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SPECTTRAL ANALYSIS OF THE TRANSITION OPERATOR AND ITS
APPLICATIONS TO SMOOTHNESS ANALYSIS OF WAVELETS *

RONG-QING JIAT anD QINGTANG JIANG §

Abstract. The purpose of this paper is to investigate spectral properties of the transition operator
associated to a multivariate vector refinement equation and their applications to the study of smoothness
of the corresponding refinable vector of functions.

Let ® = (¢1,...,¢r)% be an r x 1 vector of compactly supported functions in Lao(IR?®) satisfying the
refinement equation ® = Zaezs a(a)®(M- — «), where M is an expansive integer matrix. We assume

that M is isotropic, i.e., M is similar to a diagonal matrix diag(ci,...,0s) with |o1| = --- = |os|. For
p = (p1,..-,ps) € IN§, define 07# := o ¥ .- 55", The smoothness of ® is measured by the critical
exponent

A(®) = sup{A : ¢j € Wa(R®) for all j=1,. ..,r},

where W3\(IR®) denotes the Sobolev space {f € L2(IR®) : fIRS IF(O)12(1 + |€])%dé < 00}. We assume

that the mask a is finitely supported, i.e., the set suppa := {a € Z° : a(a) # 0} is finite. Note that
each a(a) is an r X r complex matrix. Let A := Zaezs a(a)/d, where d := | det M|. We assume that

spec(A) (the spectrum of A) is {n1,n2....,mr}, wheren; = land n; #1for j=2,...,r. Fora € Z°, let
b(a) := Zﬁezs a(B) ® a(a + B)/d, where ® denotes the (right) Kronecker product. Suppose the highest
degree of polynomials reproduced by ® is k — 1. Let

E :={njo=H,mjo " |ul < k,j=2,...,r}U{o™" : |u| < 2k}.

The main result of this paper asserts that if ® is stable, then A\(®) = — (logd pk) 8/2, where

Pk = ma,x{ lv|:v e spec(b(Ma _'B))a,ﬁeK \ Ej }a

and K is the set Z° N Zzozl M~"™(suppb). This result is obtained through an extensive use of linear
algebra and matrix theory. Three examples are provided to illustrate the general theory. All these examples
have background of practical applications.
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1. Introduction. The purpose of this paper is to investigate spectral properties of
the transition operator associated to a multivariate vector refinement equation and their
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applications to the study of smoothness of the corresponding refinable vector of functions.
This study is important to applications of wavelets to image processing, computer aided
geometric design, and numerical solutions to partial differential equations.

Let IR denote the set of real numbers, and IR® the s-dimensional Euclidean space. An
element of IR® is also viewed as an r x 1 vector of real numbers. The inner product of two
vectors z and y in IR® is denoted by z - y. The norm of z is |z| := /z - x.

Let f be a (Lebesgue) measurable function from IR® to C, where C denotes the set of
complex numbers. For 1 < p < oo, let

o= ([ wrepas)

For p = o0, let || f||co be the essential supremum of |f| on IR®. By L,(IR®) we denote the
Banach space of all measurable functions f such that ||f||, < co. A function f is said to
be integrable if f lies in L (IR?).

The Fourier transform of a function f € Li(IR%) is defined by

f&) = (w)e~ietds,  £eIR?,
R®

where 7 denotes the imaginary unit. The domain of the Fourier transform can be naturally
extended to La(IR®).

Let IN denote the set of positive integers, and INy the set of nonnegative integers. An s-
tuple p = (p1, ..., us) € IN is called a multi-index. The length of p is |u| := p1+- - -+ ps,
and the factorial of p is p! := pq!- - ps!. For p,v € INg, v < pmeans v; < pj, j=1,...,s.
If v < pand v # pu, we write v < u. For v < p, we define

() = oo

For = (p1,...,us) € N and z = (z1,...,25) € R, define

p1

zh = zf be

...xs.

The function z — z# (r € IR®) is called a monomial and its (total) degree is |u|. A
polynomial is a linear combination of monomials. The degree of a polynomial ¢ = > u CuTH
is defined to be deggq := max{|u| : ¢, # 0}. For k € INg, we use II; to denote the linear
space of all polynomials of degree at most k.

Let Z denote the set of integers. By £(Z*) we denote the linear space of all sequences
on Z°. A sequence a on Z° is said to be finitely supported if a(a) # 0 only for finitely
many «. Let £o(Z?®) denote the linear space of all finitely supported sequences on Z°. Let
u € £(Z?). For 1 < p < oo, we define

fully = (3, (@),
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For p = oo, define ||u||cc to be the supremum of |u| on Z. For 1 < p < oo, let £,(Z*)
denote the Banach space of all sequences u for which ||ul|, < oco.

For positive integers m and n, by C"™*™ we denote the collection of all m x n complex
matrices. The transpose of a matrix A is denoted by AT. When n = 1, C™*! is abbreviated
as C™. The linear span of a set E of vectors is denoted by span (E).

We use £(Z° — C™*"™) to denote the linear space of all sequences of m X n matrices.
Similarly, we use £o(Z° — C™*™) to denote the linear space of all finitely supported
sequences of m X n matrices. For simplicity, £(Z° — C™*") and £o(Z° — C™*") will
be abbreviated as ¢mxn(Z®) and (5" (Z?), respectively. When n = 1, ¢mx1(Z?) and
£7*1(Z°) will be further abbreviated as £m(Z°) and £3*(Z°), respectively. For a subset
K C Z*, {m™*n(K) denotes the linear space of those elements u € ¢mxn(Z?) for which
u(a) =0 for all € Z° \ K.

The symbol of an element v € £y(Z*), denoted 0, is the trigonometric polynomial
given by

0(€) =) v(weiet, ¢eR”.

a€”Zs

The symbol of an element in £7**™(Z?) is defined accordingly.
By T(IR?) we denote the set of all trigonometric polynomials on IR®. Accordingly, by
T™*"(IR*) we denote the set of all m x n matrices of trigonometric polynomials on IR’.
The spectrum of a square matrix A is denoted by spec(A) and it is understood to
be the multiset of its eigenvalues. In other words, multiplicities of eigenvalues are counted
in the spectrum. The multiset of nonzero eigenvalues of a square matrix A is denoted by
spec’(A). By p(A) we denote the spectral radius of A. Clearly, if spec’(A) is not empty,

p(A) = max{|v|: v € spec(A)} = max{|v|: v € spec/(A)}.

