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Abstract

The objective of this paper is to introduce a direct approach for generating
local averaging rules for both the

√
3 and 1-to-4 vector subdivision schemes for

computer-aided design of smooth surfaces. Our innovation is to directly construct
refinable bivariate spline function vectors with minimum supports and highest ap-
proximation orders on the six-directional mesh, and to compute their refinement
masks which give rise to the matrix-valued coefficient stencils for the surface sub-
division schemes. Both the C1-quadratic and C2-cubic spaces are studied in some
detail. In particular, we show that our C2-cubic refinement mask for the 1-to-4
subdivision can be slightly modified to yield an adaptive version of Loop’s surface
subdivision scheme.

1. Introduction

In computer graphics, surface subdivision schemes of special interest are designed to
generate (visually) continuous and smooth surfaces in an iterative manner, starting from
some initial triangulations in the three dimensional space (3-D), with each iterative step
consisting of two simple operations: generating a new set of points (called vertices) in
3-D, and connecting the vertices to give a new triangulation of higher resolution.

The two operations for each iterative step are governed by two rules. First a “topo-
logical rule” is needed to govern what new vertices are to be generated, and how they are
to be connected to complete the triangulation when the vertices are in place. The second
rule, called “local averaging rule”, is designed to generate the new vertices by taking
some weighted averages of the positions of the neighboring vertices from the previous
iteration, as instructed by the topological rule. If the old vertices (i.e. vertices from the
previous iteration) are not to be altered, the subdivision scheme is called an interpola-
tory subdivision scheme. On the other hand, if the local averaging rule is designed not

∗The research of the first author was supported by NSF Grants #CCR-9988289 and #CCR-0098331;
and ARO Grant # DAAD 19-00-1-0512. This author is also with Department of Statistics, Stanford
University, Stanford, CA 94305

1



only to generate new vertices, but to change the locations of the old vertices as well, the
subdivision scheme is called an approximation scheme.

The two rules, topological and local averaging rules, are specified in 2-D on a regular
triangulation. For example, the 1-to-4 split topological rule, which asks for a new vertex
between every two old vertices of each triangle (of the triangulation from the previous
iteration) and specifies the connectivity instruction of these new vertices that splits
the triangle into four sub-triangles, is described in the 2-D regular triangulation by
connecting the midpoints of the three edges of each triangle. This is shown in Figures
1-2, where Fig.1A gives a 2-D regular triangulation that represents the 3-D surface in
Fig.1B, while Fig.2A describes the 1-to-4 split topological rule. The actual positions of
the new vertices in 3-D are governed by a local averaging rule. In Fig.2B, we describe
such a rule by showing two coefficient stencils, one for the interior vertices and the other
for vertices on the boundary, with values of the weights placed next to the old vertices,
all shown in the 2-D representation. Fig.2C displays the finer triangulation after one
iteration of the initial triangulation in Fig.1B. Since the initial vertices are not altered,
this is an interpolatory subdivision scheme.

The 1-to-4 topological rule is most popular in the literature. For example, both the
butterfly subdivision scheme [4] and Loop’s scheme [16] engage the 1-to-4 topological
rule. One of the main reasons for its popularity is that local averaging rules associated
with it can be designed by considering the refinement (or two-scale) equation

φ(x) =
∑

k

pkφ(2x− k), x ∈ IR2, (1)

with finite mask {pk} that sum to 4, and that smoothness and polynomial preservation
properties of the refinable function φ contribute to the smoothness of the limiting 3-D
subdivision surfaces, when the values pk from the refinement equation (1) are used as
weights for the local averaging rule.

Recently, the so-called
√

3-subdivision scheme, introduced by Kobbelt [14] and Labsik-
Greiner [15], and further studied in [12, 13, 17], engages a different topological rule, to
be called

√
3-split rule in this paper for convenience. Here, again using a regular trian-

gulation in 2-D as representation, the center of each triangle represents a new vertex in
3-D to be generated, and the connectivity instruction of the

√
3-split topological rule is

to connect this new vertex to the three vertices of the triangle as well as to the three
new vertices that are centers of the neighboring triangles. In addition, the old edges
(i.e. edges from the previous iteration) are removed. In Figure 3, one iteration of the√

3-split is shown in Fig.3B, and the second iteration is shown in Fig.3C. Observe that
Fig.3C is a refinement of the triangulation in Fig.3A, and in fact, the dilation factor of
the scaling of the triangulation in Fig.3A to yield the triangulation in Fig.3C is equal to
3. This is why the subdivision with this topological rule is called

√
3-subdivision.

