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Compactly Supported Orthogonal and Biorthogonal√
5-refinement Wavelets with 4-fold Symmetry

Qingtang Jiang

Abstract—Recently
√

5-refinement hierarchical sampling has
been studied and

√
5-refinement has been used for surface

subdivision. Compared with other refinements such as the dyadic
or quincunx refinement,

√
5-refinement has a special property

that the nodes in a refined lattice form groups of five nodes
with these five nodes having different x and y coordinates. This
special property has been shown to be very useful to represent
adaptively and render complex and procedural geometry. When√

5-refinement is used for multiresolution data processing,
√

5-
refinement filter banks and wavelets are required. While the con-
struction of 2-dimensional nonseparable (bi)orthogonal wavelets
with the dyadic or quincunx refinement has been studied by
many researchers, the construction of (bi)orthogonal wavelets
with

√
5-refinement has not been investigated. The main goal

of this paper is to construct compactly supported orthogonal
and biorthogonal wavelets with

√
5-refinement. In this paper

we obtain block structures of orthogonal and biorthogonal
√

5-
refinement FIR filter banks with 4-fold rotational symmetry.
We construct compactly supported orthogonal and biorthogonal
wavelets based on these block structures.

Index Terms—
√

5-refinement,
√

5-refinement multiresolution
decomposition/reconstruction,

√
5-refinement orthogonal and

biorthogonal wavelets, orthogonal and biorthogonal filter banks
with 4-fold symmetry.

EDICS Category: TEC-MRS Multiresolution Processing
of Images & Video

I. INTRODUCTION

The construction of compactly supported 2-dimensional
nonseparable orthogonal and biorthogonal wavelets has been
studied by many researchers, see e.g. [1]-[18]. The refinement
considered in those papers is either the dyadic or quincunx
refinement. See Fig.1 for a square lattice (top-left), its re-
fined lattices by the dyadic refinement (top-right) and by
the quincunx refinement (bottom). Recently

√
5-refinement

hierarchical sampling has been studied in [19], [20], and
√

5-
refinement has been used for surface subdivision in [21], [22].

To describe
√

5-refinement or
√

5-subdivision, let us con-
sider the square lattice of Z2, as the coarse lattice. To obtain
the refined lattice, for each k ∈ Z2, select four points
k + (2/5, 1/5),k + (4/5, 2/5),k + (3/5, 4/5),k + (1/5, 3/5)
(to be called new nodes) within the square with nodes
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Fig. 1. Square lattice (top-left), refined lattice by dyadic refinement
(top-right) and refined lattice by quincunx refinement (bottom)
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Fig. 2. 4 new points added in each square (top-left), refined lattice
after one

√
5 refinement (top-right), five points aggregated as a group

(bottom)

k,k+(1, 0),k+(1, 1) and k+(0, 1). See the picture in the top-
left of Fig.2 for the case k = (0, 0). Then the new nodes and
the old nodes k of the coarse lattice Z2 form a new (refined)
square lattice shown in the top-right of Fig.2. Observe that in
the refined lattice, an old node and its four neighbors form
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a group of five nodes with these five nodes having different
x and y coordinates. See the bottom picture of Fig.2. This
special property has been shown to be very useful in [19]
when

√
5-refinement is used to represent adaptively and render

complex and procedural geometry. When
√

5-refinement is
used for multiresolution data processing,

√
5-refinement filter

banks and wavelets are required. To the best of the author’s
knowledge, there are no

√
5-refinement filter banks or wavelets

available in the literature. The main goal of this paper is to
investigate the construction of compactly supported orthogonal
and biorthogonal wavelets with

√
5-refinement.

This paper is organized as follows. In Section II, we discuss
the

√
5-refinement and its associated dilation matrices, and

give a brief review on (bi)orthogonality of
√

5-refinement
filter banks and wavelets. In that section, we also provide√

5-refinement multiresolution decomposition/reconstruction
algorithm. In Section III, we present a block structure of FIR
filter banks with 4-fold rotational symmetry. The construction
of orthogonal and biorthogonal FIR filter banks of 4-fold
rotational symmetry is studied in Sections IV and V, resp.

In this paper, for a positive integer n, we use In to denote
the n × n identity matrix. For a matrix M , M∗ denotes its
conjugate transpose MT , and for a nonsingular matrix M ,
M−T denotes (M−1)T . In the following, a point x in IR2 is
written as a vector: x = [x1, x2]T . For x = [x1, x2]T ,y =
[y1, y2]T ∈ IR2, x · y denotes their dot (inner) product xT y.

II. COMPACTLY SUPPORTED
√

5-REFINEMENT WAVELETS

In this section, first we discuss
√

5-refinement and its
associated dilation matrix. After that we give a brief re-
view on (bi)orthogonality of

√
5-refinement filter banks and

wavelets, and present
√

5-refinement multiresolution decom-
position/reconstruction algorithm.

A.
√

5-refinement

Fig. 3. Lattice Z2 (with nodes • and ◦) and coarse lattice (with
nodes ◦), and their associated grids

Let Z2
1/5 denote the refined (subdivided) lattice of Z2 after

one
√

5-refinement, namely, Z2
1/5 is the lattice shown in the

top-right of Fig.2. In general, let Z2
5−n denote the refined

lattice after nth step of
√

5-refinement (subdivision) iterations.

