
Π

Wψf(z′)(Uz′ψ,Uzψ)dµ(z′)

=
1

Cψ

∫
Π

(Uz′ψ,Uzψ)Wψf(z′)dµ(z′).

Thus Kψ(z, z′) = 1
Cψ

(Uz′ψ,Uzψ).

In the next section, we will give an orthogonal decomposition of L2 on Π by
giving an orthogonal basis of AAW .

4. Orthogonal decomposition of L2 space on BDI(q = 2)

In this section we will give an orthogonal decomposition of the space L2 on Π
(or on the Cartan domain BDI(q = 2)) in the form

⊕
~k A~k, in which the A~k are

the ranges of wavelet transforms defined as in (3.14). First let us show that the
Bergman space is such a range with a special choice of admissible wavelet.

For α ∈ R, let Lα2(Π) denote the L2 space on Π defined by

Lα2(Π) := {F (x, y) :

∫
Π

|F (x, y)|2r(y)αdxdy <∞}.

If α > −1, then Lα2(Π) contains holomorphic functions. In fact, α > −1 is also
a necessary condition for the existence of holomorphic functions in Lα2(Π); see [3,
p.260]. In this paper, we will assume α > −1. Let Aα2 denote the subspace of
Lα2(Π) consisting of holomorphic functions; Aα2 is called the (weighted) Bergman
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space. Let Hα2(Π) denote the subspace of Lα2(Π) of functions F (x, y) such that

suppF̂ (ξ, y) ⊂ C × C; here F̂ (ξ, y) denotes the Fourier transform of F (x, y) with
respect to the variables x and C is the closure ofC. Since the coneC is homogeneous
and the dual of C is still itself, i.e. C is a regular (symmetric) cone, then for every
F (z) ∈ Aα2, there exists an f ∈ H2 such that (refer to Theorem XIII 1.1 in [3])

F (z) = c

∫
C

eiξz f̂(ξ)r(ξ)
2α+n+1

4 dξ,(4.1)

where z = x + iy ∈ Π. Conversely, for every f ∈ H2, F (z), defined by (4.1),
belongs to Aα2. That is, the map f → F is a linear isomorphism from H2 onto

Aα2. From (4.1), we know if F (z) ∈ Aα2, then suppF̂ (ξ, y) ⊂ C ×C, and therefore
Aα2 ⊂ Hα2(Π).

For ψ ∈ AAW , let Wψf(z) be the wavelet transform defined by (3.11); by
Theorem 3.1, it is an isometry (up to a constant) from H2 into L2(Π, dµ(z)). Define

Wα
ψ f(z) := r(y)−

n+1+α
2 Wψf(z) = r(y)−

n+1+α
2 (f, Uzψ);(4.2)

then Wα
ψ is an isometry (up to a constant) from H2 into Lα2(Π), i.e.∫

Π

|Wα
ψ f(z)|2r(y)αdxdy = Cψ‖f‖2

2.

About this transform Wα
ψ , we also have theorems similar to Theorem 3.1, 3.2, 3.3.

For example, for any ψ, φ ∈ AAW and f, h ∈ H2,

〈Wα
ψ f,W

α
ψ h〉Lα2(Π) = (f, h)

∫
C

φ̂(ξ)ψ̂(ξ)
dξ0dξ1dξ∗

(ξ0 + ξ1)n−1r(ξ)
,(4.3)

which is just (3.12). For ψ ∈ AAW , let Aαψ be the space defined by

Aαψ := {Wα
ψ f(z) = r(y)−

n+1+α
2 (f, Uzψ) : f ∈ H2}.(4.4)

Since Wα
ψ is an isometry (up to a constant) from H2 into Lα2(Π), we have Aαψ ⊂

Lα2(Π). By (4.2),(
Wα
ψ f
)∧

(ξ, y) = r(y)−
n+1+2α

4 f̂(ξ)ψ̂
(
r(y)