Let M be an s X s integer matrix. We assume that M is expansive, i.e., all the
eigenvalues of M are greater than 1 in modulus.

An r x 1 vector ® = (¢1,...,¢r)T of compactly supported functions in L,(IR?) is said
to be M-refinable if ® satisfies the following vector refinement equation

o= a(@)®M-: - a), (1.1)
a€Zs

where a € £5™"(Z*). We call a the (refinement) mask. Taking Fourier transform of both
sides of (1.1), we obtain

A

D(¢) = A((MT)-1¢)d((MT)-1¢), ¢eTR?, (1.2)
where
1 )
AC) = [qarag 2 ol (1)

A(0) = — Z a(a) and d:=|det M]|. (1.4)



4 RONG-QING JIA AND QINGTANG JIANG

Our goal is to determine the smoothness of @ in the Ly norm strictly in terms of the mask
a. For A > 0, we denote by W3\(IR®) the Sobolev space of all functions f € La(IR®) such
that

[ 1i@pa+ vz < .

The smoothness of ® = (¢1,...,¢)T is measured by the critical exponent A(®), which is
defined by

(@) :=sup{X:¢; € Wo(R®) forall j=1,...,7}.

The smoothness of refinable functions is an important issue in all multi-resolution
analyses and has a strong impact on applications of wavelets to image processing and
geometric modelling, e.g., subdivision schemes.

The smoothness order of refinable functions has been studied extensively. For the
scalar case (r = 1), a characterization of the critical exponent of a refinable function in
terms of the corresponding mask was given in [12], [45], and [5]. In particular, it was
shown that the critical exponent of a refinable function could be calculated in terms of the
spectral radius of a transition matrix associated to the mask.

The aforementioned results rely on factorization of the symbol of the mask. In the
multivariate case s > 1, however, the symbol of the refinement mask is often irreducible.
This difficulty was overcome in [21] by considering certain invariant subspaces of the tran-
sition operator associated to the mask. Based on the characterization of smoothness of
multivariate refinable functions given in [21], a useful algorithm for calculation of the crit-
ical exponent was given in [29]. These results are valid when the matrix M is isotropic.
In the case when M is anisotropic, smoothness of multivariate refinable functions was
investigated in [7].

For the vector case (r > 1), smoothness of univariate refinable vectors of functions
was studied in [6] and [36] on the basis of a factorization technique. A different approach
was employed in [28] to give the optimal smoothness of refinable vectors of functions.
Smoothness of multivariate refinable vectors of functions were analyzed in [30] and [31].
Also, see [41] and [26] for a recent study of the Sobolev regularity of refinable functions
without the requirement of stability.

The study of smoothness of ® is related to properties of shift-invariant spaces. Suppose
® = (¢1,---,¢,)T is an r x 1 vector of compactly supported functions in L,(IR*). We use
$(®) to denote the shift-invariant space generated from ®, which is the linear space of

functions of the form
-
D) ui(@)es(- - ),
j=1la€cZs

where u1,...,ur € £(Z*). The (multi-integer) shifts of ¢1,..., @, are said to be stable, if
there exist two positive constants C1 and Ca such that the inequalities

(St <[ 3 wiisst - <o (Sl
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are valid for all ui,...,u, € £,(IR?). If this is the case, we simply say that ® is stable. It
was proved in [27] and [19] that the shifts of ¢1, ..., ¢, are stable if and only if, for every
§ e R’

span{®(¢ 4+ 27B): B e Z°} = C".

The Kronecker product of two matrices is a useful tool in our study of vector refine-
ment equations. Let us recall some basic properties of the Kronecker product. Suppose
A= (aij)lﬁiﬁmylﬁjfn and B = (bij)lgigr,lgjgs are two matrices. The (I‘ight) Kronecker
product of A and B, written A ® B, is defined to be the block matrix

[ annB  ai2B --- ainB '|
aa1B  a22B --- ayB
A®B = ] .

am1B  am2B --- amnB

For three matrices A, B, and C of the same type, we have
(A+B)®C=(A®C)+(B®C) and A®(B+C)=(A®B)+(A®C).
If A, B,C, D are four matrices such that the products AC and BD are well defined, then
(A® B)(C® D) =(AC) ® (BD).

Moreover, if A1,..., A, are the eigenvalues of an r x r matrix A and p1,...,us are the
eigenvalues of an s x s matrix B, then the eigenvalues of the Kronecker product A ® B are
Ampn, m=1,...,7,n=1,...,s. See [34, Chap. 12] for a proof of these results.

For a matrix A = (aij)1<i<m,1<j<n, the vector

(0,11,...,U,ml,alz,...,U,mg,...,aln,...,amn)T

is said to be the vec-function of A and written as vec A. If A, X, and B are three matrices
such that the product AX B is well defined, then

vec(AXB) = (BT @ A)vec X. (1.5)

For two functions f, g in La(IR?), f ® g is defined as follows:

fOg(r):= - flx+y)gly)dy, =e€lR’,

where g(y) stands for the complex conjugate of g(y). In other words, f®g is the convolution
of f with the function y — g(—y), y € IR®. Tt is easily seen that f © g lies in Co(IR?), the
space of continuous functions on IR which vanish at oco. In particular, f ® g is uniformly
continuous.
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Suppose ® = (¢1,...,¢,)T is an r X 1 vector of compactly supported functions in
L»(IR?) satisfying the refinement equation (1.1). Let

1 OP1 P1OP2 - P10 dr

DO BT P2OP1 P20 P2 - P20 Or

5rOd1 drOFz - GO br

It follows from (1.1) that

200" =3" 3 a(@)®(M-—a) 0 dT(M- - B)a(B) .

a€EZS BEZS

Let F := vec(® ® ®T). With the help of (1.5) we obtain

F=) ba)F(M-: -a),

a€Zs
where b € £ X" (Z*) is given by
]' S
b(a) := ] ﬂ;s alf)@ala+p), acZ’ (1.6)

For a bounded subset H of IR®, the set > -, M—"H is defined as

o0
{ M-"h, : h, € H for n:1,2,...}.

n=1

If H is a compact set, then Zzozl M—-"H is also compact. By suppb we denote the set
{a € Z? : b(a) # 0}. Let

K = (Z:il M—"(suppb)) nNZ°.