To derive local averaging rules for the
√

3-subdivision, the refinement equation (1)
is naturally modified to be

φ(x) =
∑

k

pkφ(Ax− k), x ∈ IR2, (2)
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Figure 1: Fig.1A: 2-D representation; Fig.1B: 3-D surface
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Figure 2: Fig.2A: 1-to-4 split topological rule; Fig.2B: Local averaging rule; Fig.2C: 3-D
surface

Figure 3: (Fig.3A, Fig.3B, Fig.3C) Topological rule of
√

3-subdivision scheme

Figure 4: (Fig.4A, Fig.4B) Triangular meshes 41
R, 43

R
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for some finite mask {pk} to be constructed, where A is a 2 × 2 matrix with integer
entries such that |detA| = 3. Examples of such matrices A are:

A0 =

[
1 2
−2 −1

]
, A1 =

[
2 −1
1 −2

]
, A2 =

[
−1 2
1 1

]
, A3 =

[
1 1
2 −1

]
, (3)

as well as AT
j , j = 0, . . . , 3. The so-called parametric approach [19, 18, 8, 5, 6] can be

applied to solve the refinement equation (2). In fact, this is the approach used in [12, 13]
with dilation matrix A = A0 in (3). Again, smoothness and polynomial preservation are
key ingredients for the smoothness of the 3-D subdivision surfaces.

Figure 5: (Fig.5A, Fig.5B) 3- and 6-directional meshes 41, 43

In this paper, we consider a different approach. To present our point of view, let
us first observe that if the edges from the previous iteration are not removed, then
the triangulation in Fig.3B can be regarded as a triangulation achieved by using the
6-directional triangular mesh 43

R shown in Fig.4B. In other words, the
√

3-split topo-
logical rule can be realized by considering some matrix dilation (and refinement) of 43

R.
Indeed, the dilation matrix A0 can be used for this purpose (see [12]). Of course the
local averaging rules must be designed to introduce weights associated with the old ver-
tices (from the previous iteration), which are vertices of the corresponding 3-directional
(triangular) mesh 41

R shown in Fig.4A. On the other hand, we believe that in studying
the refinement equation (2) with dilation matrix A, the meshes 41

R and 43
R are not ap-

propriate, since the translation operation in (2) is performed on the integer lattice ZZ2.
For this reason, we choose the (topologically equivalent) 3-directional and 6-directional
(triangular) meshes 41 and 43 shown in Figure 5, both of which are considered as
triangulations of the entire x-y plane IR2. To be more specific, the grid lines in 41 are
x = i, y = j, x − y = k, and 43 is the refinement of 41 by introducing additional grid
lines x + y = `, x − 2y = m, 2x − y = n where i, j, k, `,m, n ∈ ZZ. Hence, the

√
3-split

topological rule described in Figure 3 is translated to the description in Figure 5 for the
meshes 41 and 43. For the 6-directional mesh 43, we may choose the dilation matrices
A1, A2 or A3 (but not A0), since they provide the “mesh refinability” property:

A`43 ⊂ 43, ` = 1, 2, 3, (4)

in addition to satisfying the “grid partition condition”:

43 = 41 ∪ A−1
` 41, 41 ∩ A−1

` 41 =
1

2
ZZ2, ` = 1, 2, 3. (5)
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This will be proved in the next section. In this regard, we remark that by considering

41
− = {(x, y) : (−x, y) ∈ 41}, 43

− = {(x, y) : (−x, y) ∈ 43},

all of the matrices A0, A
T
1 , AT

2 , and AT
3 provide the mesh refinability property and satisfy

the grid partition condition, when 41,43 in (4)–(5) are replaced by 41
−,43

−.
To design the local averaging rules, the innovation we offer in this paper is to

construct compactly supported bivariate splines φ1, · · · , φn ∈ Sr
d(43) directly, so that

Φ = [φ1, · · · , φn]T is a refinement function vector of some refinement equation:

Φ(x) =
∑

k

PkΦ(Ax− k) (6)

with finite mask {Pk} of n×n matrices. The dilation matrices A of interest are A = A`,
` = 1, 2, 3, and 2I2, (but can be 3I2 as well). For

√
3-subdivision schemes, we only con-

sider A = A1 in this paper. Here, the notation Sr
d(43) denotes, as usual, the collection

of all functions in Cr(IR2) whose restrictions on each triangle of the triangulation 43 are
polynomials of total degree ≤ d. The local averaging rule corresponding to (6) is then
given by

vm+1
j =

∑

k

vm
k Pj−Ak, m = 0, 1, . . . , (7)

where vm
k := [vm

1,k, · · · ,vm
n,k] is a “row-vector” whose `th component vm

`,k is a “point” in
3-D, for ` = 1, . . . , n. In particular, the first components vm

1,k will be used for the 3-D
positions of the vertices of the triangulation resulting from the mth iterative step, with
{v0