1
2 tΛr,sξ

)
(with Λr,sω = y/r(y)

1
2 ),

and we know that supp
(
Wα
ψ f
)∧

(ξ, y) ⊂ C × C since suppf̂ ⊂ C. Thus Aαψ is a

subspace of Hα2(Π). We can see that Aαψ has a reproducing kernel, given by

Kα
ψ(z, z′) = C−1

ψ (r(y)r(y′))−
n+1+α

2 (Uz′ψ,Uzψ),(4.5)

with z = x+ iy, z′ = x′ + iy′ ∈ Π.
Let ψα0 ∈ AAW be defined by

ψ̂α0 (ξ) =

{
r(ξ)

2α+n+1
4 e−ξ0 , for ξ ∈ C,

0, elsewhere.
(4.6)

Then for all f ∈ H2, the Wα
ψ f(z) are holomorphic on Π. In fact, let Λr,s be the

correspondence to y ∈ C given by Λr,sω = y/r(y)
1
2 ; then (ω, tΛr,sξ) = (Λr,sω, ξ) =
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yξ/r(y)
1
2 . By the Plancherel formula,

Wα
ψα0
f(z) = r(y)−(α+n+1)/2

∫
C

r(y)
n+1

4 f̂(ξ)ψ̂α0 (r(y)
1
2 tΛr,sξ)e

ixξdξ

=

∫
C

f̂(ξ)r(ξ)(2α+n+1)/4eixξ−yξdξ =

∫
C

f̂(ξ)r(ξ)(2α+n+1)/4eiξzdξ;(4.7)

thus Wα
ψα0
f(z) is holomorphic on Π. From (4.7) and the relation between Aα2 and

H2 given by (4.1) (i.e. Theorem XIII 1.1 in [3]), we know Aψα0 is just the Bergman

space Aα2. Such transforms Wα
ψα0 were also considered by Unterberger in [13], [14]

for the quantizations of the Cartan domain BDI(q = 2).
Let us now give the expression of the Bergman kernel Kα

ψα0
(z, z′) from (4.5). We

have

Kα
ψα0

(z, z′) = C−1
ψα0
r(y′)−

α+n+1
2 Wα

ψα0
(Uz′ψ

α
0 ) (z)

= C−1
ψα0
r(y′)−

α+n+1
2

∫
C

r(y′)
n+1

4 ψ̂α0

(
r(y′)

1
2 tΛr′,s′ξ

)
e−ix

′ξr(ξ)
2α+n+1

4 eiξzdξ

= C−1
ψα0

∫
C

r(ξ)
2α+n+1

2 eiξ(z−z
′)dξ.

Let A = −i(z − z′); then ReA = y + y′ ∈ C. To compute the integral

I(A) =

∫
C

r(ξ)
2α+n+1

2 e−Aξdξ,

we first assume ImA = 0, i.e. A ∈ C; then for general A, I(A) can be gotten from
the holomorphic property of I(A). For A ∈ C, there exists Λ ∈ SO0(1, n) such

that aΛω = A with a2 = r(A). Then, by the invariance of the measure dξ/r(ξ)
n+1

2

under R∗+ × SO0(1, n),∫
C

r(ξ)
2α+n+1

2 e−Aξdξ =

∫
C

r(ξ)
2α+n+1

2 e−[A,ξ]dξ

(with a change of variables ξ ↔ Jξ)

=

∫
C

r(ξ)
2α+n+1

2 e−a[Λω,ξ]dξ =

∫
C

r(ξ)
2α+n+1

2 e−a[ω,Λ
−1ξ]dξ

=

∫
C

r(ξ)α+n+1e−a[ω,Λ
−1ξ]dξ/r(ξ)

n+1
2 =

∫
C

r(
ξ

a
)α+n+1e−[ω,ξ]dξ/r(ξ)

n+1
2

= a−2(α+n+1)

∫
C

r(ξ)
2α+n+1

2 e−ξ0dξ = cn/r(A)α+n+1.