We use Z2
5n , n > 0, to denote the coarse lattice of Z2 after nth√

5-refinement (
√

5-subsampling) iterations. Z2
5 (with nodes

denoted by circles ◦) is shown in Fig.3, where two square
grids formed by connecting nodes k of Z2 and nodes of Z2

5

to their four neighbors are also provided.
For an (input) image sampled on Z2, the nodes of Z2

5n can
be considered as the sampling points of the subsampling image
when the multiresolution decomposition algorithm is applied n
times to the input image. To provide the multiresolution image
decomposition/reconstruction algorithm, we need to choose a
2× 2 matrix M , called the dilation matrix, such that it maps
the lattice Z2

5j−1 onto its coarse lattice Z2
5j , j ∈ Z. There are

several choices for such a matrix M . For example, we may
choose M to be one of the matrices:

M1 =
[

2 −1
1 2

]
, M2 =

[
2 1
1 −2

]
. (1)
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Fig. 4.
√

5 spiraling (top) and togging (bottom) subsampling

When M1 is applied once to Z5j−1 , the axes of M1Z5j−1 ,
the image of Z5j−1 with M1, keeps the orientation but is
rotated counterclockwise about 26.6◦ (arctan( 1

2 )) with respect
to the axes of Z5j−1 , see the top part of Fig.4, where
a1, · · · ,h1 are the images of a, · · · ,h with M1. When M2 is
applied once to Z5j−1 , the axes of M2Z5j−1 are rotated and
reflected from those of Z5j−1 , see the bottom part of Fig.4,
where a2, · · · ,h2 are the images of a, · · · ,h with M2. When
M2 is applied twice, the axes of (M2)2Z5j−1 are the same as
those of Z5j−1 since (M2)2 is 5I2. In [20], the subsampling
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with M1 and M2 is called the spiraling subsampling and
toggling subsampling, resp.

B.
√

5-refinement (bi)orthogonal wavelets and multiresolution
decomposition/reconstruction algorithm

In this subsection we recall (bi)orthogonality for
√

5-
refinement wavelets, and provide

√
5-refinement multiresolu-

tion decomposition/reconstruction algorithm.
Let M be a

√
5-refinement dilation matrix, a 2× 2 integer

matrix which maps Z2 onto Z2
5. For example, we may choose

M to be M1 or M2 in (1). Functions ψ(1), · · · , ψ(4) ∈ L2(IR2)
are called

√
5-refinement orthogonal wavelets (with dilation

matrix M ) if {ψ(1)
j,k(x), · · · , ψ(4)

j,k(x) : j ∈ Z, k ∈ Z2}
forms an orthonormal basis of L2(IR2), where for a function
f on IR2, fj,k(x) = 5j/2f(M jx − k). Two sets of func-
tions {ψ(1), · · · , ψ(4)} and {ψ̃(1), · · · , ψ̃(4)} on IR2 are called
biorthogonal wavelets (with dilation matrix M ) if they gen-
erate biorthogonal bases of L2(IR2): {ψ(`)

j,k(x) : j ∈ Z,k ∈
Z2, 1 ≤ ` ≤ 4} and {ψ̃(`)

j,k(x) : j ∈ Z,k ∈ Z2, 1 ≤ ` ≤ 4}
are Riesz bases of L2(IR2) and they are biorthogonal to each
other:

∫

IR2
ψ

(`)
j,k(x)ψ̃(`)

j′,k′(x)dx = δ`−`′δj−j′δk−k′ ,

for 1 ≤ `, `′ ≤ 4, j, j′ ∈ Z,k,k′ ∈ Z2, where δ is the
kronecker-delta sequence.

(Bi)orthogonal wavelet construction is associated with
the multiresolution analysis [23], [24]. With this approach,
biorthogonal wavelets ψ(`), ψ̃(`) are given by

ψ(`)(x) =
∑

k∈Z2

q
(`)
k φ(Mx−k), ψ̃(`)(x) =

∑

k∈Z2

q̃
(`)
k φ̃(Mx−k)

(2)
where q

(`)
k , q̃

(`)
k ∈ IR with finitely many q

(`)
k 6= 0, q̃

(`)
k 6= 0, φ

and φ̃ are scaling functions satisfying

φ(x) =
∑

k∈Z2

pkφ(Mx− k), φ̃(x) =
∑

k∈Z2

p̃kφ̃(Mx− k) (3)

with pk, p̃k ∈ IR and pk 6= 0, p̃k 6= 0 for finitely many k.
To construct biorthogonal wavelets, we first construct φ and
φ̃ such that they are biorthogonal duals:

∫

IR2
φ(x)φ̃(x− k) dx = δk, k ∈ Z2.

Let p(ω) and p̃(ω) be the finite impulse response (FIR)
filters with their impulse response coefficients pk and p̃k (here
a factor 1/5 is added for convenience):

p(ω) = 1/5
∑

k∈Z2

pke−ik·ω, p̃(ω) = 1/5
∑

k∈Z2

p̃ke−ik·ω.

One can show that if φ and φ̃ are biorthogonal duals, then
p(ω) and p̃(ω) satisfy

∑

0≤j≤4

p(ω + 2πM−T ηj)p̃(ω + 2πM−T ηj) = 1 (4)

for ω ∈ IR2, where ηj , 0 ≤ j ≤ 4, are the representatives of
the group Z2/(MT Z2). For example, when M is the dilation
matrix M1 or M2 in (1), ηj , 0 ≤ j ≤ 4 are

{
η0 = [0, 0]T , η1 = [1, 0]T , η2 = [0, 1]T

η3 = [−1, 0]T , η4 = [0,−1]T .
(5)

For a (lowpass) filter p(ω) = 1/5
∑

k∈Z2 pke−ik·ω , we say
that p(ω) has sum rule order K if

p(0) = 1, Dα1
1 Dα2

2 p(2πM−T ηj) = 0, 1 ≤ j ≤ 4 (6)

for all nonnegative integers α1, α2 with 0 ≤ α1 + α2 < K,
where D1 and D2 denote the differential operators ∂

∂ω1
and

∂
∂ω2

resp. Under certain conditions, sum rule order of p(ω)
is equivalent to the approximation order and accuracy of the
scaling function φ associated with p(ω). The reader sees [25],
[26] and the references therein for the details. When M is
M1 or M2, the condition for sum rule order K of p(ω) is
equivalent to that

∑
k pk = 5 and for all 0 ≤ α1 + α2 < K,

∑

k

(Mk1)α1(Mk2)α2p(Mk1,Mk2)

=
∑

k

(Mk1 + 1)α1(Mk2)α2p(Mk1+1,Mk2)

=
∑

k

(Mk1)α1(Mk2 + 1)α2p(Mk1,Mk2+1)

=
∑

k

(Mk1 − 1)α1(Mk2)α2p(Mk1−1,Mk2)

=
∑

k

(Mk1)α1(Mk2 − 1)α2p(Mk1,Mk2−1).