We assume that M is isotropic, i.e., M is similar to a diagonal matrix diag(o1,...,0s)
with |o1| =--- = |os|. For u = (p1,...,pus) € Z*, define
ok =gl ok,

Suppose 7 = 1 and @ is stable. Let k be the largest integer such that $(®) D II;_;.
It was proved in [29] that A(®) = —(log, pk) $/2, where

PK = max{ lv|: v € spec(b(Ma — ﬁ))a’ﬁeK \ {o=+: |u| <2k} }

A straightforward generalization of this result to the vector case (r > 1) does not work. See
§8 for a counterexample. In fact, in the vector case, a correct formula for A(®) must involve
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the spectrum of the r xr matrix A(0) given in (1.4). Suppose spec(A(0)) = {n1,n2,-.., 7}
We assume that 71 = 1 and n; # 1 for j = 2,...,r. The following theorem is the main
result of this paper.

THEOREM 1.1. Let ® be an r x 1 vector of compactly supported functions in L2 (IR?).
Suppose @ satisfies the refinement equation (1.1) with mask a. Let k be the largest integer
such that $(®) D Mg_1. Let

Ex = {njo=rmjo~k u| < k,j=2,...,r} U{o—r: |p| < 2k}.
If, in addition, ® is stable, then

A(@) = —(logy px) 5/2,

where
Pk = max{ | : v € spec(b(Ma — ﬁ))a,BEK\Ek }

Here is an outline of the paper. Section 2 is devoted to a study of subdivision and
transition operators. The fact that the subdivision operator is the algebraic adjoint of the
transition operator will be employed to derive useful spectral properties of these linear
operators. In Section 3 we will review polynomial reproducibility of refinable vectors
of functions and introduce certain invariant subspaces of the subdivision and transition
operators, which will be needed in the smoothness analysis of refinable functions. In
Section 4 we will give a characterization of the smoothness order of a refinable vector ®
of functions in terms of the corresponding mask a. This characterization is difficult to
implement. Thus, in Section 5, we will give a formula for the critical exponent of ® in
terms of the spectral radius of the transition operator T restricted to a certain invariant
subspace, where b is obtained from a by (1.6). In order to calculate this spectral radius,
we will carefully analyze the relevant invariant subspaces and spectra of the subdivision
operator and the transition operator in Sections 6 and 7. This analysis enables us to prove
Theorem 1.1 and other related results. Finally, in Section 8, we will provide three examples
to illustrate the general theory. These examples demonstrate usefullness of Theorem 1.1
to various applications such as multi-wavelets, numerical solutions of partial differential
equations, and computer aided geometric design.

In relation with their study of v/3-subdivision schemes (see [38]), Jiang and Oswald
[32] developed Matlab software to calculate A(®) in Theorem 1.1. It can be downloaded at
http://cm.bell-labs.com/who/poswald and at http://www.math.umsl.edu/~jiang.
The reader is referred to [32] for explanations of the Matlab routines.

2. Subdivision and transition operators.
To each a € £*"(Z*) we associate two linear operators: the subdivision operator

S, and the transition operator T,. The subdivision operator S, is the linear operator on
L1xr(Z?) defined by

Squ(a) := Z u(Pla(a — MB), «€Z?, uerxr(Z°).
BeZs
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The transition operator T, is the linear operator on £5(Z°) defined by

Tov(a) = Y a(Ma—B(B), a€Z’ vely(Z.
BeZs

This section is devoted to a study of the subdivision and transition operators. See [3] and
[10] for some earlier work on these operators.
We introduce a bilinear form on a pair of the linear spaces £{(Z°) and £1x7(Z") as
follows:
(u,0) == > u(—a)o(a), uelxr(Z%),veLy(Z°).
a€EZ?

Then £1X7(Z?) is the algebraic dual of £§(Z°) with respect to this bilinear form. For
u € 017 (Z%) and v € £5(Z?), we have

(Sau,0) = Y (Sau)(@)v(=a) = Y > u(B)ala = MB)v(-a)

aEZs a€”Z’ BeZ?
= Z Z u(=p)a(Mp — a)v(a) = Z u(=8)(Tav)(B) = (u, Tav)-
BEZs acZs Bezs

Consequently, S, is the algebraic adjoint of Tj.
The annihilator of a linear subspace U of £1x7(Z?) is defined by

Ul :={vely(Z®) :{(u,v)=0YueU}
Similarly, the annihilator of a linear subspace V of ¢5(Z*) is defined by
VL= {ue txr(Z°): (u,v) =0VYv e V}.

Clearly, U C (UL)+. If U is a finite dimensional subspace of £1%7(Z?®), then (UL)L =U.
This comes from the Theorem on Linear Dependence (see [33, p. 7]), which states that a
linear functional f is a linear combination of a finite set {fi,..., fn} of linear functionals
if and only if the null space of f contains the intersection of the null spaces of fi,..., fu.
Indeed, an element u € £1%7(Z*) can be viewed as a linear functional on £5(Z*). Suppose
{u1,...,up} is a basis for U. Then u € (UL)L means the null space of u contains the
intersection of the null spaces of ui, ..., u,. Hence, by the Theorem on Linear Dependence,
u lies in U.

Moreover, if V' is a linear subspace of £3(Z*), then (V1)L = V. In this case, V is not
required to be finite dimensional. Clearly, V' C (V1)L. The inclusion relation (V1)L CV
can be proved by a version of Hahn-Banach theorem. Suppose w € ¢5(Z°)\ V. Let W
be the linear span of V and w. Then we can find a linear functional f on W such that f
vanishes on V and f(w) = 1. This linear functional can be extended to a linear functional
on £5(Z?). Since £1%7(Z?®) is the algebraic dual of £5(Z®), this means that there exists
some element u in £1%7(Z?®) such that v € VL and (u,w) = 1. Hence, w ¢ (V1)L. This
shows (V1)L C V.
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LEMMA 2.1. Let U be a finite dimensional linear subspace of {1%7(Z*), and let V :=
UL. Then U is invariant under the subdivision operator S, if and only if V is invariant
under the transition operator T,.