And therefore

Proposition 4.1. Let K(z, z) be the Bergman kernel of the tube domain Π. Then

K(z, z′) = Cn/r(i(z′ − z))α+n+1,(4.8)

where Cn is a constant.

Π is an (unbounded) realization of BDI(q = 2) or the classical bounded domain
of type IV (see [15]), and by a transform the kernel given by (4.8) it indeed coincides
with the Bergman kernel given by Hua for the case α = 0 (see [6, p.88]).

In the rest of this section we want to construct ψ~k ∈ AAW such that A~k := Aαψ~k
given by (4.4) are orthogonal to each other and their sum isHα2(Π) with A~0 = Aα2.
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From (4.3), we shall construct ψ~k ∈ AAW such that∫
C

ψ̂~k(y)ψ̂~k′ (y)
dy0dy1dy∗

(y0 + y1)n−1r(y)
= 0, if ~k 6= ~k′,

with ψ~0 = ψα0 given by (4.6).
Let Hl be the space of all linear combinations of functions of the form h(r)Y (x),

where h ranges over the radial functions and Y ranges over the solid spherical
harmonics of degree l. Then L2(Rn−1) can be decomposed as the orthogonal sum
(see [10, p.151])

L2(Rn−1) =

∞⊕
l=0

Hl.

Every element hl in Hl can be written in the form
∑al

j=1 hl,j(r)Y
l
j (x), and

∫
Rn−1

|hl(x)|2dx =

al∑
j=1

∫ ∞

0

|hl,j(r)|2rn−2dr,

where a0 = 1, a1 = n − 1, al =
(
n+l−2

l

) − (n+l−4
l−2

)
, l ≥ 2, and {Y lj (x)}alj=1 is an

orthogonal basis of the space Hl of surface spherical harmonics of degree l (see [10,
p.140]). It is well known for n = 3, al = 2 and Y l1 (x) = cos lθ√

π
, Y l2 (x) = sin lθ√

π
with

x = eiθ. For n > 3, an orthogonal basis Y lj of Hl can be given by the Gegenbauer
polynomials; see [16], pp. 457–468.

If ψ ∈ AAW , then for almost all y0, y1, ψ̂y0,y1(y∗) := ψ̂(y0, y1, y∗) is a function
of L2(Rn−1), and can be written as

ψ̂(y) =

∞∑
l=0

al∑
j=1

r(y)
2α+n+1

4 fj,l(y0, y1)hj,l(
|y∗|2
y2
0 − y2

1

)Y lj (y∗).(4.9)

By the orthogonality of Y lj , we have∫
C

|ψ̂(y)|2 dy0dy1dy∗
(y0 + y1)n−1r(y)

=

∞∑
l=0

al∑
j=1

∫
y0>0,y2

0−y2
1>r

2

(y2
0 − y2

1 − r2)α+ n−1
2

· |fj,l(y0, y1)hj,l( r2

y2
0 − y2

1

)|2 r
n−2dy0dy1dr

(y0 + y1)n−1

=
1

2

∞∑
l=0

al∑
j=1

∫
y0>|y1|

|fj,l(y0, y1)|2 (y2
0 − y2

1)
α+n−1

(y0 + y1)n−1
dy0dy1

·
∫ 1

0

|hj,l(t)|2(1− t)α+ n−1
2 t

n−3
2 dt (with t =

r2

y2
0 − y2

1

)

Let ~k = (m, ν, k, l, j) and let ψ~k ∈ AAW be defined by

ψ̂~k(y) = r(y)
2α+n+1

4 e−y0Lm,ν(y0, y1)Pk(
|y∗|2
y2
0 − y2

1

)Y lj (y∗),
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where Lm,ν, Pk are polynomials of degree m+ ν and k respectively. Then from the

above calculation and the orthogonality of Y lj , we have for ~k,~k′ with l = l′, j = j′,

