Triangular v/3-Subdivision Schemes:
The Regular Case

Qingtang Jiang
Department of Mathematics & Computer Science
University of Missouri—St. Louis
St. Louis, MO 63121
e-mail: jiang@math.umsl.edu

Peter Oswald

Bell Laboratories, Lucent Technologies
600 Mountain Avenue
Murray Hill, NJ 07974

e-mail: poswald@research.bell-labs.com

Abstract

The paper deals with the investigation of triangular v/3-subdivision schemes in
the stationary shift-invariant setting. In Section 2 we collect the available theory
on refinable functions (subdivision surfaces), with emphasis on their Sobolev and
Holder smoothness. Families of interpolatory and approximating v/3-subdivision
schemes are investigated in Section 3. Some dual v/3-subdivision schemes which
are related to vector-valued refinable functions are also analyzed. For this pur-
pose, we have developed Matlab routines for numerically investigating properties
of vector subdivision schemes.
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1 Introduction

This paper is motivated by the recent interest in triangular primal-dual and v/3-subdi-
vision schemes for creating smooth parametric surfaces z = f(z). Roughly speaking,
given values zp at the vertices P of a triangulation 7y, in a primal-dual scheme values
zp, are created at the barycenters Pa of the triangles A, i.e., the dual vertices of 7.
Connecting dual vertices with the neighboring original and dual vertices induces a new



triangulation 7;. Although 77 is not a refinement of 7;, we call it ﬁ—reﬁnement of 7o,
since two steps of the above procedure correspond to triadic refinement of the original
triangulation, compare Figure 1. Primal v/3-subdivision schemes consist of one step of
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Figure 1: Two steps of V/3-refinement

a primal-dual scheme followed by relaxing the values at the old vertices. Schemes where
the relaxation step is omitted are called interpolatory since z-values at the old vertices
are preserved. The simplest candidate of such an interpolatory scheme is given by
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which corresponds to linear interpolation. A smoothness analysis of the resulting surfaces
beyond stating their obvious continuity has not been done. A more involved interpola-
tory scheme was introduced by Labsik and Greiner [17]. They claim C'-continuity of
the resulting surfaces.

Non-interpolatory schemes are called approzimating. Kobbelt [16] has come up with
an approximating v/3-subdivision scheme in which the interpolatory rule (1) for dual
vertices is followed by a 1-ring update for the old vertices. As a result of his analysis
he proves C%-continuity of the scheme at regular vertices. All these schemes do not
lead to piecewise polynomial surfaces which makes the analysis for v/3-subdivision more
subtle. It is possible to construct C®-smooth quartic spline surfaces compatible with
V/3-refinement in the shift-invariant setting, however, the associated box spline violates
the stability condition.

One can also view the above schemes from another angle: they represent subdivision
schemes for vertex values where intermediately values at the triangles or faces of the
triangulation are computed. Clearly, one could reverse the roles of vertices and faces,
and ask for properties of subdivision schemes associated with faces (and edges for that
matter). These are called dual schemes. In the case of dyadic or 2-refinement where
each triangle is refined by quadrisection, this leads to the theory of half-box or triangular
box splines, see [22] for an overview. Unfortunately, half-box spline theory has no direct



counterpart for v/3-subdivision. The systematic construction of vertex- and face-based
schemes from simple components for v/3-refinement of triangulations has recently been
undertaken in [21], and has brought up new questions concerning the smoothness and
other properties of the limit surfaces.

In this paper, we will examine the tools necessary for determining the smoothness
and other associated properties of v/3-subdivision surfaces on regular, shift-invariant
triangulations of IR?, where all vertices have valence 6, and apply them to a number of
the above mentioned and new examples in a systematic way. It is common practice to
separate this issue from the other important step in investigating subdivision schemes,
the treatment of irregular vertices and boundaries (see, e.g., [23, 32, 28]). Only schemes
that work well in the shift-invariant setting are of interest. Thus, we will concentrate on
stationary subdivision schemes on shift-invariant triangulations in IR?, with a topologic
refinement described by the dilation matrix
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Figure 2 shows a section of this triangulation, together with its refined and coarsened
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Figure 2: Type-II triangulation (with coarser and finer triangulation)
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counterparts, i.e., its images under M ~! and M. Note that this M satisfies det M =
3 > 0, i.e., it preserves orientation, and M? = —3 -Id which reveals the connection with
triadic refinement. Note that there is an alternative choice for M describing the same
V/3-refinement with det M = —3 and M? = 3-1d. Since the subsequent analysis remains
the same, we will work with (2).

In order to investigate the smoothness of subdivision surfaces, we have to access the
smoothness of solutions of the associated refinement equation. In the most general case,



we are lead to vector refinement equations of the form

d(z)= Y P,®(Mz—-a), z€R?, (3)

kezd

where P := {P, : a € Z"}, the so-called mask of the refinement equation, is a finitely
supported sequence of real-valued r X r coefficient matrices the entries of which depend
on the particular subdivision rules, the dilation matrix M is given by the underlying
refinement type,
®(z) = (¢1(),-- ., ()T

is an 7 x 1 vector of functions (distributions) on IR%, and d is the spatial dimension. In
the applications to v/3-subdivision in Section 3, we have d = 2, M is given by (2), and
r < 2.

The investigation of refinement equations and subdivision has been pursued over
the last 15 years, with the main focus on dyadic dilation, where M = 2 .1Id. More
recently, progress on general isotropic integer dilation matrices and the determination
of the Sobolev and Hélder smoothness of refinable functions in the vector case (r > 1)
has been made. Section 2 handily collects the available information on solutions of (3),
with special emphasis on the dilation matrix M from (2), and the connection to the
smoothness of v/3-subdivision surfaces. This material enables us to estimate Sobolev
and Holder smoothness on a fine scale from the coefficient masks for v/3-subdivision
schemes. In contrast, in the above-mentioned papers [16, 17], the authors are restricted
to the case of integer C*-smoothness and, by combining two v/3-subdivision steps, use
triadic subdivision as an auxiliary tool, at the expense of considering larger masks.
The investigation of Sobolev smoothness, although of less importance for judging the
smoothness of subdivision surfaces, has been included since it naturally comes up if one
intends to use the resulting refinable functions (and associated wavelets) in Galerkin
methods for variational problems.

In Section 3.1 we examine some interpolatory v/3-subdivision schemes. In particular,
for linear interpolation (1) we found that the Sobolev smoothness of the limiting surfaces
is s = 1.6571..., which should be compared with the value 1.5 for the corresponding
linear box spline scheme in the 2-refinement case. Since H*(R?) c C*(R?) for any
0 < s’ < s —1, the limiting surfaces are at least C%%7'-smooth. A more subtle analysis
shows that the critical smoothness exponent in the Holder scale is so = 0.7381... which
is less than the corresponding value of 1 for the linear box spline. The rotation of the
triangulations for /3-refinement seems to smear out the edge singularities of the linear
box spline but, at the same time, leads to a more distinctive point singularity at the
origin which explains the larger gap between Sobolev and Holder smoothness exponents.

We re-examined the interpolatory v/3-subdivision rule from [17] for which we found
Sobolev smoothness s, = 2.5299.... This gives at least C*%?*-smoothness of the sub-
division surfaces away from irregular vertices, and complements the C'-result claimed
in [17]. Based on our numerical evidence, the exact value of the Holder smoothness
exponent of this scheme is s, = 1.5594.... We also found a new interpolatory scheme
which is a bit less expensive, only leads to Sobolev smoothness s, = 1.8959..., but still
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promises to yield C'-surfaces. Numerically, we obtained s, = 1.5401... which is very
close to the corresponding value for the scheme from [17].