1,k} denoting the set of vertices of the initial triangulation, and {v0
`,k}, ` = 2, . . . , n,

providing the 3(n− 1) parameters for shape control of the smooth subdivision surfaces.
The local averaging rule (7), together with an appropriate topological rule (

√
3-split or

1-to-4 split) constitute what is called a vector subdivision scheme.
We mention that in a recent work [7], Han, Yu, and Piper also study the vector-valued

refinement equation (6) for the design of vector subdivision schemes, but the method
of derivation in [7] follows the parametric approach (see, particularly [6]) instead. It is
interesting to point out that by choosing the parameters very cleverly, one may arrive at
a bivariate spline solution of (6) indirectly. For example, for the dilation matrix A = 2I2,
the parametric solution in [7] is indeed in the space S1

2(43), but for the dilation matrix
A = AT

0 , the solution in [7] is not a piecewise polynomial function vector. On the other
hand, again by the parametric approach, an unstable C3 quartic box spline solution of
the refinement equation (2) for the dilation matrix A = A0 was obtained in [12] for the
scalar-valued setting.

The direct refinable spline (function vector) approach we introduce in this paper can
be used to develop vector subdivision schemes for designing surfaces with arbitrarily
high order of smoothness by constructing refinable solutions from Sr

d(43) in general.
We will derive complete results for the spaces S1

2(43) and S2
3(43) for both A1 and 2I2.

Of course, by replacing 43 with 43
−, the dilation matrices A0, A

T
1 , AT

2 , AT
3 can be used

to yield analogous results for
√

3-subdivisions.

5



2. Preliminary results

Let A be any s×s matrix, s ≥ 2, with integer entries and all eigenvalues λ satisfying
|λ| > 1. For n ≥ 2, let Φ = [φ1, · · · , φn]T , with φ` ∈ L2 := L2(IRs) and supp φ` bounded,
` = 1, . . . , n, satisfy the refinement equation (6) for some finite sequence {Pk} of n× n
matrices, called the refinement mask of the refinement function vector Φ. Let

P (z) := | det A|−1
∑

k

Pkz
k

be the two-scale (matrix Laurent polynomial) symbol of Φ. Then P (z) is said to pos-
sess the property of sum rules of order m (or P ∈ SRm, for short), if there exists a
trigonometric polynomial t(ω) such that t(0) 6= 0 and

Dj(t(AT ω)P (e−iω))|ω=2πA−T ωh
= δh,0D

jt(0), |j| < m, (8)

where ωh, with ω0 = 0 and 0 ≤ h ≤ | det A| − 1, are the representers of ZZs/AT ZZs. Then
by setting

yα := (−iD)αt(0), |α| < m, (9)

it follows that

xj =
∑

k

{∑

α≤j

(
j

α

)
kj−αyα}Φ(x− k), x ∈ IRs, |j| < m; (10)

and hence, P ∈ SRm implies that Φ ∈ PPm, meaning that all polynomials of total
degree m− 1 can be reproduced locally by integer translates of Φ (see the survey paper
[10] and the references therein). Set

GΦ(ω) :=
∑

k∈ZZs

Φ̂(ω + 2kπ)Φ̂(ω + 2kπ)∗.

It was shown in [9] that under the assumption GΦ(0) > 0 (i.e. GΦ(0) is positive definite),
we have Φ ∈ PPm if and only if Φ has L2-approximation order m. Finally, we also
mention that {φ`(· − k) : k ∈ ZZs, ` = 1, . . . , n} is a Riesz basis of the L2-closure of its
linear span if and only if GΦ(ω) > 0 for all ω.

Let us now consider s = 2 and return to prove that the dilation matrices A = A`, ` =
1, 2, 3 in (3) satisfy (4) and (5).
Lemma 1. The matrices A1, A2, A3 provide the mesh refinability property (4) and satisfy
the grid partition condition (5).

Proof. We only provide the proof for A1, since the proof for A2 and A3 is similar. That
A1 satisfies (5) is easy to verify (see Figure 6). The inclusion property (4) then follows
from (5) and the fact that A−2

1 41 = 1
3
41, since

43 = 41 ∪ (A−1
1 41) ⊂ (

1

3
41) ∪ (A−1

1 41)

= (A−2
1 41) ∪ (A−1

1 41) = A−1
1 ((A−1

1 41) ∪41) = A−1
1 43. (11)
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Figure 6: 41 → A−1
1 41 → A−2

1 41 = 1
3
41

3. Local averaging rules for
√

3-subdivision schemes

Two local averaging rules are derived in this section for
√

3-subdivisions, one being
interpolatory and the other approximation. The interpolatory subdivision scheme is a
result of some refinable Hermite interpolating basis of S1

2(43), and the approximation
subdivision follows from the refinability of some basis functions in S2

3(43).