∫
C

ψ̂~k(y)ψ̂~k′ (y)
dy0dy1dy∗

(y0 + y1)n−1r(y)
= C

∫
y0>|y1|

Lm,ν(y0, y1)Lm′,ν′(y0, y1)e
−2y0

(4.10)

· (y2
0 − y2

1)
α+n−1

(y0 + y1)n−1
dy0dy1

∫ 1

0

Pk(t)Pk′ (t)(1 − t)α+n−1
2 t

n−3
2 dt

= C

∫ ∞

0

∫ ∞

0

Lm,ν(
s+ r

2
,
s− r

2
)Lm′,ν′(

s+ r

2
,
s− r

2
)e−s−rsαrα+n−1dsdr ·

·
∫ 1

0

Pk(t)Pk′ (t)(1 − t)α+n−1
2 t

n−3
2 dt (with s =

y0 + y1
2

, r =
y0 − y1

2
).

Choose

Lm,ν(y0, y1) = L(α)
m (y0 + y1)L

(α+n−1)
ν (y0 − y1),

Pk(t) = P
(α+n−1

2 ,n−3
2 )

k (2t− 1),

where L
(α)
k , P

(α,β)
l are the Laguerre polynomials of degree k and the Jacobi polyno-

mials of degree l respectively; then, by the orthogonality of L
(α)
k , P

(α,β)
l (see [11])

and Y lj ,∫
C

ψ̂~k(y)ψ̂~k′ (y)
dy0dy1dy∗

(y0 + y1)n−1r(y)
= Ck,l,jδkk′δll′δjj′

∫ ∞

0

L(α)
m (s)L

(α)
m′ (s)e

−ssαds

·
∫ ∞

0

L(α+n−1)
ν (r)L

(α+n−1)
ν′ (r)e−rrα+n−1dr = C~kδ~k~k′ .

Finally we give a series of orthogonal wavelets

ψ̂~k(y) =r(y)
2α+n+1

4 e−y0L(α)
m (y0 + y1)L

(α+n−1)
ν (y0 − y1)(4.11)

· P (α+n−1
2 ,n−3

2 )

k

(
2|y∗|2
y2
0 − y2

1

− 1

)
Y lj (y∗),

and we have ψ~0 = ψα0 given by (4.6). From the completeness properties of the sets

{L(α)
k (t)e−

t
2 }k and {P (α,β)

k }k for spaces L2(R∗+, sαds), L2([−1, 1], (1−t)α(1+t)βdt)

respectively, we know that fj,l(y0, y1), hj,l

(
2|y∗|2
y2
0−y2

1

)
in (4.9) can be written to be

orthogonal sums of

{L(α)
m (y0 + y1)e

− y0+y1
2 · L(α+n−1)

ν (y0 − y1)e
− y0−y1

2 }m,ν
and

{P (α+n−1
2 ,n−3

2 )

k

(
2|y∗|2
y2
0 − y2

1

− 1

)
}k

respectively. Thus {ψ~k}~k gives an orthogonal basis of AAW (here and in the

following orthogonality of ψ~k, ψ~k′ means that ψ̂~k, ψ̂~k′ are orthogonal to each other

with respect to the measure dy0dy1dy∗/(y0 + y1)
n−1r(y)).

Let A~k denote the subspaces of Hα2(Π) defined by (4.4) with ψ = ψ~k; then the
A~k are orthogonal to each other and in fact they give an orthogonal decomposition

of Hα2(Π):
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Theorem 4.1. Let A~k be the subspaces of Hα2(Π) defined above. Then

Hα2(Π) =
⊕
~k

A~k,

with the first component A~0 = Aα2.

The proof of Theorem 4.1 will be given in the Appendix. In [7], we gave two
orthogonal bases for AAW in the case n = 1, and {ψ~k}~k given by (4.11) for n = 1 is
just the suitable basis in [7] for studying the Toeplitz-Hankel type operators between
A~k. The orthogonal basis and the decomposition given here will be appropriate for
the purpose of studying Toeplitz-Hankel type operators between A~k for n ≥ 2.