Some approximating schemes are considered in Section 3.2. For Kobbelt’s scheme
[16], we found s; = 2.9360... for the Sobolev smoothness, and sy, = 2.6309... for the
Holder exponent. We also found a slight generalization of Kobbelt’s rule which, at little
extra expense, leads to C®-surfaces and possesses Sobolev smoothness s, = 3.9518...
and Holder smoothness s,, = 3.3143.... With respect to smoothness, this is slightly
worse than the smoothness properties of the lowest-degree box spline associated with
V/3-refinement, which happens to have the exactly same stencil formats but, on the
downside, features linear dependencies among its shifts.

Finally, in Section 3.3 we give results for dual schemes which are related to vector re-
finement equations where » = 2. We first investigate some low-order composite schemes
from [21]. What concerns the smoothness issue, here we benefit from the fact that for
composite schemes of the type considered it reduces to studying the smoothness of refin-
able functions for a related scalar refinement equation. The results support the practical
observation [21] that iterated application of very simple, local rules to build a composite
scheme leads to highly smooth surfaces very quickly. We also investigate another simple
family of face-based schemes which cannot be associated, in any straightforward way,
with a scalar refinement equation.

In summary, what we hope to convey with this paper is that tools from the theory of
refinable functions are available to support more demanding investigations and design
problems for multivariate subdivision schemes. We illustrate this point on the exam-
ple of the recently introduced v/3-subdivision schemes. However, the Matlab functions
developed for the computations in this paper are capable of handling other isotropic
two-dimensional dilations as well, some of them extend also to arbitrary dimensions.
The routines come without warranty and are not yet optimized with respect to user
interface, numerical stability, and runtime efficiency, and can be downloaded (together
with an extended version of this paper explaining their usage) at

http://cm.bell-1labs.com/who/poswald

http://www.math.umsl.edu/~jiang.

2 Analysis of v/3-subdivision

2.1 Notation and basic definitions

Let IN denote the set of positive integers, and Z. the set of non-negative integers. A d-
tuple 1 = (1, -+, pg) € Z% is called a multi-index, the length of p is |u| == p1+- - -+ p1a.
Denote u! := pq!-- - ug!, and
I pt :
= < .
(I/) vi(p—v)! iy < p
The partial derivative of a differentiable function f with respect to the jth coordinate
is denoted by D;f, j = 1,---,d, and for a multi-index p = (u1,..., ta), D" is the
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differential operator D4* - -- D44, For a set Q C R?, denote
[Q:=QnZ*.

For s > 0, we say that a function f is in the Sobolev space H S(RY) if its Fourier
transform f satisfies (1 4 |w|?)2 f(w) € L*(RY). Let sy(f) denote its critical Sobolev
exponent defined by

s9(f) :==sup{s : f e H*(R%)}.

For a vector-valued function F = (fy,..., f;)*, we analogously denote
so(F) :==min{sy(f;) : 1 <j <r}.

The critical Holder exponent is defined as follows. For a function f € C(IR?), we define
the jth difference in direction t € R? as

Vif=ViVi',  Vif@:=f@) - flz—t), zeR".
The jth modulus of smoothness is given by
w;(f, h) = supy<ul|Viflle, h>0.

For s > 0, we use Lip(s) to denote the generalized Lipschitz-Hélder class consisting of
all bounded functions f € C(IR?) with

w;(f,h) < Ch*, h>0,

where C' is a constant independent of h, and j is any fixed integer greater than s. It is
common to set C*(IR%) :=Lip(s) for non-integer s > 0, and keep the usual definition for
spaces of continuously differentiable functions for integer s. The number

Seo(f) :==sup{s : f € Lip(s)}

is called critical Holder exponent of f. For a vector-valued function F = (f1,---, f;)7,
set

Soo(F') == min{s(f;)}
Analogous definitions hold for LP-smoothness (1 < p < oo) but we will not need them
here.

The linear space of all sequences and the linear space of all finitely supported se-
quences on Z* are denoted by £(Z?) and £y(Z?), respectively. For a € Z%, we denote
by &, the element in £y(Z?) given by §4(c) = 1 and §,(B) = 0 for all B € Z*\ {a}. In
particular, we write § for dy.

In order to avoid confusion between scalar, vector, and matrix functions and se-
quences, we indicate the respective dimensions whenever necessary. E.g., /* (Zd)lxr is
the space of all p-summable 1 x r row vector sequences indexed over Z%, L?(IR%)"*!
stands for the space of 7 x 1 column vector functions whose entries are in L”(IR%), and
so on. Norms on such product spaces are introduced as usual.
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For F = (fi,---, f,)7 € LP(R%)"™!, we say that F is L stable provided that there
exist positive constants C, Cy such that

Cl||C||ep(zd)m < Z caF'(- — a)”LP(Rd) < C2||C||ep(zd)1><m Ve e Ep(Zd)lxr-

a€Zd

For p = 2, this is equivalent to saying that the set
F={fi((-a): acZ® j=1,...,r}

forms a Riesz basis in the shift-invariant closed subspace S(F) of L?(IR%) spanned by
F. Stability is a central notion in connection with refinable functions, both for the
discussion of smoothness issues and for applications to Galerkin methods.

We now start with recalling basic properties of the refinement equation (3). Let M
be a fixed d x d dilation matrix with integer entries and eigenvalues in modulus larger
than 1. Denote

m := |det M|.

Then the coset spaces Z%/(MZ?) and Z®/(MTZ%) each consist of m elements. Let
v; + MZ® and n; + MTZ",j = 0,--+,m — 1, be the m distinct elements of Z*/(MZ")
and Z*/(MTZ") with v, = 0,70 = 0, respectively. For future reference, set I' := {7;,j =
0,1,---,m—1}.

Taking the Fourier transform of both sides of (3), we obtain

A A

d(w)=PMTw)d(MTw), welRRY (4)

where M~7T denotes the transpose of M !, and

1 )
P(w) := - > P, w e RY, (5)

acZ?

is the symbol associated with (3). Under our assumptions, P(w) is an r x r matrix
function the entries of which are trigonometric polynomials with real coefficients.

In this paper we make the simplifying assumption that P(0) satisfies Condition E,
i.e., 1 is a simple eigenvalue of P(0) and all other eigenvalues of P(0) lie inside the open
unit disk (this definition of Condition E applies similarly to any matrix resp. operator on
a finite-dimensional space). Let 4° be the normalized right (column) eigenvector of P(0)
associated with eigenvalue 1 (in short, the right 1-eigenvector of P(0)). It is well-known
that if Condition E holds then there exists a unique compactly supported distribution
® satisfying the refinement equation (3) normalized so that <i>((]) = 1%, This compactly
supported distribution is called the normalized solution of the refinement equation (3)
associated with the mask P.

Without loss of generality, assume that the support of the mask P is in the cube
[0, N]?, i.e., P, =0, ¢ [0, N]¢, for some fixed N > 0. Denote

Qi :={> Mz, : x4 €[0,N]%Vk e N},
k=1



Q:={> M*z;: =z €[-N,N]%Vk e N}, (6)
k=1

and
Ql = {Z M_kxk . Tk € [_Na N]d - FaVk € N} (7)
k=1

It is easy to see that the normalized solution of (3) satisfies supp® C .

Let Co(T%) ™" denote the space of all r x 7 matrix functions with trigonometric
polynomial entries. For a given refinement equation with symbol P(w) € Cy(T%)"*",
the associated transition operator Tp is defined on Cy(T%)™" by

TpX (w) := mz_—: PM™"(w+2mm)) X (M~ (w + 27m;) ) P(M ™" (w + 2mn;))*. (8)

Since our masks are assumed to be real-valued, the complex conjugate of the matrix
function P(w) is given by P(w)* = P(~w)T. If Hg denotes the subspace of Cy(T%)
defined by
Hg = {h(w) € Co(TH)™" : h(w) = Y hee ™}, (9)
a€e(]

then Hgq is invariant under Tp. Furthermore, the eigenfunctions of 7T corresponding
to nonzero eigenvalues lie in Hq (see [9], [15]). Thus, to study the eigenvalues and
eigenfunctions of Tp, one needs only to consider those for the restriction of Tp to the
finite-dimensional space Hg. In the following, without causing any confusion, we also
use Tp to denote the restricted transition operator.