3.1.
√

3-subdivision based on S1
2(43).

(−1,0) 1 1
1/2

1

0

0
0

0

00

1/2

1/3

(0, −1)

(−1,0) 1/8

1/61/3

1/12

1/18

1/9
0

0

0
0

0 0

0

0
0

0
1/6

0
1/4

(0, −1)

0

0

0

0

1/12

0
0

Figure 7: Supports and Bézier-nets for ϕ1, ϕ2 and ϕ3(x, y) = ϕ2(y, x)

A Hermite basis of S1
2(43) was constructed in [3] (see the survey article [2] for

details). It consists of integer shifts of three compactly supported splines ϕ1, ϕ2, ϕ3 in
S1

2(43). The support and Bézier coefficients of ϕ1 and ϕ2 are shown in Figure 7, where
in view of the symmetry properties:

ϕ1(−x,−y) = ϕ1(x, y), ϕ1(y, x) = ϕ1(x, y), ϕ1(V ·) = ϕ1, ϕ1(W ·) = ϕ1, (12)

ϕ2(−x,−y) = −ϕ2(x, y), ϕ2(V ·) = ϕ2, (13)

with V =

[
1 0
1 −1

]
, and W =

[
−1 1
0 1

]
, there is no need to display those Bézier

coefficients not shown in the figure. Also, ϕ3(x, y) := ϕ2(y, x). Set Φa := [ϕ1, ϕ2, ϕ3]
T .

It is clear from the Bézier coefficients that Φa satisfies the Hermite interpolating property:
[
Φa,

∂

∂x
Φa,

∂

∂y
Φa

]
(k) = δk,0I3, k ∈ ZZ2. (14)
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Figure 8: Supports and Bézier-nets for ϕ1(A
−1
1 ·) and 3ϕ2(A

−1
1 ·)

We have the following result.
Theorem 1. Let ϕ1, ϕ2, ϕ3 be the compactly supported bivariate spline functions in
S1

2(43) with Bézier coefficients shown in Figure 7. Then

(i) {ϕj(· − k) : k ∈ ZZ2, j = 1, 2, 3} is a Hermite (and hence Riesz) basis of S1
2(43);

(ii) Φa = [ϕ1, ϕ2, ϕ3]
T is refinable with dilation matrix A1 and the refinement mask is

given by

P−1,−1 =
1

18




6 12 12
−1 −2 −2
1 2 2


 , P−1,0 =

1

18




6 24 −12
−2 −8 4
−1 −4 2


 ,

P0,−1 =
1

18




6 −12 24
1 −2 4
2 −4 8


 , P0,1 =

1

18




6 12 −24
−1 −2 4
−2 −4 8


 , (15)

P1,0 =
1

18




6 −24 12
2 −8 4
1 −4 2


 , P1,1 =

1

18




6 −12 −12
1 −2 −2
−1 2 2


 , P0,0 =

1

3




3 0 0
0 2 −1
0 1 −2


 .

(iii) The two-scale symbol P (z) satisfies P ∈ SR3 and hence, Φa locally reproduces all
bivariate quadratic polynomials; and

(iv) Φa has L2-approximation order 3.

Proof. We remark that (i) and (iv) were established in [3], but for completeness, we
give the proof of all the statements (i)–(iv) in the following.
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Let M, N be arbitrary positive integers and S1
2(43

MN) denote the restriction of
S1

2(43) on [0,M +1]×[0, N +1]. Since43
MN consists of 6(M +N +1) crosscuts, it follows

from the dimension formula in [1, Theorem 4.3] that dimS1
2(43

MN) = 3(M + 2)(N + 2).
Hence, as already shown in [2], the number of ϕj(· − k), j = 1, 2, 3 and k ∈ ZZ2, whose
supports overlap with [0,M + 1] × [0, N + 1], agrees with dimS1

2(43
MN). Since the

Hermite interpolating property (14) implies linear independence, and since M, N are
arbitrary, the statement (i) is valid. (For the proof of Riesz basis as a consequence of
linear independence, see [11]).

To prove (ii), we first observe that in view of (i) and the refinability property (4) of
A1, Φa is indeed refinable. To find the refinement mask {Pk} in (15), we first compute the
Bézier representation of ϕj(A

−1
1 ·), j = 1, 2, 3, on 43 as shown in Figure 8, by applying

the C2-smoothing formula in [1, Theorem 5.1], and then write down the linear equations
of ϕj(A

−1
1 ·), formulated as (finite) linear combinations of ϕ`(·−k), k ∈ ZZ, and evaluated

at the Bézier points. The (unique) solution, arranged in 3× 3 matrix formulation, gives
the mask shown in (15).