Appendix

A.1. Admissibility condition in §3. Let us calculate here the admissibility
condition for the wavelet transform defined by (3.10). By the Plancherel formula,∫

Ga

|(ψ,Ugψ)|2dµ(g) =

∫
Ga

|
∫
ψ̂(ξ)(Ugψ)∧(ξ)dξ|2dµ(g)

=

∫ ∞

0

∫
R

∫
Rn−1

∫
Rn+1

|
∫
ψ̂(ξ)a

n+1
2 ψ̂(atΛr,sξ)e

ixξdξ|2 dxdsdrda
an+2

=

∫ ∞

0

∫
R

∫
Rn−1

∫
Rn+1

|ψ̂(ξ)ψ̂(atΛr,sξ)|2 dξdsdrda
a

=

∫
C

∫ ∞

0

∫
R

∫
Rn−1

|ψ̂(atΛr,sξ)|2 dsdrda
a

|ψ̂(ξ)|2dξ.

Similarly to the correspondence between AN and H1 given by (3.3), we also can
give a correspondence between t(AN) and H1. In fact for any ξ ∈ C, there exist
unique ar0 ∈ A and ns0 ∈ N such that

tΛr0,s0ω = tns0ar0ω = ξ/r(ξ)
1
2 ,

with er0 = (ξo+ ξ1)/r(ξ)
1
2 , s0 = t(ξ2, · · · , ξn)/(ξo+ ξ1). Since dsdrda/a is invariant

under AN , then

∫ ∞

0

∫
R

∫
Rn−1

|ψ̂(atΛr,sξ)|2 dsdrda
a

=

∫ ∞

0

∫
R

∫
Rn−1

|ψ̂(at(Λr0,s0Λr,s)ω)|2 dsdrda
a

(A.0)

=

∫ ∞

0

∫
R

∫
Rn−1

|ψ̂(atΛr,sω)|2 dsdrda
a

.

Thus the admissibility condition is

0 < Cψ =

∫ ∞

0

∫
R

∫
Rn−1

|ψ̂(atΛr,sω)|2 dsdrda
a

<∞.(A.1)

Taking the change of variables
a = r(y)

1
2 ,

ae−r = y0 − y1,

as = y∗ = t(y2, · · · , yn),
(A.2)

with (a, r, s) ∈ R∗+ × R× Rn−1 and y = (y0, y1, y∗) ∈ C, by a direct calculation

dadrds = a−ndy0dy1dy∗ = r(y)−
n
2 dy0dy1dy∗,(A.3)
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and

aΛr,sω = t (a(chr + erρ), a(shr + erρ), as) = t(y0, y1, y∗),

where Λr,s is given by (3.4) with ρ = 1
2 |s|2. Thus for a function f on C, we have∫ ∞

0

∫
R

∫
Rn−1

f(aΛr,sω)
dsdrda

a
=

∫
C

f(y)
dy

r(y)
n+1

2

.(A.4)

From the definition of Λr,s in (3.4) and the change of variables by (A.2), we have∫ ∞

0

∫
R

∫
Rn−1

|ψ̂(atΛr,sω)|2 dsdrda
a

=

∫ ∞

0

∫
R

∫
Rn−1

|ψ̂ (a(chr + erρ), a(shr − erρ), aers) |2 dsdrda
a

=

∫ ∞

0

∫
R

∫
Rn−1

|ψ̂ (a(chr + e−rρ), a(shr − e−rρ), as
) |2 dsdrda

er(n−1)a

=

∫ ∞

0

∫
R

∫
Rn−1

|ψ̂ (a(chr + erρ),−a(shr + erρ), as) |2 e
r(n−1)dsdrda

a

=

∫
C

|ψ̂(y0,−y1, y∗)|2
(
r(y)

1
2

y0 − y1

)n−1
dy

r(y)
n+1

2

(by (A.4))

=

∫
C

|ψ̂(y0, y1, y∗)|2 dy0dy1dy∗
(y0 + y1)n−1r(y)

.