Let us give some specifics for the matrix M given by (2). For the representers of the
cosets, we will choose

N 3 S 1 A P

The transition operator T takes the form

2
TpX(M"w) =3 P(w+ &)X (w+ &) P(w+a&’)*,
j=0
where 9 4 dr 9
~0 T~ T ATNT 2 T ATT
= = (5,5 =(%,35) - 11
P=0,07, &=, @*=(5.3) (1)

Since for M given by (2) we have M~"' = —xM, M~>" = (=3)" - Id, we find that
1 2 1 2
Q= SM[-N, NP + J[-N, NP

See Figure 3 for an illustration of €.
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Figure 3: Domain ) for V/3-refinement

For v € T, let Ap,, be operators on £(Z%)™" defined by

(Apyv)a = D Pyira—pus a € X wveb(ZY (12)
pezt

Let Vi be the subspace of £(Z®)"" consisting of (v,) with support in [Q] and satisfying

Z v, =0,

a€[]

where b is the left (row) eigenvector of P(0) associated with eigenvalue 1 (in short, the
left 1-eigenvector of P(0)). If P satisfies sum rules of order 1, i.e.,

VP@rM Tn) =0, j=1,---,m—1,

then V] is invariant under the operators Ap,,y € I' (for more on sum rules, see Section
2.2).

For a finite set A of operators acting on a fixed finite-dimensional space V', the joint
spectral radius poo(A) of A is defined by

poo(A) = lim LIS,

where
| A loo = max{[|A; -~ Alf| - Ay € A, 1 <n <1}
Here, the operator norm || - || is induced by the norm on V', the value of p(.4) does not

depend on the choice of the latter. Denote by p; the joint spectral radius of the family
{AP,7|V17’Y € F}



With the refinement equation (3) we associate the refinement operator Qp defined
on LP(RY)™*! by
QpF:= ) P,F(M--a0). (13)
acz?

The cascade algorithm consists in the repeated application of p, i.e., it produces the
sequence QBF = Qp(Q% 'F), n = 1,2,..., from an initial F € LP(RY)"™'. If for
some compactly supported initial £ € LP(IR)"™*! the cascade algorithm converges in
the LP-norm, then the vector function obtained in the limit is an L?(IR%)"*!-solution of
the refinement equation (3). One can show that the convergence of the sequence (Q%F)
in the LP-norm implies that F' satisfies

Y VF(—a)=c (14)

aeZd

for some non-zero constant cg, where b° is the left 1-eigenvector of P(0). We say that
the cascade algorithm associated with P converges in LP-norm if (Q%F) converges in
LP-norm for any compactly supported F' € LP(IR?)"*! satisfying (14).

The following theorem (see e.g., [27], [13]) is central for the theory of (3).

Theorem 1 The normalized solution ® of (3) is L* stable if and only if P satisfies
sum rules of order at least 1, the transition operator Tp satisfies Condition E and the
corresponding 1-eigenfunction, i.e., the matriz function X°(w) € Hq for which TpX°® =
X0, is positive (or negative) definite for all w € T,

The cascade algorithm associated with the mask P converges in L?-norm (respectively
in L®-norm) if and only if P satisfies sum rule of order at least 1 and the transition
operator Tp satisfies Condition E (respectively pr < 1, where py is the joint spectral
radius of the family {Ap,|v,,y € T'}).

From Theorem 1, we see that stability implies the convergence of the cascade algo-
rithm. Knowing about the stability of the normalized solution of (3) also simplifies some
of the statements in Section 2.3. It was shown in [12] that if ® is L stable and belongs
to LI(R%)™! (1 < ¢ < o0), then ® is also L4 stable. Thus to check LP stability, one
needs only to check the L? stability, i.e., the conditions in Theorem 1, provided that ®
is in Lmax(22)(R4)"*1, However, the crucial condition for stability in Theorem 1 is not
easy to check (compare the discussion in Section 2.4).

The cascade algorithm is closely related to the theory of stationary subdivision. The
subdivision operator Sp is the linear operator on £o(Z?)'*" defined by

(Spu)a = Z ’LLgPa_Mﬂ, (XS Z . (15)
Bezd
The sequence SPu := Sp(Sp'u), n =1,2, ..., is the result of the subdivision scheme

with mask P. Let x be the characteristic function of [0,1)¢. For u € £(Z*)**", denote

X * U= Zx( — Q) Uqg.
[0
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We say the subdivision scheme converges in LP-norm (uniformly if p = oo) if for any
u € (P(ZY)™7 there exists a vector-valued function F, € LP(RY)™" (F, € C(R)™" if
p = 00) such that

lIx * (Spu)(M"™) — Fu||Lp(Rd)1xT — 0 as n — oo,

and for some u € P(Z%)™" we have F, # 0.

A comprehensive study of stationary subdivision schemes can be found in [3]. The
characterization of LP-norm convergence of vector subdivision schemes in terms of the
joint spectral radius is given in [13], [19]. In fact, the characterization is the same to
that for the convergence of the cascade algorithm. In other words, the convergence of
subdivision schemes is equivalent to the convergence of the cascade algorithm.

If the subdivision scheme converges, then ¢;, the jth component of the normalized
solution ® of (3), is Fj.;y°, where y° is the normalized right 1-eigenvector of P(0) and
¢’ is the jth row of the 7 x r identity matrix. For u € £o(Z%)'*", the limit vector-valued
function F, is a vector of linear combinations of the integer shifts of ®’. This explains
why results about the smoothness of the solutions of the associated refinement equation
directly translate into statements about the smoothness of the limiting surfaces.

2.2 Sum rules

Let ® be the normalized solution of (3). We say that ® has accuracy of order k provided

that for all multi-indices p with || < k there exist sequences c* € £(Z)'*" such that
zH

=Y d(z—a), zeR™

m
K- a€Zd

The accuracy order of ® is related to the sum rule order of P. For r = 1, we say that P
has sum rule of order k provided that

P(O):L DHP(27TM7TT]]'):0’ j:1,---,m—1, ‘/’L|<ka

where 7; are the representers of the coset spaces Z%/(MTZ"). For r > 1, we say that
P has sum rules of order k provided there exists a 1 X r vector B(w) of trigonometric
polynomials such that B(0) # 0 and

D" (B(MT-)P(-)) (2rM Tn;) = 6(j)D*B(0),  j=0,...,m—1, |u <k. (16)

Theorem 2 Let & be the normalized (distributional) solution of (3). If (16) holds for
some k > 1 with a B(w) such that B(0)y® = 1, then ® has accuracy k. Conversely, if ®
has accuracy k, and if

span{®(2r(MT)n; + 278) : B € Z} =C" Vo<j<m-1, (17)

then (16) holds with a B(w) such that B(0)y° = 1. If ® € L>(RY)"™! is L? stable then
(17) is automatically satisfied.
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We have quoted these facts because condition (16) is needed to correctly determine
the smoothness of refinable functions, compare Section 2.3. We will not go into discussing
the approximation power of the spaces S(®) generated by the sets ® resp. of subdivision
schemes where the above notations originally came up (see e.g., [15] and the references
therein for the details).