To prove (iii), it is not difficult to show that P ∈ SR3 by finding a vector-valued
trigonometric polynomial t that satisfies (8) and (9), with

y0,0 = [1, 0, 0], y1,0 = [0, 1, 0], y0,1 = [0, 0, 1], y2,0 = y1,1 = y0,2 = [0, 0, 0],

and hence, Φa reproduces all quadratic monomials 1, x, y, x2, xy, y2.
Finally, since the Hermite basis has linear independent integer shifts, it is a Riesz

basis of S1
2(43), so that GΦa(ω) > 0 for all ω and, in particular, GΦa(0) > 0. Hence,

the fact that Φa ∈ PP3, as shown in (iii), implies that Φa has L2-approximation order
3. This completes the proof of the theorem.

To describe the local averaging rule as given by (7) with | det A1| = 3 and Pk shown
in (15), we use the coefficient stencils shown in Figure 9, where the solid circles denote
the old vertices (i.e. vertices from the previous iteration) and the hollow circles denote
the new vertices. In particular, in Fig.9B, each old vertex is simply multipled by P0,0

from the right. Hence, recalling from (7) that the first components vm+1
1,j of vm+1

j specify
the locations of the vertices after mth iteration, we see, from

vm+1
j = [vm

1,A−1
1 j

,
2

3
vm

2,A−1
1 j

+
1

3
vm

3,A−1
1 j

, −1

3
vm

2,A−1
1 j
− 2

3
vm

3,A−1
1 j

], j ∈ A1ZZ
2,

that the old vertices are not altered in position. Hence, this local averaging rule gives
an interpolatory

√
3-subdivision scheme. The new vertices in 3-D are obtained, by

considering only the first components of the weighted averages as shown in Fig.9C and
Fig.9D, namely:

v1
e = v0

aP1,0 + v0
bP0,1 + v0

cP−1,−1, v1
f = v0

aP1,1 + v0
dP0,−1 + v0

cP−1,0

which depend on the orientation of the new vertices as described in Fig.9A.
To end this sub-section, we remark that since A2

1 = 3I2, Φ
a is also refinable with

dilation matrix 3I2 and the two-scale symbol is given by

P (e−iAT
1 ω)P (e−iω). (16)
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P 0,0

P 0,1

P1,0 P−1,−1

FIG.9.2 FIG.9.3

P1,1 P−1,0

P0,−1

FIG.9.4

a

FIG.9.1

f

e

d

c

b

Figure 9: Coefficient stencils for the local averaging rule for the
√

3-subdivision

3.2.
√

3-subdivision scheme based on S2
3(43). Again let S2

3(43
MN) denote the

restriction of S2
3(43) on [0,M + 1] × [0, N + 1]. Then the dimension formula in [1,

Theorem 4.3] gives
dimS2

3(43
MN) = 2MN + 6M + 6N + 16. (17)

Since the coefficient of MN is 2, we believe that S2
3(43) is generated by integer shifts

(−1, 0)

(0, −1)

1 1/41/2
1/6

1/4
1

1 1/2 0 0 0

0

0
00 0

00
00

1/91/3

Figure 10: Support and Bézier-nets for φ1

of two compactly supported functions φ1 and φ2 in S2
3(43). Based on the Bézier for-

mulation of the univariate cardinal cubic B-spline (see [1, p. 13]), it is not difficult to
construct the bivariate C2 cubic spline φ1 with minimum support, by applying the C2-
smoothing formula (see [1, Theorem 5.1]) and normalization condition φ1(0) = 1, as
shown in Figure 10, where only a portion of the Bézier coefficients are displayed due to
the symmetry property as described by (12) for a different basis function. For the other
compactly supported basis function, we choose

φ2 = φ1(A
−1
1 ·). (18)

This choice of φ2 is in some sense “optimal”, since supp φ2 contains 7 (interior) vertices
of 41 and any φ with supp φ containing less than 7 vertices of 41 must be in the linear
span of φ1(· − k), k ∈ ZZ2. Hence, φ2, as defined in (18), may be considered as a basis
function in S2

3(43) with the “second smallest” support.
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As usual, set
Vj := closL2〈φ1(A

j
1 · −k) : k ∈ ZZ2〉, (19)

and in view of (18), consider
Uj := Vj + Vj−1. (20)

While it is not difficult to show that {Vj} is not a nested sequence of subspaces, we will
prove that {Uj} is. Hence, Φb := [φ1, φ2] is indeed refinable. Unfortunately, inspite of
their minimum supports, the number of φ1(· − j) and φ2(· − k), k ∈ ZZ, whose supports
overlap with [0,M + 1] × [0, N + 1] is 2MN + 6M + 6N + 18, which is larger than
dimS2

3(43
MN) by 2. In other words, the integer shifts of φ1 and φ2 are governed probably

by two linear dependence relations. To derive their linear dependence relationship, we
introduce the function

g := φ1 − 3

2
φ2 (21)

and establish the following.