Proof. Suppose U is invariant under S,. For v € V we have

(u, Tov) = (Squ,v) =0 VYueUl.

Hence, Tyv € UL = V. This shows that V is invariant under T,.
Suppose V is invariant under T,. For u € U we have

(Sau,v) = (u, Tev) =0 YveW.

Hence, S,u € V+ = U. This shows that U is invariant under Sj,. O

It was proved in [15] that T, has only finitely many nonzero eigenvalues. The following
is an outline of the proof. By suppa we denote the set {« € Z° : a(«) # 0}. Similarly, for
v € U5(Z?), suppv stands for the set {a € Z° : v(a) # 0}. By the definition of T, we see
that Tyv(a) # 0 if and only if

Mo — 8 € suppa for some S € suppwv.

Hence,
supp (T,v) € M—1suppa + M —1lsuppw.

Applying the above argument repeatedly, we obtain

supp (T#v) C ZM—jsuppa + M—nsuppw. (1.7)
j=1

Let

K = zﬁ](ié M—”(suppa)). (1.8)

The preceding discussion tells us that suppv C K implies supp (Tov) € K. Therefore,
¢r(K) is invariant under T,. Suppose v is an arbitrary element in £§(Z°®). Comparing (1.7)
with (1.8), we see that there exists a positive integer N such that, for n > N and each
a € supp (T§v), the distance from the point « to the set K is less than 1/2. But o € Z°
and K C Z*, so « lies in K. This shows that Tq'v € £7(K) for sufficiently large n.

Now suppose 6 is a nonzero eigenvalue of T, and T,v = Qv for some v € £{(Z*). For
sufficiently large n we have 6mv = T2v € £7(K). It follows that v € £7(K). Since £7(K) is
finite dimensional, T;, has only finitely many nonzero eigenvalues.

The following lemma extends the above results.

LEMMA 2.2. Let V and W be two invariant subspaces of the transition operator T,.
Suppose W is finite dimensional and V N4 (K) C W C V, where K is the set given in
(1.8). Then

spec’ (Ta |W) = spec’ (Ta \VnET(K)) .
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Proof. Let T, denote the quotient linear operator induced by T, on the quotient space
W/(V ner(K)). Clearly,

spec (Ta|w) = spec (T) U spec (Talvaer (x))-

Thus, it suffices to show that all the eigenvalues of T, are zero. Let 6 be an eigenvalue of
To. Then there exists some v € W\ (V N £r(K)) such that

T.(v+V NIr(K)) =0+ VnerK)).

It follows that
Tov —0v e VNIr(K).

Since V N 47 (K) is invariant under Ty, for n € IN we have
Tov —Onv = (Tt 4 -+ =) (Tv — v) € V N I (K).

For sufficiently large n, T#v € £7(K). Hence, 7v € V N4 (K) for sufficiently large n. But
v ¢ VNner(K). Therefore, # = 0. The proof is complete. a
Lemma 2.2 tells us

p(Talw) = p(Talveerx))-

This motivates us to define the spectral radius of Tg|y as p(Ta|Vm£r( K)).
LEMMA 2.3. Let U be a finite dimensional invariant subspace of the subdivision op-
erator Sq, and let V :=U-L. Then

p(Talv) = max{|v| : v € spec((a(Ma - B))apex) \spec(Salp)},  (19)

where K = Z°NY .., M—"(suppa).
Proof. Suppose {u1,...,un} is a basis for U. Then there exist vi,...,vn € £5(Z°)
such that
(Uj, vm) = 0jm for jym=1,... N, (1.10)

where § stands for the Kronecker sign. Let G be a bounded subset of IR® such that
G 2 {0} Usuppa U (UX_supp (Mvy)),

and let J := Z° N (>02, M—"G). Then K C J and v1,...,on € £7(J). Moreover,
£r(J)NV is an invariant subspace of T,.

Consider the quotient space £7(J)/(4r(J)N V). For v € £r(J), let ¥ denote the coset
v+ (J)NV. We claim that {91,...,0n} forms a basis for £7(J)/(4r(J)N V). Indeed, for

v € £r(J) we have
N

(uj,v)yvj elr(J)NV.

J=1
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Consequently, ¥ lies in the span of {v1,...,0x}. Furthermore, suppose Z 1 CmUm = 0.
Then Z 1 CmUm € £r(J)N V. It follows that, for j =1,..., N,

N
cj = <Uj, Zm:l cmvm> = 0.
Hence, v1,...,0n are linearly independent. This justifies our claim.

Let T, denote the linear quotient operator induced by T, on the quotient space
er(J)/(#r(J)NV), that is, T, is defined by T,o := Tyv. Suppose

N
Squj = Zbymum and T,9; :Z CjmUm, J=1,...,N.
m=1

By (1.10) we have
bjm = (Satj, vm) = (uj, Ta¥m) = cmj, Jym=1,...,N.

Therefore, )
spec (T,) = spec (Salv)-

Consequently, we have

spec (Taler () = spec(Ta) U spec (Toler(1ynv) = spec (Salu) U spec (Taler(1yav)-
It follows that
spec’ (Taler (1)) = spec’ (Salv) U spec’ (Taler(1)nv)-

By Lemma 2.2,

spec’ (Tuler(g)) = spec’ (Taler(xy) and  spec!(Taler(rynv) = spec’ (Taler (x)nv)-
Hence,
spec’ (Taler (k)) = spec’ (Sa|v) U spec (Taler (x)nv )- (1.11)

Note that
p(Talv) = p(Taler(xynv) = max{|v| : v € spec’ (Taler(x)nv) }-

In light of (1.11) we have
p(Tolv) = max{|v| : v € spec’ (Tulsr (k) \ sPEC’ (Sa|U) }-

Finally,
p(T,|lv) = max{|v| : v € spec (Ta|gr(K)) \ spec (Sq|v)}-

But spec (Taler(x)) = spec ((a(Ma — 8))a,pek)- Taking this into account, we obtain the
desired formula (1.9). O
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3. Polynomial reproducibility. Let ® be an r x 1 vector (¢1,...,¢,)T, where
¢1,...,¢r are compactly supported integrable functions on IR®. If there exists a (finite)
linear combination v of shifts of ¢1,..., ¢, such that

Y a@p(-—a)=q Ve, (1.12)

aE”Zs

then we say that ® reproduces all polynomials of degree at most £ — 1. In this section
we review results on polynomial reproducibility relevant to our study of smoothness of
refinable vectors of functions.