Let us mention the simplifications if M is isotropic, i.e., M is similar to a diagonal
matrix diag (oy,...,0,) with |oy| = --- = |o4| = m'/%. Then there exists an invertible
matrix A = ()‘jl)lgj,lgd such that

AMA ! = diag (o4, ..., 04). (18)

For j =1,---,d, let Dy ; be the linear differential operator given by D, ; := Zle AjDy.
For a multi-index p, define DY := DY --- Dy, and o := of"---0}4*. Then (16) is
equivalent to that there exist 1 x r complex vectors b, |v| < k with ° # 0, such that
(see [15])

3 ( ‘V‘ )(io) Yo+ VDX P2 M Tn;) = 6(j)o b, |ul<k,0<j<m-—1. (19)
0<v<u

For the matrix given by (2), we can choose

12 1—+3i 1 -z ,
A== — - 5. 127 /3
2(2 1+\/§¢> (1 —z2>’ fEe

with oy = v/3i, 00 = —/3i. In this case (19) turns into

S (M3 (D) - 2Dy (D) - 220y P@Y) = 6(7)iMb L (20)

0<v<p

where |p| < k, 7 =0,1,2, and &7 is defined by (11). The system of linear equations (20)
can be further simplified in some special cases, see Section 3. For further reference, let
us mention that, given any complex trigonometric polynomial

v(w) = Z Vet

a€Z?

its values v(@7), 7 = 0,1,2, can conveniently be evaluated from its coefficients by using

’U((:)J) — Z ,Uaefi27r/3-(o¢1+2a2)j — Z Uagf(cn-f-Qaz)j
acZ? acZ?
= ( > va) + 22 ( > ve) + 2 ( > Va) -
0427011:01’110(1 3 as—a1=1 mOd 3 a27a1:2m0d 3
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2.3 Criteria for Sobolev and Holder smoothness

Assume that the mask P is supported in [0, N]? and satisfies (16) with a vector B(w) of
trigonometric polynomials for some k& € IN. Let Tp be the transition operator defined
above, and Hq be the invariant subspace of Tp defined by (9). Let HE be the subspace
of Hq defined by

HE .= {h € Hg : D"(Bh)(0) = D"(hB*)(0) = 0, D*¥(BhB*)(0) = 0, |v| <k, |u| < 2k}.

(21)
Then HE is invariant under Tp. The next theorem gives an estimate for the Sobolev
exponent s,(®) for isotropic M.

Theorem 3 Let ® € L?(IR°)™*! be the normalized solution of (3) with mask P and an
isotropic dilation matriz M. Assume that P satisfies (16) with a vector B(w), i.e., P
has sum rules of at least order k. Let HE be the space defined by (21), and p(Tp|mx)
denote the spectral radius of Tp|H5. Then

d
s2(®) > -3 log,, P(TP|H§;) : (22)

If ® is L? stable, then we have equality:

s2(®) = ~5 log,, p(Trl ) (23)

There is a more explicit description of the spectrum of Tp| HE which may simplify the
use of the previous theorem. Suppose that P(0) possesses a complete set of eigenvectors
and eigenvalues. Denote the eigenvalues by A;,1 < j <7, where A\ =1 > |Xy| > ... >
|Ar|- Set

Sk = spec(Tp|HQ)\5’k s (24)

where
Sk :={0""Nj,0 N, 07", a,BE X, o <k, |B| <2k, 2<j<r}

is a set of redundant eigenvalues if P satisfies sum rules of order at least k. Note that,
when values are deleted from spec(Tp|y,) as indicated in (24), their multiplicity is taken
into account.

Theorem 4 Let ® € L*(R%)™! be the normalized solution of (8) with mask P and
an isotropic dilation matriz M. Assume that P satisfies (16) with a vector B(w) of
trigonometric functions for some k € IN. Let Sy be the set defined by (24), and set
po = max{|A| : A € Sy}. Then

d
52(@) > _5 logm Po - (25)

If ® is L? stable, then we have equality:

d
$2(®) = —5108m o - (26)
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For the scalar case (r = 1), HE is the space
HE ={h e Hy: D"h(0) =0, |u| < 2k},
and Sy is
Se={07%:|8| < 2k}.

Theorem 3 is given in [7], [29] for r = 1,d = 1, and in [4], [9] for r = 1,d > 1. Theorem
4 for r = 1,d > 1 is contained in [14]. For the vector case, see [10]. These theorems lead
to efficient ways of computing highly accurate values for the Sobolev smoothness so(®)
by standard eigenvalue solvers. How to further reduce the dimension of the underlying
eigenvalue problem is explained in Section 2.4.

Next we discuss a result about the Holder smoothness estimate from [10]. Suppose
that the mask P satisfies sum rules of order at least £ > 1 with some B(w), and
supp P C [0, N]¢. Recall that ' is the fixed set of representers for the coset space
Z°/MZ?, and € is defined by (7). Let Vi be the subspace of £(Z%)"*! consisting of v
with support in [2;] and satisfying

DY (B(w)v(w))|lw=0 =0, |v| <k, (27)
where v(w) 1= Y aei0,) Vae . Then Vj is finite-dimensional and invariant under the
operators Ap,,y € I', defined by (12). Denote by p; the joint spectral radius of the

family Ay, := {Ap,|v,,y € T}

Theorem 5 Let ® € C(R%)™*! be the normalized solution of (3) with mask P and an
isotropic dilation matriz M. Suppose P satisfies (16) with a vector of trigonometric
polynomials B(w) for some k € IN. Then

500(®) > —dlog pi. (28)
If ® s L™ stable, and
—dlog,, pr < k, (29)
then equality holds in (28), i.e,
S00(®) = —dlog,, p- (30)

Note that in Theorems 3 and 5, the optimal smoothness exponents are completely
characterized under the condition that ® is stable. For the case that ® is unstable, see
the characterizations in [25], [11]. The practical computations reported in Section 3 of
bounds for s.,(®) using sequences of lower and upper estimates

P = max{p(4;--- A" : Ap € A, 1<n <1}
< pp <L i=max{||41--- Ay + A, e A, 1<n <1},

for the joint spectral radius p, are much more involved than the computational tools
needed for determining s,(®). Here, || - ||2 is the spectral norm for matrices. For scalar
refinement equations and non-negative symbols P(w), significant shortcuts are possible
(see [1] and the references cited there). Then the optimal s, (®) (or lower bounds for it
if @ is not stable) can be characterized in terms of the spectral radius of the operators
Ap |y, themselves. We will further comment on this in connection with the examples
of Section 3.

(31)
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2.4 Computational tools

As we have seen above, the basic properties of subdivision schemes and refinement
equations can be reduced to studying the spectral properties of certain finite-dimensional
operators. To support this task, and enable the systematic use of the available theory in
the evaluation and design of subdivision and wavelet schemes, there have been several
attempts to develop specific computational tools. We refer to [26, 1, 31] which cover
certain aspects of computing Sobolev and Holder smoothness exponents.

The computational tools used for this paper have originated from earlier versions
developed in connection with [20] and [15, 10]. They represent a collection of Matlab
functions and input files which are based on the theoretical material of Section 2.1-2.3,
and suitable for d = 2 and isotropic dilation matrices M (part of them carries over to
arbitrary dimensions d < 3). The routines allow to determine the sum rule order of
a mask P, numerically investigate Lo-stability, provide numerical evidence for Sobolev
and Holder smoothness exponents, and visualize the components of the associated ®.
We have extensively used them in connection with the material of the next section. For
details, we refer to the indicated websites.

3 Examples

3.1 Interpolatory rules

We will investigate several interpolatory rules with small mask support for v/3-refinement
including the linear interpolation rule (1), the proposal from [17], and a scheme inter-
mediate to both of them. Although there exists a general theory for constructing such
schemes in the case of arbitrary dilation, see [5, 6] for references on this subject, it does
not cover these particular schemes, and details have not been worked out for (2).