Theorem 2. Let φ1 ∈ S2
3(43) with Bézier coefficients shown in Figure 10, and g be

given by (21) with φ2 defined by (18). Then g satisfies the following identities:

G1 :=
∑

k∈ZZ2

{g(· − A1k)− g(· − A1k + (1, 0))} = 0; (22)

G2 :=
∑

k∈ZZ2

{g(· − A1k)− g(· − A1k− (1, 0))} = 0. (23)

Furthermore, these two independent identities describe the only linear dependence rela-
tionship between φ1 and φ2.
Proof. Let Ω0 := supp φ1, as shown in Figure 10. It is clear that ∪j∈ZZ2(Ω0 +A1j) = IR2.
Hence, since G1(·+ A1j) = G1 for all j ∈ ZZ2, it is sufficient to show that G1 = 0 on Ω0.
This fact can be easily verified by evaluating G1 at each Bézier point in Ω0. The proof
of (23) is similar.

To show that (22) and (23) govern the only linear dependence relationship, we set

∑

k∈ZZ2

{ckφ1(x− k) + dkφ2(x− k)} = 0, x ∈ [−1, 1]× [−1, 1].

Then the coefficients ck and dk are uniquely determined by evaluating the equation at
the Bézier points, giving the precise relationship of these coefficients, namely

c1,−1 = c−1,1 = c0,0 =: α, c0,−1 = c1,1 = c−1,0 =: β,

c−1,−1 = c0,1 = c1,0 = −(α + β),

d0,0 = d−1,1 = d1,−1 = d−2,−1 = d−1,−2 = d2,1 = d1,2 = −3

2
α,

d−2,1 = d−1,0 = d0,−1 = d1,−2 = d−2,−2 = d0,2 = d1,1 = d2,0 = −3

2
β,

d−1,2 = d0,1 = d1,0 = d2,−1 = d2,2 = d−2,0 = d−1,−1 = d0,−2 =
3

2
(α + β),
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where α and β are free parameters.

Theorem 3. Let φ1 ∈ S2
3(43), with Bézier coefficients shown in Figure 10, and φ2 be

defined by (18). Then

(i) S2
3(43) = closL2〈φj(· − k) : k ∈ ZZ2, j = 1, 2〉;

(ii) Φb = [φ1, φ2]
T is refinable with dilation matrix A1, and the two-scale symbol is

given by

PA1(z) :=
1

3

[
0 1

1
9

+ 2
27

p(z) + 1
27

p(z2) + 1
27

q(z) 2
3

+ 1
3
p(z)

]
,

where for z = (z1, z2), z2 := (z2
1 , z

2
2), and

p(z) := z1 + z−1
1 + z2 + z−1

2 + z1z2 + (z1z2)
−1,

q(z) := z2
1z2 + z−2

1 z−1
2 + z1z

2
2 + z−1

1 z−2
2 + z1z

−1
2 + z−1

1 z2; (24)

(iii) PA1 ∈ SR4, and hence, Φb locally reproduces all bivariate cubic polynomials;

(iv) Φb has L2-approximation order 4.

Proof. The conclusion (i) follows from Theorem 2 and the fact that the number of
φ1(· − j) and φ2(· − k) whose supports overlap with [0,M + 1] × [0, N + 1] equals to
dim S2

3(4MN) + 2. Hence, in view of (4), Φb is refinable. To compute the refinement
mask, and hence the two-scale symbol PA1(z), we need to find all the Bézier coefficients
of φj(A

−1
1 ·), j = 1, 2, on 43 by applying the C3-smoothing formula in [1, Theorem 5.1]

and solving the equation (7) at the Bézier points. That P (z) has the property of SR4

can be verified as in the proof of Theorem 1. Hence, Φb ∈ PP4 with y` in (10) given by

y0,0 = [1/6, 1/2], y1,0 = y0,1 = [0, 0], y2,0 = y0,2 = [1/18, −1/6],

y1,1 = [1/36, −1/12], y3,0 = y2,1 = y1,2 = y0,3 = [0, 0].

This completes the proof of (iii).
To prove (iv), let us first show that GΦb(0) > 0. Indeed, if this were false, then there

exists a nontrivial pair (c1, c2) of constants for which [c1, c2]GΦb(0)[c1, c2]
∗ = 0, and this

has the equivalent formulation
∑

k |c1φ̂1+c2φ̂2|2(2kπ) = 0, so that (c1φ̂1+c2φ̂2)(2kπ) = 0;
and by the Poisson summation formula, we have

∑
k{c1φ1 + c2φ2}(· − k) = 0. This

contradicts with Theorem 2. Hence, we have GΦb(0) > 0. Recall that under this
condition, order of local polynomial reproduction is equivalent to L2-approximation
order. Therefore, (iv) follows from (iii). This completes the proof of the theorem.