For j =1,...,s, let e; denote the jth column of the s x s identity matrix. We may
view e1, ..., es as the coordinate unit vectors in IR®. By D; we denote the partial derivative
with respect to the jth coordinate. For a multi-index p = (p1, ..., us), D* stands for the
differential operator D{" - - - D§=.

The conditions in (1.12) are equivalent to the following conditions:

Duip(27B) = Sopudos  V |p| < k and B € Z°.

If this is the case, then we say that ® satisfies the Strang-Fix conditions of order k (see
[44]). In [8] Dahmen and Micchelli investigated approximation order on the basis of the
Strang-Fix conditions.

It is easily seen that ® satisfies the Strang-Fix conditions of order k if and only if
there exists a 1 x r vector y of trigonometric polynomials such that

Dr(y®)(27f) = doudop ¥ |u| < k and g € Z°. (1.13)

If y satisfies the conditions in (1.13), then we have

M

== uu()@(z—a), zeR’, |y <k, (1.14)
H a€Zs
where (—iD) (0)
—1 ;J,—Vy oV
= — Z°. 1.1
U’N(a) ; (,LL—I/)' v’ o€ ( 5)

See the recent survey paper [24] for a proof of this result.

Now suppose ® satisfies the refinement equation (1.1). Naturally, we wish to find the
optimal order of the Strang-Fix conditions satisfied by ® in terms of the mask. There has
been a lot of research on this problem. See [17] and [39] for the univariate case (s = 1),
and [1], [2] and [31] for the multivariate case (s > 1). The results in these papers can
be summarized as follows (see [24]). Suppose ® = (¢1,...,¢,)T satisfies the refinement
equation (1.1) with a being its mask. Let A(§) (£ € IR®) be the 7 X r matrix given in (1.3).
Let y be a 1 x r vector of trigonometric polynomials, and let g(&) := y(MTE)A(¢), £ € R®.
Then (1.13) is valid, provided the following three conditions are satisfied:

(P1) y(0)2(0) = 1;
(P2) Drg(2n(MT)-1w) =0 for all |u| < k and w € Z° \ (MTZ?);
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(P3) Drg(0) = Dry(0) for all |u| < k.
Conversely, if ® is stable and (1.13) is valid, then the above conditions (P1), (P2), and
(P3) are satisfied.

For the special case k = 1, it is known (see, e.g., [24]) that conditions (P2) and (P3)
together are equivalent to

yo Y ale—MB)=yy VaeZ, (1.16)
pez:

where yo := y(0) € C**". If this is the case, we say that a satisfies the basis sum rule
with respect to yo. For the general case k > 1, conditions (P2) and (P3) can also be
expressed as sum rules involving a. Thus, we say that a satisfies the sum rules of order &
with respect to y if y and g : £ — y(MTE)A(E) (€ € IR?) satisfy conditions (P2) and (P3).
If the meaning of y is clear from the context, then the reference to y may be omitted. We
always assume that y(0) # 0.

Let Q be a complete set of representatives of the distinct cosets of Z°/MTZ*. We
assume 0 € . Clearly, #Q (the number of elements in 2) is equal to d := |det M]|.
Note that condition (P2) can be restated as Dtg(2mr(M7T)~1w) = 0 for all |u| < k and
w e Q\ {0}. For v € £5(Z*) and o € Z® we have

Y o((MT)-1(E+2mw)) = > Y v(a)eia (M) (Er2mw)

weN weQ aeZ?
= § : v(a)e—iM " g § :6—271'73M_1aw
a€E”Zs® weR

With the help of the following identity (see, e.g., [20, Lemma 3.2])

Z e—2miM taw — d ifae MZ?®,
<0 0 ifa¢MZ,

we obtain

Y H((MT)-1(E+ 2mw)) =d > v(Ma)eiot, ¢ €R’.

we acZs
The convolution of u € ¢mxn(Z?®) and v € £j(Z") is the element in ¢™(Z") given by

uxv(a) = Z u(la— B)v(B), ae€Z’.

Bez?
Suppose v € £5(Z*). By the definition of the transition operator Tj,, we have
(Tov)(a) = (axv)(Ma), o€ Z®.

Hence

(T (©) = 3 (as0) (Ma)e-iat = % Y (axv) (MT) 1€ + 2mw)), € € R®.

a€Zs weN
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It follows that

(Tav)"(£) = Y A((MT)=1(& + 27w)) d((MT)=1(£ + 27w)), £ € R, (1.17)

weN

LEMMA 3.1. Let a € £5"(Z®). Suppose a satisfies the sum rules of order k with
respect to y € T " (IR®). Then the linear space H; (0 < j < k) given by

Hj = {vel{(Z): Dr(yd)(0) =0V |p| =}

1s 1nwvariant under the transition operator Ty, .

Proof. By (1.17) we have

(Tav) (MTE) = > A(¢ + 2r(MT)~1w)d (£ + 2m(MT)~1w), £ € R,
wER

It follows that

y(MTE)(Tav) (MTE) = 3 y(MTE)A(€ + 2m(MT)~1w)d (€ + 2n(MT)"1w), ¢ € R,

For w € 2\ {0}, we have by (P2)
Du(y(MTE)A(E + 2n(MT)"'w))|e=0 = Drg(2r(MT)~w) =0 V|u| < k.
For w = 0, we have Drg(0) = Dry(0) for all |u| < k. Hence,

D (y(MTE)A(€)0(€))le=0 = DH(g(€)9(€)) le=0 = D¥(y0)(0).