Since we are only interested in schemes which have natural generalizations to ar-
bitrary triangulations and, thus, obey certain symmetries in the shift-invariant setting,
the rules for dual vertices schematically depicted in Figure 4 are the simplest meaningful
candidates. By requiring sum rules of certain order for the corresponding subdivision
scheme we will determine suitable values for the parameters a, b, c. Since the scheme in
Figure 4 c) contains the other two upon setting b = ¢ = 0 resp. ¢ = 0, the analysis can
be done for the former. The symbol for the associated scalar refinement relation is given
by the coefficient array

0000 c¢cc O

0 0cb 0 Db c

1 0 c 0 aa 0 c
Pw)==-|05b a1 a b 0|, (32)

3 c 0aa 0 c 0

c b0 b c 00

|00 cc 00 0 O]
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Figure 4: Interpolatory rules: Stencil for updating dual vertices

corresponding to the centered index box [—3,3]%, i.e., the matrix entry with index
(i1,142) € [1,7]? corresponds to the coefficient of P(w) with index (i; —4,i,—4) € [-3, 3]°.
Note that for the scalar case and real-valued masks we have S(w) = P(—w). In the se-
quel, we always show the coefficient sets of trigonometric polynomials related to some
centered index box [—N, N]?, and use bold-faced letters to highlight the coefficient with
index (0, 0), without further elaborating on this.

For scalar P, sum rules of order k£ > 0 are satisfied if

P(0)=1, D'P@) =0, j=1,2, 0<|v[<k, (33)

where D” := i¥ID”. Although the verification of this algebraic condition is straightfor-
ward, we show some details. Applied to our example, we compute

1 . .
P@) = 3+ (a+b+2c)(3 + 7%,

and the conditions in (33) are satisfied for £ =1 if
1

Incidentally, (34) automatically implies sum rules of order k = 2, since D¥ P(&7) = 0 for
all j =0,1,2, and |v| = 1. Indeed, one computes

0 0 0 0 =3¢ —-3c
0 —2¢ —2b 0 —2b —2c
—cC 0 —a —a 0 -
0 0 0 0
0 a a 0
2¢ 2b 0 2 2c
0 3¢ 3c 0 0

)

1
DU P(w) = 3

o O O O
o O o O
S oo OO0

analogously for v = (0, 1), and using the formulas for evaluating at w = @/, j = 0,1, 2,
the result is immediate.
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a b c Emax | Ustan(®) | 52(P) | 500(P)

ax
1/3 — — 2] 0.1262 | 1.6571 | 0.7381
4/9 -1/9 - 3 0.2647 | 1.89539 | 1.5401
32/81 | —1/81 | —2/81 41 0.2167 | 2.5299 | 1.5594

Table 1: Sum rule order, stability indicator, Sobolev and Holder smoothness for some
interpolatory schemes

The case k = 3 requires the examination of second derivatives, where we have
DEYPp@l) = DOAPp@I) = ;(a +4b + 14c) (' + %) ,
DEYP@EI) = —%(a +4b+ 14c)(#7 + %), j=0,1,2.
Thus, P has sum rules of order k£ = 3 if a, b, ¢ satisfy (41) and
a+4b+14c=0. (35)
Finally, for the 3-th order derivatives we find
DEYP(@) = —DUIP@d) = é(a — 8b + 20c) (37 — 3%) |
DBOPW@Y = DOIP@) =0, j=0,1,2.
which gives another independent condition,
a+20c=8b. (36)

Thus, the maximum order k., of sum rules for interpolatory schemes with coefficient
patterns as shown in Figure 4 a)-c) is achieved for

kmax =2 a=1/3 (b=c=0), (37)
kmax =3 a=4/9,b=-1/9 (c¢=0), (38)
b =4 a=32/81,b=—1/81, c=—2/81, (39)

respectively. Clearly, (37) is the rule (1), and (39) reproduces the interpolatory rule
introduced in [17].

Table 1 shows values of the smoothness exponents and estimates for the Lo-stability
indicators. The Sobolev smoothness exponent s,(®) has been computed on the basis of
Theorem 4. The value for the critical Holder exponent s.,(®) has been derived from
the computations reported in Table 2 (see below), and verified against the results from
using the IGPM-Villemoes machine [1]. From these smoothness computations, we know
(without assuming stability) that the subdivision schemes are convergent in C in all
three cases, and the refinable functions ® are at least continuous. Since the subdivision
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schemes are interpolatory, ®(z) is also interpolating, i.e., ®(a) = 6, for o € Z*. Thus,
the shifts ®(- — a), a € Z*, are linearly independent. Altogether, this implies that ® is
stable. The numerical values for the Ls-stability indicators

ﬁstab((b) = irel'lr% ‘XO(w)|

(see Theorem 1) reported in Table 1 are in good agreement with this theoretical argu-
ment. Since stability holds, the last two columns of Table 1 contain the actual smooth-
ness exponents, and not only lower bounds. Figure 5 shows the graphs of the respective
refinable functions.

£
JH
i

1
il

Figure 5: Basis functions for interpolatory schemes.

Let us add a few comments on the numerical computations for the Holder exponent
which is characterized by the joint spectral radius formula in Theorem 5. In Table 2 we
show the numbers
5L (@) 1= ~d10g, 7, < 50e(®) < Lo (®) =

o0

for | = 1,...,13 and all three interpolatory schemes. The numbers 7}, p! are defined
in (31), where in all cases we have chosen the maximal order of sum rules k = kpyqy for
the computations. The lower bound improves very slowly as [ increases (compare [24]
for a related result for d = 1). In some cases, it is even for [ = 13 less accurate than
the obvious lower bound s3(®) — 1 < $,,(®). On the other hand, the upper bound is
constant for all [ =1,...,13, and gives the exact value, as is theoretically predicted for
the first and last examples by the result from [8] which says that L, stability and the
additional condition P(w) > 0 implies

S00(®) = 55 (®) -

Based on the numerical evidence, we anticipate that this holds true also for the second
scheme which does not satisfy the non-negative condition for its symbol (although we
do not have a strict proof for this claim).

3.2 Approximating rules

We will consider a combination of the rule from Figure 6 a) for updating the dual vertices
and a 1-ring update for the old vertices as depicted in Figure 6 b). The symbol for the
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(@) | 5(®) [7(@) | (@ [ [ (@
0.7381 | —0.2370 || 1.5401 | —0.7734 || 1.5608 | —0.6399
0.7381 0.1150 || 1.5401 | —0.4524 || 1.5608 | —0.3478
0.7381 0.3293 || 1.5401 0.1111 | 1.5608 0.2647
0.7381 0.4325 || 1.5401 0.5216 || 1.5608 0.6179
0.7381 0.4938 || 1.5401 0.7836 || 1.5608 0.8047
0.7381 0.5346 | 1.5401 0.8693 || 1.5608 0.9305
0.7381 0.5637 || 1.5401 0.9948 || 1.5608 1.0206
0.7381 0.5855 || 1.5401 1.0661 || 1.5608 1.1407
9| 0.7381 0.6024 | 1.5401 1.1291 || 1.5608 1.1407
10 || 0.7381 0.6160 | 1.5401 1.1705 || 1.5608 1.1827
11 || 0.7381 0.6271 || 1.5401 1.2043 || 1.5608 1.2170
12 || 0.7381 0.6364 || 1.5401 1.2324 || 1.5608 1.2457
13 || 0.7381 0.6442 | 1.5401 1.2562 || 1.5608 1.2699

00 ~J O O i W N | e

Table 2: Upper and lower Holder smoothness estimates for Table 1 and [ < 13

corresponding scalar refinement relation is given by

P)= 4

S0 T o O
O & 2 o O
Qe AR o
SO 2 2 0o
oo O o

—

W

o

N—r

which is more compact compared to (32).
As before, Condition E and sum rules of order £ > 1 will be satisfied if (33) holds.
The calculations of these derivatives is straightforward from (40). For k = 1 we have

P(&) = é(Gc +d)+ (a+b)(F + 2%)

and the conditions are satisfied if

3(a+b)=6c+d=1. (41)
As above, (41) automatically implies sum rules of order k = 2. For k = 3, we have