For an FIR lowpass filter p(ω) = 1/5
∑

k∈Z2 pke−ik·ω ,
let Tp denote its transition operator matrix Tp =
[PMk−j]k,j∈[−N,N ]2 , where Pj = 1/5

∑
n∈Z2 pn−jpn and N

is a suitable positive integer depending on the filter length of
p and the dilation matrix M . We say Tp to satisfy Condition
E if 1 is its simple eigenvalue and all other eigenvalues λ of
Tp satisfy |λ| < 1. It was shown that (refer to [27]-[29]), if
p(ω), p̃(ω) satisfy (4), both p(ω) and p̃(ω) have sum rule order
(at least) 1, and the transition operator matrices Tp and T

p̃

associated with p and p̃ satisfy Condition E, then φ and φ̃ are
biorthogonal duals. Furthermore, if q(`)(ω), q̃(`)(ω), 1 ≤ ` ≤ 4
are FIR filters satisfying

∑

0≤j≤4

p(ω + 2πM−T ηj)q̃(`)(ω + 2πM−T ηj) = 0 (7)

∑

0≤j≤4

q(`′)(ω + 2πM−T ηj)q̃(`)(ω + 2πM−T ηj) (8)

= δ`′−`,

for 1 ≤ `, `′ ≤ 4 and ω ∈ IR2, then ψ(`) and ψ̃(`), 1 ≤
` ≤ 4 define by (2) with q

(`)
k and q̃

(`)
k resp. are biorthogonal

wavelets (see e.g. [30], [31]). Filter banks {p, q(1), · · · , q(4)}
and {p̃, q̃(1), · · · , q̃(4)} are commonly said to be biorthogonal
(with dilation matrix M ) if they satisfy (4), (7) and (8); and
a filter bank {p, q(1), · · · , q(4)} is commonly referred to be
orthogonal (with dilation matrix M ) if it satisfies (4), (7) and
(8) with p̃ = p, q̃(`) = q(`), 1 ≤ ` ≤ 4.
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For filter banks {p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(4)},
the multiresolution decomposition algorithm with a dilation
matrix M for an input image ck,0 is

{
cn,j+1 = (1/

√
5)

∑
k∈Z2 pk−Mnck,j

d
(`)
n,j+1 = (1/

√
5)

∑
k∈Z2 q

(`)
k−Mnck,j

with n ∈ Z2, ` = 1, · · · , 4, where j = 0, 1, · · · , J−1 for some
positive integer J , and the reconstruction algorithm is

ĉk,j =
1√
5
(
∑

n∈Z2

p̃k−Mnĉn,j+1 +
∑

1≤`≤4

∑

n∈Z2

q̃
(`)
k−Mnd

(`)
n,j+1)

for j = J − 1, J − 2, · · · , 0, where ĉn,J = cn,J . If
{p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(4)} are biorthogonal,
then ĉk,j = ck,j , 0 ≤ j ≤ J − 1 for any input image ck,0.
Therefore, a biorthogonal filter banks is also referred to be
perfect reconstruction filter banks.

Thus, to construct
√

5-refinement (bi)orthogonal wavelets,
first, we choose a dilation matrix M which maps Z2

onto Z2
5. After that we construct (bi)orthogonal filter banks

{p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(4)}. If these filter banks
are given by some parameters, then we select parameters such
that the resulting p and p̃ have sum rule order (at least) 1 and
the corresponding Tp and T

p̃
satisfy Condition E.

In the following sections we obtain block structures of
orthogonal/biorthogonal FIR filter banks with 4-fold rota-
tional symmetry. These orthogonal/biorthogonal filter banks
are given by some free parameters. We are going to select the
parameters such that the resulting p(ω) and p̃(ω) have sum
rule of certain order, and that the associated scaling functions
φ, φ̃ have (locally) optimal (Sobolev) smoothness. For s ≥ 0,
W s(IR2) denotes the Sobolev space consisting of functions
f(x) on IR2 with

∫
IR2(1+ |ω|2)s|f̂(ω)|2dω < ∞, where f̂ de-

notes the Fourier transform of f : f̂(ω) =
∫
IR2 f(x)e−ix·ωdx.

[32], [33] provide the Sobolev smoothness formulas for scaling
functions/vectors. The reader refers to [34] for algorithms and
Matlab routines to find the Sobolev smoothness order.

Remark 1: Observe that {M−T
1 ηj : 0 ≤ j ≤

4}={M−T
2 ηj : 0 ≤ j ≤ 4}. Thus we can conclude that if

a pair of filter banks are biorthogonal with one dilation matrix
of M1 and M2, then they are also biorthogonal with the other
dilation matrix. Furthermore, if a lowpass filter has sum rule
order K with one of M1 and M2, then it also has sum rule
order K with the other dilation matrix.

In the rest of this paper, without loss of the generality, M
denotes the matrix M1 or M2 in (1).

III. FILTER BANKS WITH 4-FOLD ROTATIONAL SYMMETRY

It is desirable that the filter banks designed have certain
symmetry so that we have simpler algorithms and efficient
computations. In this paper we consider 4-fold symmetry.