But v € H; implies D#(y9)(0) = 0 for all |u| = j. Therefore,
Du(y(MTE)(Tov) (MTE))|e=o =0 V|p| = j.

Let f(§) := y(&)(Tav) (&), £ € IR®. We use foMT to denote the composition of f and
MT. The above equation tells us that, for all |u| = j, Dr(foMT)(0) = 0. Clearly,
f = (foMT)o(MT)-1. By the chain rule, D¢ f is a linear combination of D¥(foMT),
|v| = j. Therefore, Dﬂ(y(fa?)))(O) = Drf(0) = 0 for all |u| = j, i.e., To,v € Hj. This
shows that Hj; is invariant under Tj,. a

By the Leibniz rule for differentiation we have

Dy (u)0) = X (&) (-iD)ry0)(-iD)0(0)

But
(—iD)*o(§) = Y wv(a)(—a)ve-iat, ¢ IR’.

a€”Zs’
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It follows that

ac”Z?
Hence,
P03 3 EPEO E 0 = 3 w-apu(a) = (o)

a€Z’ v<p a€Zs

where u,, is the element in £1%7(Z?) as defined in (1.15). Consequently, v lies in H; if and
only if (u,,v) = 0 for all || = j. In other words, H; = Gjl, where
Gy = span{u, : |ul = 7}.
Let Uy := span{u, : |u| < k} and
Vi :={v € £5(Z®) : D+(y0)(0) =0V |u| < k}. (1.18)
Then Vi, = U;-. Moreover,
Uy =Go+G1+:--+Gr-1 and Vy=HoNHiN---NHg_;.

We may write uy, as Y-, <, Yu—vqv, where y,_, := (—iD)»=¥y(0)/(p — v)! and gy is
the sequence given by g, (a) = a”/u' a € Z°. If yo # 0, then the set {u, : |u| < k} is
linearly independent. To justify our claim, let ¢, (|u| < k) be complex numbers such that
> ul<k Cutn = 0. It follows that

Z cuyoqu + Z hvg, =0,

|ul=k—1 lv|<k—1

where h, (Jv| < k — 1) are some elements in C'*". Since ¢, (|ju| < k) are linearly
independent, we have c,yo = 0 for all |u| = £ — 1. But yo # 0. Hence, ¢, = 0 for
all 4| = k£ — 1. By using this argument repeatedly, we see that ¢, = 0 for all |u| = j,
j=k—1,k—2,...,0. This shows that {u, : |u| < k} is linearly independent. Consequently,
{uy : |p| =34} isa ba81s for G; (j < k).

For v € Z?, the difference operator V. on the space £mxn(Z?) is defined by

Vyu=u—u(-—rv), uclmxn(Z?).
Let us consider V,u,. For a € Z® we have
1
(@)~ upla =) = 3 Lo — (= = 3 3 () ey,
v<p v<p 0<r<v

It follows that

al/—T

V)= 3 -8 Y = ¥ S un@. (9)

0<7<p © o or<v<p 0<T<p
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Consequently, Vyu,, € span{u, : v < p}.

For p € INg, recall that g, is the sequence given by q,(a) = a#/u!, o € Z°. When
p € Z°\IN§, we agree that g, = 0. With this convention, we may interpret D;q, as qu—e; .
For v = (y1,...,7s) € Z°, let D, := 1 D1 + --- 4+ vsD,. Then it follows from (1.19) that

Vyuy — Dyuy, € span{u, : |v| < |u| — 2}.
Let T" be a finite multiset of elements in Z°. If #I' > |ul, then the above relation yields
(H V7> u, = (H Dv) Uy (1.20)
yer ~yer

Moreover, both sides of the above equation vanish when #I' > |u.

For j = 1,...,s, the difference operator V., is abbreviated as V;. For a multi-
index 7 = (71,...,7s) € INg, the difference operator V7 is defined as V' ---Vg*. As a
consequence of (1.20) we have

V7u, = DTuy, = 6rpuo  for |7 > |ul. (1.21)

Furthermore, it follows from (1.20) that

Vite, " Viare,u = Dipe, - Dije up  for [T > [pl. (1.22)
Suppose Me, = mni1e1 + - -+ + mnses with suitable coefficients my;, n,7 =1,...,s. Then

for || = j we have

S

Dif., -+ Dije, = [ [ (maaDr+ -+ musDs)™ =2 Y~ br DY

n=1 lv|=3

Since spec (M) = {o1,...,0s}, the spectrum of the matrix (bry)|r|=j,|v|=; is {o# : |p| = j}
(see [2, Lemma 4.2]). In light of (1.21), (1.22) yields

Vite, " Viie, Uu = Z bruDVuy, = bryug  for |7 > |pl, (1.23)
lv|=j

where b, is understood to be 0 if |7] > |p|.
LEMMA 3.2. Under the conditions in Lemma 3.1, the linear space G; (j < k) is
invariant under the subdivision operator S,. If, in addition, y(0) # 0, then

spec (Sala,) = {o=# : || = 7}

Proof. Note that yo = y(0) and uo = yoqo, where go(c) = 1 for all « € Z*. Since a
satisfies the basic sum rule with respect to o, (1.16) is valid. Hence, for a € Z° we have

Sauo(a) = Z o(B)a(a — MPB) —yoz (o — MpB) = yo = uo().

BeZ? BEZS
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This shows S,ug = ug.
Since Gj- = Hj; and Hj is invariant under Ty, the linear space G is invariant under
Sa, by Lemma 2.1. Thus, there exist complex numbers ¢, such that

Sauy = Z Cuvlly, | = 7.

lv|=3

Let C denote the matrix (cuv)|u|=j,jv|=;j- Then spec(Sa|g;) = spec(C).
For v € Z?, it can be easily verified that

Sa(Vyuu) = Vmry(Saty).