DEOPE) = DODP(@I) = de+ ;(a + 4b) (37 + 3¥) ,
DEYP@E) = —2¢- %(a +4b) (37 +27), j=0,1,2.
Thus, we have sum rules of order £ = 3 if the parameters satisfy (41) and
a+4b=6¢c. (42)
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a) b)

Figure 6: Approximating rule: Stencil for a) dual vertices and b) original vertices

Observing these two conditions still leaves us with a one-parameter family of schemes.
Upon setting b = 0, we have a = 1/3, ¢ = 1/18, d = 2/3, which is Kobbelt’s scheme
[16] in the shift-invariant case. It is particularly interesting, since it has a more compact
rule for the dual vertices. The other attractive scheme would result from setting ¢ = 0,
and coincides with the interpolatory rule considered in Section 3.1. Thus, Kobbelt’s rule
distinguishes itself among all rules with k¥ = 3 (we will see in the moment that the sum
rule order of this scheme is exactly 3).
Finally, let us check for sum rules of order & = 4, where

DEYP(@) = —DUAP@I) = é(a — 8b) (3 — %),
DBYPE) = DOIP@E) =0, j=0,1,2.
Thus, we obtain one more additional condition,
a=8b, (43)

which together with (41) and (42) implies that the only scheme in the considered class
with sum rules of order £ = 4 is given by

a=8/27, b=1/27, c¢=2/27, d=5/9. (44)
Since 5
DU P(I) = 12¢ + g(a +16b) (27 + 27) £ 0,

the order k£ = 4 is exact.

The computed values of stability indicators and smoothness exponents for the only

scheme with k., = 4, some schemes from the one-parameter family
1 1 b 2

_ 1 T <bh<
a 3 b, c 18+2’ d 3 3b 0<b<
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No. | a b c d |k Dstan(P) S9(®) S00 (D)

max
1 (8727 [ 1/27]2/27 | 5/9| 4]0495le—2| 3.9518| 3.3143
2 || 1/3 | 0 |1/18|2/3| 3|0.1850e—1| 2.9360| 2.6309
3 | 2/9|1/9|1/9|1/3| 3]0.0000 > 3.0000 | > 3.0000
4 || 1/6 | 1/6 |5/36|1/6| 3|0.4340e—6| 2.9683| 2.7491
5 | 1/9 | 2/9 | 1/6 | 0 3|0546le — 5| 24432 | 2.2849
6 | 1/3| 0o | 1/9 |1/3| 2|0.0000 > 2.0000 | > 2.0000
713 0 |1/6] 0 2 | 0.0000 >1.9172 | > 1.4321

Table 3: Sobolev and Hélder smoothness for some schemes with symbol (40)

with k. = 3, and two more schemes with k., = 2 are shown in Table 3. The stability
indicators ¥, correctly predict the schemes with unstable ® (although the numbers in
the 4th and 5th row of Table 3 are relatively small, the internally set error tolerances in
the used routine are such that values Uy, > le — 8 safely indicate Lo-stability). Figure
7 shows the graphs of some of the associated refinable functions.

(O
RO

i

Figure 7: Basis functions for the approximating schemes No. 1-3 of Table 3

The scheme (44) stands out as the one with stable ®, where the order of sum rules
is maximal: both Sobolev and Holder smoothness exceed 3 in this case. The other
remarkable choice is

a=2/9, b=1/9, c¢=1/9, d=1/3, (45)

where we recover the lowest order box spline construction related to v/3-subdivision.
The refinable function is a C® quartic box spline associated with the direction set
1 0 -1 1 -2 1
©= 0o -1 1 -2 11
Its integer shifts feature linear dependencies, and the order of sum rules is smaller than
the polynomial accuracy. Our methods for computing the Holder continuity fail since
the assumption (29) in Theorem 5 cannot be satisfied. The critical Sobolev and Hélder
exponents are obviously s3(®) = 4.5 and s,,(®) = 4 in this case. This is because the
limiting surface is piecewise quartic C® with respect to a Powell-Sabin split of the initial
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triangulation. The examples with kp.x = 2 in Table 3 have unstable ® (concerning
scheme No. 6, see the discussion at the end of Section 3.3).

It should be noted that most of the Holder exponents shown in the last column of
Table 3 are anticipated values based on the numerical evidence reported in Table 4.
The exception is the first scheme, where one can prove P(w) > 0 and, thus, rely on
the above-mentioned characterization of the critical Holder exponent from [8]. While
the lower bounds always monotonously but slowly increase, the upper bounds remain
constant in Examples 1-3 and 6-7. In the remaining two examples this is not the case,
and the computed upper bounds suggest that now 52 (®) (and not 5. (®)) represents
the correct value of the critical Holder exponent. This is the value we have subsequently
taken for the last column of Table 3.

3.3 Dual schemes

We discuss now the smoothness issue for some of the composite primal/dual /3-subdivi-
sion schemes introduced in [21]. Such schemes are obtained through composition of some
elementary geometric rules involving the z-values associated with the same or different
types of topologic elements (i.e., vertices (V'), edges (F), and triangles or faces (F)),
and a very simple primal subdivision step. Examples of such rules are given in Figure
8. The parameters will always be chosen such that at least constants are reproduced
(e.g., we must have ¢ = 1/6 for the F'V and EV rules, d = 1/3 for the EF rule, and
e = 1/2 for the F'E rule). E.g., applying the F'V-rule on the original grid, followed by

N S K
AV
AN VA

Figure 8: Some elementary rules

an interpolatory subdivision step using (1), and the application of the V F-rule on the
refined grid results in a composite F-based or dual V/3-subdivision scheme. Note that
F-based schemes lead to vector refinement equations with r = 2.

The symbol of a vector refinement equation resulting from composite schemes pos-
sesses factorizations in terms of the symbols of the elementary steps. For instance, in the
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Example 1 Example 2 Example 3 Example 4
500(®) | S00(P) || Foo(®) | 566(P) || 5o (D) | 550(P) || Foo(®P) | 565(P)
3.3142 | 0.6658 || 2.6309 | 0.2584 || 3.0000 | 0.7780 || 3.0000 | 1.2244
3.3142 | 1.2107 || 2.6309 | 0.7154 || 3.0000 | 1.3311 || 2.7491 | 1.6549
3.3142 | 1.8107 || 2.6309 | 1.1944 || 3.0000 | 1.7356 || 2.9550 | 1.8659
3.3142 | 2.1759 || 2.6309 | 1.5319 || 3.0000 | 1.9665 || 2.7491 | 2.0358
3.3142 | 2.3990 || 2.6309 | 1.7384 || 3.0000 | 2.1661 || 2.9419 | 2.1555
3.3142 | 2.5522 || 2.6309 | 1.8946 || 3.0000 | 2.2756 || 2.7491 | 2.2280
3.3142 | 2.6608 || 2.6309 | 1.9825 || 3.0000 | 2.3858 || 2.9092 | 2.2938
3.3142 | 2.7427 || 2.6309 | 2.0766 || 3.0000 | 2.4484 || 2.7491 | 2.3416
3.3142 | 2.8061 || 2.6309 | 2.1209 || 3.0000 | 2.5176 || 2.8884 | 2.3841
3.3142 | 2.8570 || 2.6309 | 2.1855 || 3.0000 | 2.5566 | 2.7491 | 2.4200
3.3142 | 2.8985 || 2.6309 | 2.2105 || 3.0000 | 2.6040 || 2.8766 | 2.4484