Definition 1: A filter bank {p, q(1), · · · , q(4)} is said to
have 4-fold rotational symmetry if the coefficients pk of the
lowpass filter p(ω) is invariant under rotations of π/2, π, 3π/2,
and the coefficients q

(2)
k , q

(3)
k , q

(4)
k of three highpass filters

q(2), q(3), q(4) are resp. π/2, π and 3π/2 (counterclockwise)
rotations of the coefficients q

(1)
k of the highpass filter q(1).

Therefore, a filter bank with 4-fold rotational symmetry is
actually given by two filters.

Let R(θ) =
[

cos θ sin θ
− sin θ cos θ

]
denote the rotation matrix.

Denote R1 = R(π
2 ), Rj = (R1)j , j = 2, 3. That is

R1, R2, R3 are the (clockwise) rotation matrices of π/2, π,
3π/2, resp. More precisely,

R1 =
[

0 1
−1 0

]
, R2 = −I2, R3 = −R1.

Then 4-fold rotational symmetry of a filter bank
{p, q(1), · · · , q(4)} means that

pRjk = pk, q
(j+1)
k = q

(1)
Rjk

, 1 ≤ j ≤ 3, k ∈ Z2. (9)

Clearly, (9) is equivalent to that for ω ∈ IR2, 1 ≤ j ≤ 3,

p(R−T
j ω) = p(ω), q(j+1)(ω) = q(1)(R−T

j ω). (10)

First, we show that the scaling function and wavelets
associated with a filter bank of 4-fold rotational symmetry
also have such a symmetry. Recall that the dilation matrix M
we consider is M1 or M2 defined in (1).

Proposition 1: Suppose {p, q(1), · · · , q(4)} is a filter bank
with 4-fold symmetry. Let φ be the associated scaling function
with dilation matrix M = M1 or M = M2 and ψ(`), 1 ≤ ` ≤
4 be the functions define by (2) with q(`). Then

φ(Rjx) = φ(x), 1 ≤ j ≤ 3, (11)

and

ψ(j+1)(x) = ψ(1)(Rjx), 1 ≤ j ≤ 3, (if M = M1) (12)

or
{

ψ(2)(x) = ψ(1)(R3x), ψ(3)(x) = ψ(1)(R2x)
ψ(4)(x) = ψ(1)(R1x), (if M = M2).

(13)

Proof: The proof is based on the facts: for k > 0,

(M−T
1 )kR−T

j (MT
1 )k = R−T

j , 1 ≤ j ≤ 3;

(M−T
2 )kR−T

1 (MT
2 )k =

{
R−T

3 , if k is odd
R−T

1 , if k is even,

(M−T
2 )kR−T

2 (MT
2 )k = R−T

2

(M−T
2 )kR−T

3 (MT
2 )k =

{
R−T

1 , if k is odd
R−T

3 , if k is even.

In the following we give the proof of (11) with M = M2 and
(13) for ψ(2). The proof of others is similar and it is omitted.

From (3) (with M = M2), we have φ̂(ω) =
p(M−T

2 ω)φ̂(M−T
2 ω). Thus φ̂(ω) = Π∞k=1p((M−T

2 )kω)φ̂(0).
Since for each j with 1 ≤ j ≤ 3 and k > 0,
(M−T

2 )kR−T
j (MT

2 )k = R−T
j′ for some j′, 1 ≤ j′ ≤ 3, and

p(R−T
j′ ω) = p(ω), we have

φ̂(R−T
j ω) = Π∞k=1p((M−T

2 )kR−T
j ω)φ̂(0)

= Π∞k=1p(R−T
j′ (M−T

2 )kω)φ̂(0)
= Π∞k=1p((M−T

2 )kω)φ̂(0) = φ̂(ω).

Therefore, φ(Rjx) = φ(x).
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Next, we show that ψ(2)(x) = ψ(1)(R3x). From (2) with
M = M2, ψ̂(`)(ω) = q(`)(M−T

2 ω)φ̂(M−T
2 ω). Then using the

fact M−T
2 R−T

3 MT
2 = R−T

1 , we have

ψ̂(1)(R−T
3 ω) = q(1)(M−T

2 R−T
3 ω)φ̂(M−T

2 R−T
3 ω)

= q(1)(R−T
1 M−T

2 ω)φ̂(R−T
1 M−T

2 ω)
= q(2)(M−T

2 ω)φ̂(M−T
2 ω) = ψ̂(2)(ω).

Thus ψ(2)(x) = ψ(1)(R3x), as desired.
The reader refers to [35] for the relationship between the

symmetry of a lowpass filter and that of the associated scaling
function with a general dilation matrix.

Next, we have the following proposition which gives a
simpler condition for the 4-fold symmetry of a filter bank.

Proposition 2: A filter bank {p, q(1), · · · , q(4)} has 4-fold
rotational symmetry if and only if (iff) it satisfies

[
p, q(1), · · · , q(4)

]T

(R1ω) = (14)

M0

[
p(ω), q(1)(ω), · · · , q(4)(ω)

]T

,

where

M0 =




1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0




. (15)

Proof: The facts that Rj = Rj
1, 1 ≤ j ≤ 3, R4

1 = I2 and
R−T

1 = R1 imply the equivalence of (10) and (14).
After giving these two propositions about 4-fold sym-

metry, we consider the filter bank {p, q(1), · · · , q(4)}
to be given by the product of block matrices. As-
sume that we can write [p(ω), q(1)(ω), · · · , q(4)(ω)]T as
B(ω)[ps(ω), q(1)

s (ω), · · · , q(4)
s (ω)]T , where B(ω) is a 5 ×

5 matrix with entries of trigonometric polynomials, and
{ps, q

(1)
s , · · · , q(4)

s } is another FIR filter bank with a shorter
filter length. If both {p, q(1), · · · , q(4)} and {ps, q

(1)
s , · · · , q(4)

s }
have 4-fold rotational symmetry, then Proposition 2 leads to
that B(ω) satisfies

B(R1ω) = M0B(ω)M−1
0 , (16)

where M0 is the matrix defined by (15). Observe that 1-tap
filter bank

{1, e−iω1 , e−iω2 , eiω1 , eiω2}
has 4-fold rotational symmetry and hence, it could be used
as the initial filter bank. For the choice of basic block matrix
B(ω), we should choose such a B(ω) that it can be written
as C(MT ω) for some 5 × 5 matrix C(ω) with each entry
being a trigonometric polynomial. The reason is that the filter
banks generated by such basic block matrices will easily yield
(bi)orthogonal wavelets. Denote

E(ω) = diag(1, e−i(2ω1+ω2), ei(ω1−2ω2), (17)
ei(2ω1+ω2), ei(−ω1+2ω2)).