To describe the local averaging rule as given by (7) with | det A1| = 3 and Pk given
by the matrix coefficients of PA1(z), we introduce the notations

a :=

[
0 0

2/27 1/3

]
, b :=

[
0 0

1/27 0

]
, (25)

12



and observe that the nonzero Pk’s are given by P0,0 =

[
0 1

1/9 2/3

]
and

P1,0 = P−1,0 = P0,1 = P0,−1 = P1,1 = P−1,−1 = a,

P2,0 = P−2,0 = P0,2 = P0,−2 = P2,2 = P−2,−2 = b, (26)

P2,1 = P−2,−1 = P1,2 = P−1,−2 = P1,−1 = P−1,1 = b.

In Figure 11, we display the coefficient stencils for this local averaging rule. Observe that
the

√
3-subdivision scheme with this rule is not interpolatory in that the old vertices are

altered by applying the coefficient stencil shown in the second figure of Figure 11.

b

b

a

bb a

a

b

b

b

b

b

b

a

ba

a

b

0,0P

Figure 11: Coefficient stencils for the local averaging rule for the
√

3-subdivision

Remark 1. The basis function φ1, with Bézier coefficients shown in Figure 10, is
related to ϕ2, ϕ3, with Bézier coefficients shown in Figure 7, as follows:

∂φ1

∂x
= −12ϕ2 + 6ϕ3,

∂φ1

∂y
= 6ϕ2 − 12ϕ3.

4. Local averaging rules for 1-to-4 split subdivisions

1 1

1

1

4/3

4/3

4/3

14/9

5/3

5/3

1

3/2

3/2

3/2

3/25/4

1/9

1/3

1/3

1/3

1/3

1/3

1/2

1/2
1/2

1/2

1/2

4/3
2/9

1/2

1/6

1/6
1/4

1/4

1/4

8/9

4/9

2/3

2/3

2/3

1/9

1/6

1/6

0

0

0

0
0

0

0

0
0

0 0
0

0

0
0

0

0

0

0

0
0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

1/3

1/32/3

2/3

7/9
5/6

3/4

2/3

(0, 2)

1 1

1
7/8

5/6
3/4

1/4

1/4
5/8

5/8
1/2

1/2

1/3
1/4

3/8
1/8

1/8

1/8

1/12

3/16

0
0

0

0

0

0

0

0
0

0 07/8 3/4

3/4

1/2

(0, 2)

Figure 12: Support and Bézier-nets for ϕ1(·/2)and 8ϕ2(·/2)
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Since the matrix A = 2I2 also has the mesh refinability property 243 ⊂ 43, the
theory derived in the previous section applies to 1-to-4 split subdivisions as well. In
particular, for S1

2(43) with Φa = [ϕ1, ϕ2, ϕ3] as shown in Figure 7, it is not difficult to
compute the refinement mask with dilation matrix 2I2 with

P0,0 = diag(1, 1
2
, 1

2
), P1,1 =

1

8




4 −4 −4
1 0 −2
1 −2 0


 , P1,0 =

1

8




4 −8 4
1 −2 2
0 0 2


 ,

P−1,0 =
1

8




4 8 −4
−1 −2 2
0 0 2


 , P−1,−1 =

1

8




4 4 4
−1 0 −2
−1 −2 0


 , (27)

P0,1 =
1

8




4 4 −8
0 2 0
1 2 −2


 , P0,−1 =

1

8




4 −4 8
0 2 0
−1 2 −2


 ,

by using the Bézier-nets of Φa and Φa( ·
2
) shown in Figure 7 and Figure 12, respec-

tively. We note that this agrees with the refinement mask obtained in [7], using an
indirect parametric approach. The local averaging rule for this subdivision is described
by the coefficient stencils shown in Figure 13. Observe that this subdivision scheme is
interpolatory.