— O © 00 O Ol WN e~

—_ =

Example 5 Example 6 Example 7
(@) [ 5(0) | 55(®) [ 8o(®) | 5(®) | 5L(®)
2.4531 | 0.7431 || 2.0000 | 0.0851 || 1.4321 | 0.2247
2.2849 | 1.3167 || 2.0000 | 0.5278 || 1.4321 | 0.6872
2.4423 | 1.5664 | 2.0000 | 0.8207 || 1.4321 | 0.9557
2.2849 | 1.7048 || 2.0000 | 1.0207 || 1.4321 | 1.1157
2.3568 | 1.8089 || 2.0000 | 1.1654 || 1.4321 | 1.1997
2.2849 | 1.8831 || 2.0000 | 1.2750 || 1.4321 | 1.2499
2.3438 | 1.9476 || 2.0000 | 1.3605 || 1.4321 | 1.2774
2.2849 | 1.9762 || 2.0000 | 1.4289 || 1.4321 | 1.3018
2.3231 | 2.0210 || 2.0000 | 1.4848 || 1.4321 | 1.3170
2.2849 | 2.0401 || 2.0000 | 1.5313 || 1.4321 | 1.3309
2.3226 | 2.0728 || 2.0000 | 1.5704 || 1.4321 | 1.3406

— O © 00~ O O i W N e

—_

Table 4: Upper and lower Holder smoothness estimates for Table 3 and [ < 11
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above example of an F-based composite rule, with the V F-rule from Figure 8 specified
by a = 1/3, b =0, we would have

PP (w) = PPV (MTw)PYY (w)PYF (w) = PV (w)(PTY (MTw) PV (w)) (46)

where the scalar symbol PYV (w) coincides with (32) for a = 1/3, b = ¢ = 0, while the
2 x 1 and 1 x 2 symbol matrices

000
011
(| Lo 1 o] 010 110
PFV(w)Lg ] ] ,PVF(w)LG 110 1 00 :
00 0 00 0 000
001
0 1 1]

correspond to the F'V-rule on the coarse triangulation, and the simpler V F-rule on the
V/3-refined triangulation, respectively. Our matrix notation is always such that the two
functions ¢I'F and ¢’ which compose the refinable vector ®'F associated with the mask
PFT of a F-based scheme correspond to the triangles with vertices (0, 0), (1,0), (0,1) and
(1,0),(0,1), (1, 1), respectively, while the scalar refinable function ¢V = ®"V of the V-
based scheme is attached to the origin. Note that the matrix symbol (46) has rank 1,
and could therefore be considered as essentially scalar. It is easy to guess that many
of the properties of this composite F-based scheme are similar to those of a V-based
subdivision scheme with symbol

PV (w) = PV (w)(P" (w) P (w)) (47)

represented by the product of two scalar trigonometric functions.

Such factorizations are very handy. Sum rules can be checked by examination of
the factors. E.g., if PYV(w) has sum rules of order k; and PV (MTw)PVF(w) sum
rules of order ky then P¥F(w) has sum rules of order k; + ky. This immediately follows
from the definition (16), the Leibniz rule for differentiation of products, and the fact
that the symbol PVV (w) is scalar. Moreover, factorizations can be used to simplify the
smoothness computations (however, we do not make use of the last observation).

Let us give some details for the scheme with symbol (46). Observe that the scalar
symbol

1 011
P"Vl(w) = PYF()PFY(w)=-|1 3 1
7111 0

which appears in the factorization (47) coincides with the one for the interpolatory
method (1). Thus, the properties of a vector refinement equation with symbol

PFF’I(LU) — PFV(MTLU)PVF((,U) ’
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should be closely related to it. Since the maximal order of sum rules for PVV"!'(w) is
kmax = 2, we have k < 2 for PFF1(w). Using the factorization we can write the conditions
for sum rules of order £ = 1 as follows: There exists a 1 x 2 vector of trigonometric
polynomials B(w) such that

B(0)PV¥ (@) =6(j)B(0), j=0,1,2,  B(w):=B(w)P"(w).

Since PVF(&7) = 6(4)(1/2,1/2) and PFV(0) = (1,1)T, we conclude that k¥ = 1 holds:
just choose B(w) such that B(0) = (1,1).
However, sum rules of order £ = 2 cannot hold since they would require

o(D{B)(0)PYF (@) + B(0)(D{ P'")(@) = 6(5)(DXB)(0)

for both v = (1,0) and v = (0,1). For j = 1,2 this implies (D{P"¥)(&?) = (0,0) or,
equivalently, 3 _
(D"PYF)(@?) = (0,0), j=1,2, |v|=1.

Now, a direct computation of these derivatives from the above formula yields
, 1 . .
(DUOPYE)(@) = =< (37,14 2%) #(0,0) ,

which is the desired contradiction. On the other hand, from [21] we have the formula
&7 (w) = PV (w)¢" " (w) (48)

for the Fourier transforms for the refinable 2 x 1 function ®%!(z) resp. the refinable
function ¢V"**(z) (i.e., the solutions of refinement equations with symbols P*%!(w) resp.
PVVH(w)) satisfying ®751(0) = (1,1)" resp. ¢V">'(0) = 1). As a consequence,

) = 6@+ Ve = ) + 0T @ — ),

1
B@) = @ =)+ @ = )+ a— e — ),
where e', €® are the unit vectors in Z>. In particular, the refinable vector-valued func-
tions related to the symbol P¥*!(w) are as smooth as the refinable functions related to
the symbol PVV"!(w). On the other hand, there are local linear dependencies in the set
®FFL of integer shifts of ¢ ', ¢n "' as we obviously have

o1 (@) + oy (@ e) + o1 (T 4 )
=¢5 Hat+e )+ Mz +e)+ gy ate +67).
In terms of subdivision this means that if we start with an oscillating +1 pattern of
za-values around a regular vertex then, after one subdivision step, this oscillation has
disappeared. In other words, the above linear dependencies correspond to 0-eigenvalues
of the subdivision operator, and are harmless.
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Before we go on, let us comment on the choice of the V/-based subdivision scheme with
symbol PV (w) in the overall composite scheme. We can choose any of the schemes of
Section 3.1 and 3.2, or even set PVV(w) = 1. The above findings will not change, except
that everywhere symbols PVV!(w) have to be replaced by PV (w) = PVV(w)- PV} (w).
The refinable functions will be convolutions of ¥V (x) and ¢"V!(z), i.e., much smoother.
A particularly simple and natural choice is to set

PYVMw) =PV (w)-...- PV w) = PYV (w)" (49)
) tﬂnes
and
PFF’n(w) — PVV,n—l(w)PFF,l(w) — PVV,l (w)n_IPFF’l(U)) ] (50)

The symbol (49) corresponds to a primal v/3-subdivision scheme which we call (V'V, n)-
scheme. It can be performed as a trivial primal upsampling operation with symbol
P(w) = 1 (which assigns zeros to the new vertices, and 32y to the old vertices of the
refined triangulation) followed by n times alternatively applying the simple V F- and
FV-rules given above on the refined triangulation. Similarly, the symbol (50) leads to
the dual (F'F, n)-scheme which can be performed by applying the F'V-rule on the coarse
grid, followed by the primal (V'V,n — 1)-scheme as described above and a final V F-rule
on the refined triangulation. Note that the (F'F, n)-scheme has sum rules of order 2n —1
while the (VV,n)-scheme has sum rules of order 2n. The smoothness of the schemes
is, however, the same and governed by the properties of PVV"(w). It is interesting to
mention that PVV?(w) coincides with the symbol (40) corresponding to the family of
approximating schemes studied in Section 3.2 for the parameter choice (44). Thus, the
(F'F,2)-scheme which can be performed as a sequence of one F'V-step on the coarse
triangulation, a subdivision step using (1), and a V F-step on the refined triangulation,
already leads to C3-surfaces and looks quite attractive.