Then, with R1[ω1, ω2]T = [ω2,−ω1]T , we have that

E(R1ω) = diag(1, ei(ω1−2ω2), ei(2ω1+ω2),
ei(−ω1+2ω2), e−i(2ω1+ω2)).

Thus E(ω) satisfies (16). Furthermore, E(ω) can be written
as

E(ω) = D1(MT
1 ω), E(ω) = D2(MT

2 ω),

where

D1(ω) = diag(1, e−iω1 , e−iω2 , eiω1 , eiω2), (18)

and
D2(ω) = diag(1, e−iω1 , eiω2 , eiω1 , e−iω2). (19)

Therefore, E(ω) could be used to build block matrices for
4-fold rotational symmetric filter banks which yield scaling
functions and wavelets with both dilation matrix M1 and
dilation matrix M2. Next we use B(ω) = BE(ω) as the block
matrix, where B is a 5 × 5 (real) constant matrix. Clearly,
B(ω) satisfies (16) iff B satisfies M0BM−1

0 = B, which is
equivalent to that B has the form:

B =




b11 b12 b12 b12 b12

b21 b22 b23 b24 b25

b21 b25 b22 b23 b24

b21 b24 b25 b22 b23

b21 b25 b24 b25 b22




. (20)

Based on the above discussion, we reach the following result
on the filter banks with 4-fold rotational symmetry.

Theorem 1: If {p, q(1), · · · , q(4)} is given by

[p(ω), q(1)(ω), · · · , q(4)(ω)]T = (21)
(1/
√

5)BnE(ω)Bn−1E(ω) · · ·B1E(ω)B0 ·
[1, e−iω1 , e−iω2 , eiω1 , eiω2 ]T ,

where n ∈ Z+, E(ω) is defined by (17) and B0, B1, · · · , Bn

are constant matrices of the form (20), then {p, q(1), · · · , q(4)}
is an FIR filter bank with 4-fold rotational symmetry.

Next two sections show that block structure (21) yields
(bi)orthogonal FIR filter banks with 4-fold symmetry.

IV. COMPACTLY SUPPORTED ORTHOGONAL WAVELETS
WITH 4-FOLD ROTATIONAL SYMMETRY

In this section, we study the construction of orthogonal filter
banks with 4-fold rotational symmetry. For an FIR filter bank
{p, q(1), · · · , q(4)}, denote q(0)(ω) = p(ω). Let U(ω) be the
5× 5 matrix defined by

U(ω) =
[
q(`)(ω + ηj)

]
0≤`,j≤4

, (22)

where η0, η1, · · · , η4 are given in (5). Then {p, q(1), · · · , q(4)}
is orthogonal iff U(ω) is unitary for all ω ∈ IR2, namely,

U(ω)U(ω)∗ = I5, ω ∈ IR2. (23)

Next, we write q(`)(ω), 0 ≤ ` ≤ 4 as

q(`)(ω) =
1√
5

(
q
(`)
0 (MT ω) + q

(`)
1 (MT ω)e−iω1 +

q
(`)
2 (MT ω)e−iω2 + q

(`)
3 (MT ω)eiω1 + q

(`)
4 (MT ω)eiω2

)
,
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where q
(`)
k (ω), 0 ≤ k ≤ 4 are trigonometric poly-

nomials. Let V (ω) denote the polyphase matrix of
{p(ω), q(1)(ω), · · · , q(4)(ω)}:

V (ω) =
[
q
(`)
k (ω)

]
0≤`,k≤4

. (24)

Clearly,

[p(ω), q(1)(ω), · · · , q(4)(ω)]T =
(1/
√

5)V (MT ω)[1, e−iω1 , e−iω2 , eiω1 , eiω2 ]T .

Let l(ω) = [1, e−iω1 , e−iω2 , eiω1 , eiω2 ]T , and denote

L(ω) = 1/
√

5[l(ω + 2πM−T η0), · · · , l(ω + 2πM−T η4)].

One can verify that for M to be M1 or M2 defined in (1), the
5×5 matrix L(ω) is unitary for all ω ∈ IR2. This fact and that
U(ω) = V (MT ω)L(ω) lead to that (23) holds iff V (MT ω)
is unitary for all ω ∈ IR2, namely, V (ω) satisfies

V (ω)V (ω)∗ = I5, ω ∈ IR2. (25)

Therefore, to construct an orthogonal filter bank
{p, q(1), · · · , q(4)}, we need only to construct such a
trigonometric polynomial matrix V (ω) that satisfies (25).

If {p, q(1), · · · , q(4)} is given by (21), then its polyphase
matrix V (ω) for M = M1 in (1) is

V (ω) = BnD1(ω)Bn−1D1(ω) · · ·B1D1(ω)B0, (26)

and the polyphase matrix V (ω) of {p, q(1), · · · , q(4)} for M =
M2 in (1) is

V (ω) = BnD2(ω)Bn−1D2(ω) · · ·B1D2(ω)B0. (27)

Since both D1(ω) and D2(ω) are unitary, we know that if
constant matrices Bk, 0 ≤ k ≤ n, are orthogonal, then V (ω)
is unitary, namely, it satisfies (25).