P 0,0

P

P−1,−1

P1,1

P0,−1

P1,0 P−1,0

0,1

Figure 13: Coefficient stencils for the local averaging rule for the 1-to-4 subdivision

As for S2
3(43), the bivariate spline function φ1 shown in Figure 10 also gives rise to

a refinable function vector Φb = [φ1, φ2] with dilation matrix 2I2, where φ2 = φ1(A
−1
1 ·)

as defined in (18). The refinement mask is determined by the two-scale symbol

P2I2(z) =
1

32

[
−1 + p(z) 9

1 + 2
3
p(z) + 1

3
p(z2) + 1

3
q(z) 5 + 3p(z) + q(z)

]
, (28)

where p(z) and q(z) are the Laurent polynomials given in (24). To describe the corre-
sponding local averaging rule, we introduce the notations

c :=
1

24

[
3 0
2 9

]
, d :=

1

24

[
0 0
1 0

]
, e :=

1

24

[
0 0
1 3

]
, (29)

and observe that the nonzero coefficients of P2I2(z) in (28) are given by P0,0 = 1
8

[
−1 9
1 5

]

and

P1,0 = P−1,0 = P0,1 = P0,−1 = P1,1 = P−1,−1 = c,
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P2,0 = P−2,0 = P0,2 = P0,−2 = P2,2 = P−2,−2 = d, (30)

P2,1 = P−2,−1 = P1,2 = P−1,−2 = P1,−1 = P−1,1 = e.

The coefficient stencils of this subdivision scheme are shown in Figure 14.

P

d d
e

e

cc

dd

d d

0,0

Figure 14: Coefficient stencils for the local averaging rule for the 1-to-4 subdivision

5. Further subdivision results based on S2
3(43)

In this section, we recapture and modify Loop’s scheme by a simple modification of
our 1-to-4 subdivision scheme based on S2

3(43) and introduce two other local averaging
rules, also based on S2

3(43).

3/8

1/16

5/8

1/16

1/16

1/16 1/16

1/16

1/8 

1/8 

3/8

Figure 15: Coefficient stencils for the local averaging rule for the Loop’s subdivision
scheme

5.1. Loop’s scheme with control parameters. Loop’s scheme is a 1-to-4 split
subdivision scheme with local averaging rule derived from the two-scale symbol

PL(z) :=
1

32
{5 + 3p(z) + q(z) +

1

2
p(z2)}, (31)

of the box-spline B222 on 41 where p and q are given in (24) (see [1, pp. 37–38] for
a discussion of B2r2r2r ∈ S2r−2

3r−2(41), and in particular, B222 ∈ S2
4(41), as the “only”

compactly supported generator). The coefficient stencils for Loop’s scheme are shown
in Figure 15.

Now, return to the matrix-valued Laurent polynomial symbol P2I2 in (28) of the
refinement function vector Φb = [φ1, φ1(A

−1
1 ·)], and consider its modification

Φ̃ := UΦb, U :=

[
1
3

1
1
3
−1

]
. (32)
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It is clear that Φ̃ is again refinable with dilation matrix 2I2 and two-scale symbol

P̃ (z) = UP2I2(z)U
−1 =

[
PL(z) − 3

32
+ 1

64
p(z2)

− 3
32
− 1

16
p(z)− 1

64
p(z2)− 1

32
q(z) − 1

32
+ 1

32
p(z)− 1

64
p(z2)

]
,

(33)
where the (1, 1)-entry of P̃ is the two-scale symbol PL of B222. Hence, if we consider the
projection operator

Q : vk = [v1,k, v2,k] → [v1,k, 0],

and set S{vm
k } := {vm+1

j } in (7) (with A = 2I2 and {Pk} being the matrix-valued

coefficients of P̃ (z) in (33)), then it follows that (SQ)m{v0
k} generates the same 3-D

surface as Loop’s scheme, by considering only the first component of (SQ)mv0
k. Since

v0
k = [v0

1,k,v
0
2,k], where {v0

1,k} denotes the set of initial vertices, we gain a set of control
parameters {v0

2,k} for adaptive application of Loop’s subdivision scheme.

5.2. More averaging rules based on S2
3(43). The local averaging rules shown in

Figure 11 and Figure 14 for the
√

3-split and 1-to-4 split topological rules, respectively,
are based on the refinable function vector [φ1, φ1(A

−1
1 ·)] with φ1 ∈ S2

3(43). Observe that
the same φ2 = φ1(A

−1
1 ·) was used, even for the dilation matrix 2I2.

Let us now choose φ1((2I2)
−1·) = φ1(

·
2
) as φ2, and compute the two-scale symbols

P̃A1(z) and P̃2I2(z) of Φ̃b := [φ1, φ1(
·
2
)]T , with dilation matrices A1 and 2I2, respectively.

This can be achieved simply by observing that ̂φ1(
·
2
) = 4φ̂1(2ω) and applying (28) to

obtain
̂̃
Φb(ω) =

1

8

[
8 0

p(z)− 1 9

]
Φ̂b(ω),

which immediately yields:

P̃A1(z) =
1

72

[
8 0

p(e−iAT
1 ω)− 1 9

]
PA1(z)

[
9 0

1− p(z) 8

]
,

and

P̃2I2(z) =
1

72

[
8 0

p(e−i2ω)− 1 9

]
P2I2(z)

[
9 0

1− p(z) 8

]
.
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