Consequently, for 7 = (11,...,7s) € INg we have

SG(VTUH) = vql;llel T Vﬁes (SGUH) = Z Cpv (V}\}’m T Vﬁes)uy'

lv|=3

In light of (1.20) and (1.23), it follows that

5T;J,UO = E C[J,VbTVuO'

lvl=j

Hence, C' = (BT)~!, where B denotes the matrix (brv)|r|=j,|v|=j- But the spectrum of B
is {o# : |u| = j}. Therefore, spec(C) = {o—#: |u| = j}. This completes the proof. a
Recall that Uy is the direct sum of Go,...,Gr_1 and Vi = UkL. Hence, we have the
following result.
LEMMA 3.3. Under the conditions in Lemma 3.1, Vi, is invariant under the transition
operator T, and Uy, is invariant under the subdivision operator So. If, in addition, y(0) # 0,
then

spec(Salu,) = {o=# : |p| <k}

4. Characterization of smoothness. In this section we give a characterization for
the smoothness of a refinable vector of functions in terms of the corresponding mask.
Sobolev spaces are related to Lipschitz spaces, which are defined on the basis of the
modulus of smoothness. The modulus of continuity of a function f in L,(IR?) is defined
by
w(f,h)p := sup HthHp, h >0,
t|<h

where Vi f := f — f(- —t). Let k be a positive integer. The kth modulus of smoothness
of f € L,(IR?) is defined by

wi(f,h)p = sup [VES||,  h>0.
[tI<h
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For 1 < p < oo and 0 < A < 1, the Lipschitz space Lip(), Ly(IR?)) consists of all
functions f € Lp(IR®) for which

w(f, h)p < ChA Vh>0,

where C' is a positive constant independent of h. For A > 0 we write A = m+1n, where m is
an integer and 0 < n < 1. The Lipschitz space Lip(\, L,(IR*)) consists of those functions
f € Ly(IR?) for which D+ f € Lip(n, L,(IR%)) for all multi-indices p with |u| = m. For
A > 0, let k be an integer greater than A. The generalized Lipschitz space Lip* (), L, (IR?))
consists of those functions f € L,(IR®) for which

wr(f,h)p < Ch* Vh >0,
where C' is a positive constant independent of h. If A > 0 is not an integer, then
Lip(A, Lp(IR%)) = Lip* (A, Lp(IR?)), 1 <p<oo.

See [11, Chap. 2| for a discussion about Lipschitz spaces.
It is well known that, for A > ¢ > 0, the inclusion relations

Lip(), L2(IR®)) C Lip* (A, Lo(IR®)) C Lip(A — e, Lo (IR%))

and
W3 (IR°) C Lip(\, L2(IR°)) € W5 *(IR®)

hold true. See [43, Chap. V] for these facts. Therefore, we have
A(f) =sup{A: f € Lip(A, L2(IR?))} = sup{A : f € Lip™ (A, L2(IR”))}.
The inner product of two functions f, g € La(IR?) is defined as

(f,9):= f(z)g(x)dz.
R*

This definition still makes sense if f is a compactly supported function in L2(IR®) and g is
a polynomial on IR°.

By (Lp(IR?))" we denote the linear space of all r x 1 vectors F = (f1,..., fr)T such
that f1,..., fr € Lp(IR®). This space is equipped with the norm given by

r 1/p
|1y = (Z ||fj||§>  F=(freees )T € (Ly(RY).
j=1

Suppose u € £mxn(Z%) and u(a) = (ujk(@))i<j<m,1<k<n for a € Z*. We define

ullp == <Z Z Z |Ujk(a)|p> 1/1“’ 1<p<oo.

a€Zs 1<j<m 1<k<n
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Let ® be an 7 x 1 vector of compactly supported functions in L2(IR®). Suppose @
satisfies the refinement equation (1.1). We claim that

o= an(@)®(Mn- - a), (1.24)
aEZ’

where the sequences a, are given by a1 = a and, for n =2,3,.. .,

an(a) = Z an—1(B)ala— MpP), «a€Z’. (1.25)

This can be proved by induction on n. Indeed, (1.24) is valid for n = 1. Suppose (1.24)
holds true for n — 1. Then we have

o= a1 (B)OM -1~ )= an1(8) Y a(@)®(Mn- — MB - a).

BEZ?® Bezs a€Z?

It follows that

o= )" (Z an_1(B8)a(a — Mﬂ))d)(M"- —a)= ) an(a)®(Mn- - a).

a€Z® “BEeZ? a€”Z?

This completes the induction procedure.

Let ® = (41,...,¢-)T be an r x 1 vector of compactly supported functions in Lo (IR?)
satisfying the refinement equation (1.1) with a being the mask. Recall that d = | det M.
Suppose a satisfies the sum rules of order k with respect to y € T'*"(IR*) satisfying (1.13).
Let

Vi :={ v e y(Z°) : Dr(yd)(0) =0V |u| <k }.

THEOREM 4.1. If for every v € Vi there exists a positive constant C, independent of
n such that
lanxv||2 < Cypd(1/2=2/s)n Vn € N, (1.26)

then ® € (Lip*(\, L2(R?%)))". Conversely, if ® € (Lip(A, L2(IR?)))r, and if ® is stable,
then (1.26) is valid for v € Vi, and k > A.
Proof. Recall that e1,...,es are the coordinate unit vectors in IR®. If there exists a

constant C such that

[Vii-ne, @, < Cd=Aom ¥neN and j=1,...,s, (1.27)

then [21, Theorem 2.1] tells us that & lies in (Lip*(A, L2(IR?)))".
It follows from (1.24) that

Vi-ne; ® = Z an(@) [®(Mn- —a) — (M- — a —¢j)] = Z Vian(a)®(M"- — a).
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Applying the difference operator Vs-n; to (1.24) repeatedly, we obtain

\% ne, o= Z V’“an(a YO(M™- — ).

ac”Zs

Since ® is compactly supported, it follows that

IV ne, ®ll, < Cd=n/2([Vianl|,,

M—"ey

where C'is a constant independent of n. For m = 1,...,r, let vy, be the element in £(Z*)
such that vy, (o) = 0 for all « € Z*\ {0} and v, (0) is the mth column of the r x 7 identity
matrix. We have

[V5anll, < 2 [(Vian)womly = 3 [lans(VSum)]|,:

m=1
We observe that (V;?vm) &) = (1 — e~ %i)kp,, (&) for & = (&1,...,&) € R®. Hence,
for |u| < k, Dﬂ(y(V;?vm ")(0) = 0 with y as in (1.13). In other words, V;?vm e Vi,
m=1,...,r

If (1.26) is valid, then
Han*(V?’Um)H2 < Cmd(l/Z—A/s)n Vn e ]N,

where C,, is a constant independent of n. Combining the above estimates together, we
obtain the desired estimate (1.27). Therefore, ® € (Lip*(A, L2(IR?)))".