Next, we consider the orthogonality of a matrix B of the
from (20). To this regard, denote

R =
√

2
2




√
2 0 0 0 0

0 1 0 1 0
0 0 1 0 1
0 −1 0 1 0
0 0 −1 0 1




.

Then R is an orthogonal matrix and RBRT =[
O1 03×2

02×3 O2

]
, where

O1 =




b11

√
2b12

√
2b12√

2b21 u1 u2√
2b21 u2 u1


 , O2 =

[
v1 v2

−v2 v1

]
(28)

with
u1 = b22 + b24, u2 = b23 + b25

v1 = b22 − b24, v2 = b23 − b25.
(29)

Since R is orthogonal, we have that B is orthogonal iff both
O1 and O2 are orthogonal. O2 is orthogonal iff v1, v2 can be
given as

v1 = ±(1− s2)/(1 + s2), v2 = 2s/(1 + s2)

for some s ∈ IR, while a matrix O1 with the form in (28), is
orthogonal if it can be expressed as

O1 =
1

1 + 4t2




1− 4t2 2
√

2t 2
√

2t

±2
√

2t ∓1 ±4t2

±2
√

2t ±4t2 ∓1


 ;

or

O1 =
1

1 + 4t2




1− 4t2 2
√

2t 2
√

2t

±2
√

2t ±4t2 ∓1
±2
√

2t ∓1 ±4t2


 .

Therefore, an orthogonal B of the form (20) has two param-
eters with its entries bij given by





b11 = 1−4t2

1+4t2 , b12 = b21 = 2t
1+t2

b22 = 1
2 (− 1

1+4t2 ± 1−s2

1+s2 ), b23 = 1
2 ( 4t2

1+4t2 + 2s
1+s2 )

b24 = 1
2 (− 1

1+4t2 ∓ 1−s2

1+s2 ), b25 = 1
2 ( 4t2

1+4t2 − 2s
1+s2 );

(30)





b11 = 1−4t2

1+4t2 , b12 = b21 = 2t
1+t2

b22 = 1
2 ( 4t2

1+4t2 ± 1−s2

1+s2 ), b23 = 1
2 (− 1

1+4t2 + 2s
1+s2 )

b24 = 1
2 ( 4t2

1+4t2 ∓ 1−s2

1+s2 ), b25 = 1
2 (− 1

1+4t2 − 2s
1+s2 );

(31)





b11 = 1−4t2

1+4t2 , b12 = 2t
1+t2 , b21 = −b12

b22 = 1
2 ( 1

1+4t2 ± 1−s2

1+s2 ), b23 = 1
2 (− 4t2

1+4t2 + 2s
1+s2 )

b24 = 1
2 ( 1

1+4t2 ∓ 1−s2

1+s2 ), b25 = 1
2 (− 4t2

1+4t2 − 2s
1+s2 ); or

(32)





b11 = 1−4t2

1+4t2 , b12 = 2t
1+t2 , b21 = −b12

b22 = 1
2 (− 4t2

1+4t2 ± 1−s2

1+s2 ), b23 = 1
2 ( 1

1+4t2 + 2s
1+s2 )

b24 = 1
2 (− 4t2

1+4t2 ∓ 1−s2

1+s2 ), b25 = 1
2 ( 1

1+4t2 − 2s
1+s2 ).

(33)

Theorem 2: Suppose {p, q(1), · · · , q(4)} is given by (21). If
each Bk, 0 ≤ k ≤ n is orthogonal and of the form (20),
namely its entries bij are given by (30), (31), (32) or (33),
then {p, q(1), · · · , q(4)} is an orthogonal FIR filter bank with
4-fold rotational symmetry.

Next we construct two sets of orthogonal wavelets based on
this structure.

Example 1: Let {p, q(1), · · · , q(4)} be the orthogonal filter
bank with 4-fold rotational symmetry given by (21) with
n = 0: (1/

√
5)B0[1, e−iω1 , e−iω2 , eiω1 , eiω2 ]T , where the

parameters bij of B0 are given by (30) for some t, s (with
choice of ± to be +). This is a 5-tap filter bank. The lowpass
filter p(ω) is given by one free parameter t. We can choose
this parameter t = (

√
5 − 1)/4 such that the resulting p(ω)

has sum rule order 1 (with both M1 and M2). In this case for
both dilation matrices M1 and M2, the corresponding scaling
function φ is in W 0.31739(IR2). The nonzero pk are

p00 = p10 = p01 = p−10 = p0−1 = 1.

If we set s = 0, then the nonzero q
(1)
k of q(1)(ω) are

q
(1)
00 = 1, q

(1)
−10 = −(1 + 3

√
5)/4

q
(1)
10 = q

(1)
01 = q

(1)
0−1 = (

√
5− 1)/4.

The impulse responses pk, q
(1)
k of p(ω), q(1)(ω) are displayed

in Fig.5, while q
(j+1)
k are πj/2 rotations of q

(1)
k , 1 ≤ j ≤ 3.

Example 2: Let {p, q(1), · · · , q(4)} be the orthogonal filter
bank with 4-fold rotational symmetry given by (21) with
n = 1: (1/

√
5)B1E(ω)B0[1, e−iω1 , e−iω2 , eiω1 , eiω2 ]T , where
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1

1 11

1

1

a

a

ab

Fig. 5. Impulse responses pk (left) and q
(1)
k with a = (

√
5−1)/4, b =

−(1+3
√

5)/4 (right); q
(j+1)
k are πj/2 rotations of q

(1)
k , 1 ≤ j ≤ 3.