Thus from (A.1) and above calculation, we finally get the admissibility condition

0 < Cψ =

∫ ∞

0

∫
R

∫
Rn
|ψ̂(y0, y1, y∗)|2 dy0dy1dy∗

(y0 + y1)n−1r(y)
< +∞. �

A.2. Proof of Theorem 3.1 and (3.15). The proof of Theorem 3.1 goes like
the above calculation of the admissibility condition. In fact, by the Plancherel
formula, the change of variables given in (A.2), and formula (A.4), we have

〈Wψf,Wφh〉 =

∫
Π

(Wψf)∧(ξ, y)(Wφh)∧(ξ, y)
dξdy

r(y)n+1

=

∫
C

∫
C

f̂(ξ)ψ̂(r(y)
1
2 tΛr,sξ)ĥ(ξ)φ̂(r(y)

1
2 tΛr,sξ)

dξdy

r(y)
n+1

2

=

∫
C

∫ ∞

0

∫
R

∫
Rn−1

ψ̂(atΛr,sξ)φ̂(atΛr,sξ)
dsdrda

a
f̂(ξ)ĥ(ξ)dξ

(from the change of variables by (A.2))

=

∫
C

∫ ∞

0

∫
R

∫
Rn−1

ψ̂(atΛr,sω)φ̂(atΛr,sω)
dsdrda

a
f̂(ξ)ĥ(ξ)dξ

(similarly to (A.0))

=

∫
C

ψ̂(y0, y1, y∗)φ̂(y0, y1, y∗)
dy0dy1dy∗

(y0 + y1)n−1r(y)
(f, h)

= (K− 1
2φ,K− 1

2ψ)(f, h). �
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Proof of (3.15). Denote EA,B,δ1,δ2 := {(x, y) ∈ Π : |x| < A, δ1 < y0 < B, δ2 <
r(y)/y2

0}. Then we have

‖f − C−1
ψ

∫
EA,B,δ1,δ2

Wψf(z)Uzψdµ(z)‖2

= sup‖g‖2=1,g∈H2

∣∣∣∣∣
(
f − C−1

ψ

∫
EA,B,δ1,δ2

Wψf(z)Uzψ, g

)∣∣∣∣∣
≤ sup‖g‖2=1,g∈H2

∣∣∣∣∣C−1
ψ

∫
Π\EA,B,δ1,δ2

Wψf(z)Wψg(z)dµ(z)

∣∣∣∣∣
≤ sup‖g‖2=1,g∈H2

∣∣∣∣∣C−1
ψ

∫
Π\EA,B,δ1,δ2

|Wψf(z)|2dµ(z)

∣∣∣∣∣
1
2 ∣∣∣∣C−1

ψ

∫
Π

|Wψg(z)|2dµ(z)

∣∣∣∣ 12

≤
∣∣∣∣∣C−1
ψ

∫
Π\EA,B,δ1,δ2

|Wψf(z)|2dµ(z)

∣∣∣∣∣
1
2

(by Theorem 3.1).

Since the infinite integral
∫
Π
|Wψf(z)|2dµ(z) converges (by Theorem 3.1 again),∫

Π\EA,B,δ1,δ2
|Wψf(z)|2dµ(z) → 0, as δ1, δ2 → 0+, A,B → +∞. �

A.3. Proof of Theorem 4.1. We have shown that {C− 1
2

~k
ψ~k}~k is an orthonormal

basis of AAW ; let {ψ~k}~k denote this orthonormal basis for simplicity. Let {fκ}κ be

an orthonormal basis of H2. In order to prove Theorem 4.1, we need only to show
that {Wα

ψ~k
fκ}~k,κ is an orthonormal basis of H2α(Π). The orthonormality of these

functions is obvious (from (4.3)) and we need to show their completeness (closure)
in H2α(Π), for which it is enough to show that