Unfortunately, there is no trivial choice of V F-rule, V-based subdivision scheme,
and F'V-rule such that PVV(w) (the symbol (47) related to the V-based counterpart of
the resulting composite F-based scheme) turns into the symbol (40) for the parameter
choice (45). However, there is a choice of generalized V F- and FV -rules, complemented
by trivial upsampling (i.e., PVV(w) = 1) as subdivision step, which yields (40) with
the parameters (45) and thus leads to C® quartic box spline surfaces for the F-based
scheme, too. The rules are shown (for the shift-invariant case) in Figure 9. As above,
the resulting refinable vector-valued function ®"¥(z) can be expressed componentwise
by linear combinations of the C* quartic box splines ¢"'V (z) associated with the V-based
scheme (40), (45). E.g.,

(@) = %(aﬁw(x) +¢VV (@ —e')+¢"V(z—¢?)
+%(¢W(fﬂ —el =)+ oV (@ — e+ )+ 0"V (w+ el —e?),

analogously for ¢ (z).
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1/9

c) F-based subdivision

Figure 9: Generalized F'V- and V F-rules and ad hoc F-based scheme

| ke | Kman® | Vstan(@VV™) | Pstan(@VV") | 52(@VV) | 500(@VVT)
1 2 1(0.1262 0.1262 1.6571 0.7381
2 4 3| 0.4951e — 2 | 0.4951e — 2 3.9518 3.3143
3 6 51 0.2009¢ — 3 | 0.2009¢ — 3 5.9960 5.7073
4 8 7 10.8159¢ — 5 | 0.8159¢ — 5 7.9997 7.9036

Table 5: Sobolev and Holder smoothness for (V'V, n)-schemes

In Table 5 we report the numerical results for the (VV,n)- and (FF,n)-schemes
with n < 4. As explained above, the cases n = 1 and n = 2 have already appeared in
Table 1 and 3, respectively. For values n > 5, due to the high order of sum rules and
larger dimensions of the computational invariant subspace for Tp (for n = 5 we already
have dimension 293, after restricting to symmetric matrices), numerical instabilities
reduce the reliability of the computed values. Note that the computed Holder exponents
are exact, since PVV"(w) = PYV1(w)™ > 0. Since the (FF,n)-schemes inherit their
smoothness properties from the (V'V, n)-schemes, there is no need to perform additional
computations for them.

We finish with the investigation for an ad hoc choice of a simple three-parameter
family of dual v/3-subdivision schemes which are not based on composite rules. The
parameters of these rules are shown in Figure 9 c¢): the z-value for the shaded face in
the v/3-refined triangulation is defined as a weighted average of the z-values of old faces
around the common vertex in the unrefined mesh. After an appropriate index shift, the
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associated symbol takes the following form:

0000 ¢ 000 b c
00 b a b 0 ¢ca a0
0 caal0 0 b abdbo
00 b c O 00 ¢c 00O
1 00000 [OO0O0O0 0
Pw) == . (51)
Sl Tooo000] [o00O0O]
00 ¢c 0O 0 ¢c b 0O
0 babdbo 0 a ac O
0 a a c O b a b 00
lc b 000| [¢c 000 O

Even before starting any investigation, it is clear that the resulting 2 x 1 refinable vector
® = (¢, d2)" is unstable, independently of the parameter choices. Indeed, using the
refinement relations one can easily check that

Y (1,-1)-®(z—a)=0, r € R?,

a€Z?

which implies the linear dependence of the set ® of shifts, and the L,-instability of & if
® € L,(R?)>*,

We start with the investigation of sum rules. For & = 1, (20) is equivalent to
VOO P(&7) = §(5)bO9, for j = 0,1,2, with b©@% #£ 0. Le., as already expressed by the
notation, b0 is a left 1-vector of P(0), i.e., a multiple of b°. We compute

a+b+c

P@") = 3 p(ij)(} 1)25(]’)(&—4-()-1—6)(1 }) i=0,1,2, (52)

since p(z) = 1+ z + 22 vanishes for z = 77, j = 1,2. Thus, the condition

1

is necessary (and sufficient) for sum rules of order 1, Condition E for P(0) is automat-
ically satisfied (the second eigenvalue of P(0) is 0). Without loss of generality, we set
b0 = (1,1).

To find out whether sum rules of order £ = 2 are feasible, we make the following
simplifying observation. If we put u = (1,0) or u = (0,1) then the expression on the
left-hand side of (20) contains exactly two terms. According to (52), P(&?) is a zero
matrix for 7 = 1,2 which gives

B (Dy — 2D,) P(&7) = *V(Dy — 22D,) P(&7) = (0,0), j=1,2,
or, equivalently,

DEOBOO p)(@7) = DOY (00 p)(@?) = (0,0), j=1,2.
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a b ¢ | kmax | S2(®) | S0o(P)
/3 [1/6 | 0 1.9388 | 1.4321
17/48 | 1/8 | 1/48 1.9730 | 1.5702
13/36 | 1/9 | 1/36 1.9821 | 1.6334
0/24 | 1/12 | 1/24 1.9952 | 1.7927
7/18 | 1/18 | 1/18 2.6723 | 2.1239
6/15 | 1/30 | 1/15 1.9951 | 1.6681
5/12 0 1/12 1.8661 | 1.2619

DN W NN DN

Table 6: Numerical results for F-based schemes given by (51), (56)

Since
0 0 0 0 ¢ 0 0 0 b ¢
1 0 0 b4+c a b 0 2¢ a+b a O
b0 p(w) = 3 0 b+c 2a a+b 0 0 b+a 2a b+c 0 :
0 a a+b 2¢ 0 b a b+c 0 0
c b 0 0 O c 0 0 0 0
we easily compute that the above derivative values vanish if and only if
a=2b+bc. (54)
Moreover,
b\ = — 5 (1,-1), b = — G (1,-1), (55)

which follows by examining (20) for j = 0.

For the case kK = 3, computations become very tedious, and we state only the result
(see the extended version of this paper for full details). We found that in the one-
parameter family of rules given by

L b ! 2 R 56

a=3 +c, =52, ceR, (56)

for which £ > 2 has been established (compare (53) and (54)), only the case ¢ = 1/18
leads to kpax = 3.

In Table 6, we report some representative results for the parameter family (56).
We restricted our attention to schemes with non-negative coefficients a,b,¢ > 0. As
expected, the stability indicators vanished, and we do not show them. The shown values
in the last two columns of Table 6 are only (anticipated) lower bounds for the smoothness
exponents, even though we believe that they represent the exact values.

Let us finish with the following observations. The previously discussed composite
(F'F,1)-rule which is related to the primal interpolatory rule (1) possesses a symbol of
the form (51) with @ = b = ¢ = 1/6. Thus, for these parameters our ad hoc F-based
scheme has only kna = 1, although the Sobolev smoothness of this refinable vector &
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is well above 1 according to the result for the scalar case. Theoretically, there might
be other composite schemes among those with symbol (51) which would open another
avenue to investigate them. In particular, one might ask whether the exceptional scheme
with kpna = 3, i.e.,
A |

“T 18 BT Y
is associated with a composite rule. The answer is yes, although we need to extend
our view of composite rules a bit. The composite scheme starts with face values on the
coarse triangulation and computes vertex values on the refined triangulation: values at
old vertices are obtained by averaging (see the F'V-rule in Figure 8) while the value at a
face is assigned directly to the associated new dual vertex, i.e., to its barycenter. After
this, face values on the finer triangulation are computed by the averaging V F-rule from
Figure 8. It is not hard to verify that the resulting F-based subdivision scheme has
the symbol (51) with the parameters (57). As above, we can now find the associated
V-based scheme. It turns out (we leave this as an exercise for the interested reader) that

we arrive at an approximate scheme of the type discussed in Section 3.2, with parameters

(57)

a=d=1/3, b=0, c=1/9. (58)

Unfortunately, the scalar ® for this set of parameters is also unstable (see Table 3), and
the maximal order of sum rules is only k.« = 2, i.e., below the one in the vector case.
Thus, we do not benefit for the theoretical analysis of the F-based scheme here (rather,
we could use the smoothness bounds obtained for the F-based scheme (57) to improve
the smoothness bounds for the corresponding V-based scheme with parameters (58) in
Table 3).
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