B1 and B0 are given by (30) (both with choice of ± to be
+) for some t1, s1 and t0, s0 resp. The lowpass filter p(ω)
depends on t0, s0 and t1. If t0 = (

√
21−√5)(

√
5−1)/16, s0 =√

5− 2, t1 = (
√

21− 5)/4, then resulting p(ω) has sum rule
order 2 (with both M1 and M2), and the corresponding scaling
function with dilation matrix M1 is in W 0.95435(IR2), while
the associated scaling function with dilation matrix M2 is in
W 0.97640(IR2). There is one free parameter s1 left for the
highpass filters of this orthogonal filter bank. In the following
we let s1 = 0. In Fig.6 we show the pictures of φ and ψ(1) with
dilation matrix M = M1. The contours of φ, ψ(`), 1 ≤ ` ≤ 4
are provided in Fig.7. For the convenience to the reader, the
nonzero pk, q

(`)
k of the resulting filter bank are provided below:

p00 = (21 + 4
√

21)/25
p10 = p01 = p−10 = p0−1 = (21−√21)/25
p11 = p−11 = p−1−1 = p1−1 = (24 + 5

√
5 +

√
21)/100

p20 = p02 = p−20 = p0−2 = (14− 5
√

5 +
√

21)/100
p21 = p−12 = p−2−1 = p1−2 = (1−√21)/25
p22 = p−22 = p−2−2 = p2−2 = (

√
21− 6− 5

√
5)/100

p31 = p−13 = p−3−1 = p1−3 = (
√

21− 16 + 5
√

5)/100;
q
(1)
00 = (−4−√21)/25

q
(1)
10 = q

(1)
01 = q

(1)
−10 = q

(1)
0−1 = (1−√21)/25

q
(1)
11 = q

(1)
1−1 = q

(1)
−11 = (19

√
21 + 5

√
105− 99− 25

√
5)/400

q
(1)
−1−1 = (381 + 75

√
5 + 39

√
21 + 5

√
105)/400

q
(1)
20 = q

(1)
02 = q

(1)
0−2 = (25

√
5− 49 + 9

√
21− 5

√
105)/400

q
(1)
−20 = (231− 75

√
5 + 29

√
21− 5

√
105)/400

q
(1)
21 = q

(1)
−12 = q

(1)
1−2 = (−13 + 3

√
21)/50

q
(1)
−2−1 = (−3− 7

√
21)/50

q
(1)
22 = q

(1)
−22 = q

(1)
2−2 = (51 + 25

√
5− 11

√
21− 5

√
105)/400

q
(1)
−2−2 = (9

√
21− 69− 75

√
5− 5

√
105)/400

q
(1)
31 = q

(1)
−13 = q

(1)
1−3 = (101− 25

√
5− 21

√
21 + 5

√
105)/400

q
(1)
−3−1 = (−219 + 75

√
5−√21 + 5

√
105)/400;

and q
(2)
k , q

(3)
k , q

(4)
k are π/2, π, 3π/2 rotations of q

(1)
k .

We apply this filter bank to the 512 × 512 Lena image in
Fig.8. The decomposed images with the lowpass filter and
highpass filters (with M = M1) are shown on the left of Fig.9
and in Fig.10 resp. These images are indeed rotated about
26.6◦ with respect to the original image. The decomposed
image with the lowpass filter applied twice is shown on the
right of Fig.9. ♦

To construct scaling functions and wavelets with higher

Fig. 6. φ (left) and ψ(1) (right) with M = M1
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Fig. 7. Contours of φ, ψ(2), ψ(4) (left column from top) and ψ(1), ψ(3)

(right column from top)

smoothness order, we need to use more blocks BkE(ω) in
(21). In the next section, we consider compactly supported
biorthogonal wavelets of 4-fold rotational symmetry.

Fig. 8. Original image



8 IEEE TRANS. IMAGE PROC., VOL. 17, NO. 11, 2053-2062, NOV. 2008

Fig. 9. Decomposed images with lowpass filter P with one (left) and
two (right) steps of decomposition algorithm

Fig. 10. Decomposed images with highpass filters Q(1), Q(2) (1st
row from left) and with Q(3), Q(4) (2nd row from left)

V. COMPACTLY SUPPORTED BIORTHOGONAL WAVELETS
WITH 4-FOLD ROTATIONAL SYMMETRY

Biorthogonal wavelets can be constructed by the method
of the lifting scheme, see [36] (see also [37] for the similar
concept to the lifting scheme). Here we use the block structure
(21) to construct

√
5-refinement biorthogonal filter banks and

wavelets with 4-fold rotational symmetry.
Suppose {p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(4)} are a pair

of filter banks. Let U(ω) be the matrix defined by (22).
With q̃(0)(ω) = p̃(ω), denote Ũ(ω) =

[
q̃(`)(ω + ηj)

]
0≤`,j≤4

.
Then {p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(4)} are biorthog-
onal iff U(ω)Ũ(ω)∗ = I5, ω ∈ IR2. Let V (ω)
and Ṽ (ω) be polyphase matrices of {p, q(1), · · · , q(4)} and
{p̃, q̃(1), · · · , q̃(4)} defined as in (24). Then by the facts
that U(ω) = V (MT ω)L(ω), Ũ(ω) = Ṽ (MT ω)L(ω) and
that L(ω)L(ω)∗ = I5, we know {p, q(1), · · · , q(4)} and
{p̃, q̃(1), · · · , q̃(4)} are biorthogonal iff V (ω) and Ṽ (ω) satisfy

V (ω)Ṽ (ω)∗ = I5, ω ∈ IR2. (34)

Next theorem shows that if {p, q(1), · · · , q(4)} is the FIR
filter bank given by (21) for some 5 × 5 real nonsingular
matrices Bk of the form (20), then it has an FIR biorthogonal
dual which is also given by (21) with Bk replaced by B−T

k .
Theorem 3: Let {p, q(1), · · · , q(4)} be the FIR filter bank

given by (21), where Bk, 0 ≤ k ≤ n are nonsingular constant
matrices of the form (20). Let {p̃, q̃(1), · · · , q̃(4)} be the FIR

filter bank given by

[p̃(ω), q̃(1)(ω), · · · , q̃(4)(ω)]T = (35)
(1/
√

5)B−T
n E(ω)B−T

n−1E(ω) · · ·B−T
1 E(ω)B−T

0 ·
[1, e−iω1 , e−iω2 , eiω1 , eiω2 ]T .