‖F‖2
L2α(Π) =

∑
~k,κ

|(F,Wα
ψ~k
fκ)L2α(Π)|2(A.5)

for any F ∈ H2α(Π). We have for F ∈ H2α(Π)∫
Π

F (x, y)Wα
ψ~k
fκ(x, y)r(y)

αdxdy

=

∫
C

∫
C

F̂ (ξ, y)f̂κ(ξ)r(y)
− 2α+n+1

4 ψ̂~k(r(y)
1
2 tΛr,sξ)r(y)

αdξdy

(with Λr,sω = y/r(y)
1
2 )

=

∫
C

∫ ∞

0

∫
R

∫
Rn−1

f̂κ(ξ)F̂ (ξ, aΛr,sω)a
2α+n+1

2 ψ̂~k(a
tΛr,sξ)

dadrds

a
dξ

(from the change of variables by (A.2))

=

∫
C

∫ ∞

0

∫
R

∫
Rn−1

f̂κ(ξ)F̂ (ξ, aΛr,sω)ψ̂~k

(
ar(ξ)

1
2 t(Λr0,s0Λr,s)ω

)
· a 2α+n+1

2
dadrds

a
dξ (with ξ = r(ξ)

1
2 tΛr0,s0ω)
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=

∫
C

∫ ∞

0

∫
R

∫
Rn−1

f̂κ(ξ)F̂

(
ξ,

a

r(ξ)
1
2

Λ−1
r0,s0Λr,sω

)(
a

r(ξ)
1
2

) 2α+n+1
2

· ψ̂~k(atΛr,sω)
dadrds

a
dξ

=
(
M~k, fκ

)
H2 ,

where the M~k are given by (for ξ ∈ C)

M̂~k(ξ) =

(A.6)

1

r(ξ)
2α+n+1

4

∫ ∞

0

∫
R

∫
Rn−1

F̂

(
ξ,

a

r(ξ)
1
2

Λ−1
r0,s0Λr,sω

)
a

2α+n+1
2 ψ̂~k(a

tΛr,sω)
dadrds

a
.

Since {fκ}κ is an orthonormal basis of H2, we have∑
~k,κ

|(F,Wα
ψ~k
fκ)L2α(Π)|2 =

∑
~k,κ

| (M~k, fκ
) |2 =

∑
~k

‖M~k‖2
H2 .(A.7)

By (A.6) and the fact that {ψ̂~k}~k is an orthonormal basis of L2(C, dξ
(ξ0+ξ1)n−1r(ξ) )

(or {ψ̂~k(atΛr,sω)}~k is an orthonormal basis of L2(R∗+ × Rn, dadrds/a)) , we have∑
~k

|M̂~k(ξ)|2

= r(ξ)−
2α+n+1

2

∫ ∞

0

∫
R

∫
Rn−1

|F̂ (ξ,
a

r(ξ)
1
2

Λ−1
r0,s0Λr,sω)|2a2α+n+1 dadrds

a

= r(ξ)−
2α+n+1

2

∫ ∞

0

∫
R

∫
Rn−1

|F̂ (ξ, aΛr,sω)|2r(ξ) 2α+n+1
2 a2α+n+1 dadrds

a

=

∫
C

|F̂ (ξ, y)|2r(y) 2α+n+1
2

dy

r(y)
n+1

2

(by (A.4) again)

=

∫
C

|F̂ (ξ, y)|2r(y)αdy,

and thus ∑
~k

‖M~k‖2
H2 =

∑
~k

∫
C

|M̂~k(ξ)|2dξ(A.8)

=

∫
C

∫
C

|F̂ (ξ, y)|2r(y)αdydξ =

∫
Π

|F (x, y)|2r(y)αdxdy.

From (A.7) and (A.8), we get (A.5), and the proof of Theorem 4.2 is completed.�
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