Then {p̃, q̃(1), · · · , q̃(4)} is an FIR filter bank biorthogonal to
{p, q(1), · · · , q(4)} and it has 4-fold rotational symmetry.

Proof: Let V (ω) and Ṽ (ω) be the polyphase matrices
of {p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(4)} resp. defined by
(24). Then V (ω) is given by (26) if M = M1 and by (27) if
M = M2. On the other hand, for M = M1

Ṽ (ω) = B−T
n D1(ω)B−T

n−1D1(ω) · · ·B−T
1 D1(ω)B−T

0 ,

and for M = M2,

Ṽ (ω) = B−T
n D2(ω)B−T

n−1D2(ω) · · ·B−T
1 D2(ω)B−T

0 .

This and the fact Dj(ω)Dj(ω)∗ = I5, j = 1, 2, imply
V (ω)Ṽ (ω)∗ = I5. Hence, {p̃, q̃(1), · · · , q̃(4)} is biorthogonal
to {p, q(1), · · · , q(4)}.

Since M0BkM−1
0 = Bk and MT

0 = M−1
0 , we know that

M0B
−T
k M−1

0 = B−T
k , i.e., B−T

k also has the form of (20).
Therefore, Proposition 1 implies that {p̃, q̃(1), · · · , q̃(4)} has
4-fold rotational symmetry.

From the family of biorthogonal FIR filter banks given
in Theorem 3, one can choose parameters for nonsingular
matrices Bk of the form (20) to design filter banks for
one’s specific applications. In the following we construct
biorthogonal wavelets by selecting the parameters of the filter
banks such that the resulting primal and dual wavelets have
certain smoothness.

Example 3: Let {p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(4)}
be the biorthogonal filter banks with 4-fold rotational sym-
metry given by Theorem 3 with n = 1 for nonsingular
matrices B0, B1 of the form (20). We can choose the free
parameters for B0 and B1 such that p(ω) and p̃(ω) have sum
rule order 2 and 1, and the resulting scaling functions (with
dilation matrix M1) φ ∈ W 1.35885(IR2), φ̃ ∈ W 0.56932(IR2),
and the the resulting scaling functions (with dilation matrix
M2) φ ∈ W 1.38793(IR2), φ̃ ∈ W 0.58255(IR2). The selected
parameters, denoted as aij , for B0 are

a11 = −.8142362882, a12 = −.5123117764
a21 = −.1491660034, a22 = −.2015353408
a23 = −.2306845383, a24 = .6519338759
a25 = .1960500700,

and selected parameters, denoted as bij , for B1 are

b11 = −.7028342827, b12 = .2095979969
b21 = −.1637602755, b22 = .4616178091
b23 = −.6306789060, b24 = −1.1580817015
b25 = −.4317778159.♦

Example 4: Let {p, q(1), · · · , q(4)} and {p̃, q̃(1), · · · , q̃(4)}
be the biorthogonal filter banks with 4-fold rotational sym-
metry given by Theorem 3 with n = 2 for nonsingular
matrices B0, B1, B2 of the form (20). In this case we can
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choose the free parameters such that p(ω) and p̃(ω) have sum
rule orders 2 and 1, and the resulting scaling functions (with
dilation matrix M1) φ ∈ W 1.74086(IR2), φ̃ ∈ W 0.57518(IR2),
and the the resulting scaling functions (with dilation matrix
M2) φ ∈ W 1.74645(IR2), φ̃ ∈ W 0.58213(IR2). The selected
parameters, denoted as aij , for B0 are

a11 = −.7990918368, a12 = −.4746214511
a21 = −.2386636281, a22 = −.4506816068
a23 = −.3049002942, a24 = 1.3307611157
a25 = .0865617975,

the selected parameters, denoted as bij , for B1 are

b11 = −.8078649634, b12 = .1608905843
b21 = −.0105323863, b22 = 1.3196936112
b23 = −.9365346463, b24 = −1.0156985962
b25 = .5753507070;

and the selected parameters, denoted as cij , for B2 are

c11 = .9122240147, c12 = −.0177565295
c21 = −.0029166441, c22 = .7638905933
c23 = −.5955888499, c24 = .7634910809
c25 = .7639648549.

We show φ, ψ(1) (with M = M1) and their contours in Fig.11,
and show the pictures and contours of φ̃, ψ̃(1) in Fig.12. ♦
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Fig. 11. φ (top-left) and ψ(1) (top-right) and their contours

Using more blocks BkE(ω) and B−T
k E(ω) in (21) and (35),

we can construct biorthogonal wavelets with higher smooth-
ness orders. For example, when we use the block structure
with n = 3 for some nonsingular matrices B0, · · · , B3 of the
form (20), we can choose the free parameters such that the
resulting scaling functions φ and φ̃ (with dilation matrix M1)
are in W 1.99820(IR2) and W 0.73147(IR2) resp. The selected
parameters are not provided here.

VI. CONCLUSION

In this paper we study the construction of compactly sup-
ported

√
5-refinement orthogonal and biorthogonal wavelets.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 12. φ̃ (top-left) and ψ̃(1) (top-right) and their contours

We obtain block structures of orthogonal and biorthogonal
√

5-
refinement FIR filter banks with 4-fold rotational symmetry.
Based on these block structures, we construct compactly
supported orthogonal and biorthogonal wavelets with

√
5-

refinement. The
√

5-refinement FIR filter banks and compactly
supported orthogonal and biorthogonal wavelets provided in
this paper will have potential applications in representing and
rendering complex and procedural geometry, and in multires-
olution image/data processing.
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