Now suppose ® = (¢1,...,¢,)T € (Lip(\, L2(IR*)))" and & is stable. We wish to
show that (1.26) is true. For this purpose, we shall use approximation schemes induced by
quasi-projection operators (see [35] and [23]).

For v € INg, let ¢, be the monomial given by ¢, (z) := z¥/v!, x € IR®. Recall that
Yy = (—iD)¥y(0)/v!. Each y, is a 1 x r vector (Yu1,...,Yur). There exist real-valued
compactly supported functions g1, ..., g, in L2(IR?) such that

<qvagj>:yl/j V|V|<kaﬂdj:1,...,7‘

For |u| < k and o € Z® we have

(55— ) = {anl +hgih = 3 [ (M) anrarg o) da

v<p

m[,l, v al/
/ . (p—v)! gi(z) dw = Z ELCEE

V<u v<p

Let Pp be the quasi-projection operator given by

Pof:= Y (f,gi(-—))p;(- —a), [eL(R).

a€Zs j=1
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For |u| < k we have
P‘PQM_ZZQIMQJ ZZ ,yuu (- —a) =qu,
a€Z® j=1 a€Zs v<py v
where (1.14) has been used to derive the last equality. Thus, Pp reproduces all polynomials

of degree at most k—1, i.e., Psq = ¢ for all ¢ € IIx_;. Consequently, for f € Lip(\, L2(IR?))
(0 < XA < k) we have

Hf ST S drgs (M- — @)y (Mn- — )

a€cZd j=1

< Cd-Ys)» ¥YpelN,  (1.28)
2

where C is a constant independent of n (see [23]).
Let v be an element in Vi, and let

H(x) := Z v()h(z —a), ze€lR?,

[ =y/Ad

where h is a compactly supported continuous function on IR? such that the shifts of h are
stable, and Drh(2m3) = 0 for all |u| < k and 8 € Z* \ {0}. By our choice of H, we have

Dr(yH)(2rB) = Du(yoh)(2r8) =0 V|u| < k and 8 € Z°.
Let ¥ := & + H. Taking (1.13) into account, we obtain
Du(y¥)(2n) = Di(y®)(2n ) = doudos  V|u| < k and B € Z°.

Suppose ¥ = (¢1,...,9%,)T. Let Py be the quasi-projection operator given by

Pyfi= Y > (f,g;(- —a)¥j(- — @), fe€ Ly(R).

a€cZ® j=1

Then Py also reproduces all polynomials of degree at most k£ — 1.
For n=1,2,..., let ¢, be the sequence of r X r matrices given by

cn(a) = (<¢J7 dngm(Mn - a)>)1§j,m§r’ a€Z’.

Suppose ® € (Lip(A, L2(IR?)))" and 0 < A < k. Since Paq = Pyq = ¢ for all ¢ € TI;_1,
the estimate in (1.28) tells us that there exists a positive constant C1 such that

< Ci(d-Y9) ¥YnelN (1.29)
2

H@ =) ea(@)®(Mn- - o)

a€Zs
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and
< Ci(d=1/s)An  ¥p e IN. (1.30)

2

H@ =) ea(@) (M- — )

aEcZs

It follows from (1.24) and (1.29) that

< Cy(d-Y/s)»n YpeNN.
2

Z (an — cn)(@)P(M"- — )

a€Zs

Since @ is stable, we deduce from the above estimate that
|an — cn||l2 < Cad(1/2=X/s)n ¥Yn € IN,

where C3 is a constant independent of n. This in connection with (1.30) gives

< Cs3(d-1/5)> Vn e,
2

H@ =) an(a) ¥ (M- - )

a€Zs

where (' is a constant independent of n. But ¥ = &+ H. So the above inequality together
with (1.24) yields

D an(@)H(M"- - a)|| < Cs(d=1/5) VneN.

a€”Z? 2
But
Y an(@HM™—a)= Y > an(@v(B)h(M"-—a—B) = > (an*v)(y)h(Mn-—7y).
[ 1y/Ad a€Zs BeZs YEZS
Consequently,

< C3(d=1/5)An  Yn e IN.
2

> (an*v) () h(Mn- — )

YEZ®

Since the shifts of h are stable, there exists a constant C, such that (1.26) holds true.
O

5. Spectral radius. In order to apply the results in the previous section to smooth-
ness analysis of refinable vectors of functions we need to evaluate the limit

. 1
Tim lanso]ly".

In this section we shall show that this limit can be evaluated as the spectral radius of a
certain (finite) matrix. Some ideas in [13], [22], and [25] will be employed in our discussion.
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For u,v € £y(Z*), we define u ® vT as follows:

uOvT(a) := Z u(a+ Bv(B)T, «ocZ®.

pezs

Let up, := ap*u and vy, := anp*v, where a, (n =1,2,...) are the sequences given in (1.25).
Moreover, let w := vec(u ® vT) and wy, := vec(u, ® vi). For a € Z*, we have

n 00F(@) = 3 un(a+B)onB) = 3 3 Y anla+B—u)om) anB-1) -

pez: BEZ® vE€Z* nET®

It follows by (1.5) that

wn@) = 3 (X @) (e 8- (3 vee fuly+ i) ).

YEZ® peZ® nezZ?

Let b, (n=1,2,...) be the sequences given by

bn(a) := di" Z an(B) ® an(a+ B), «a€Z’. (1.31)
pBez®
Consequently,
vec ((an*u) © (an*v)T) = dnbyx(vec (u © vT)). (1.32)

Clearly, b1 is the same as the sequence b given in (1.6). Furthermore, for n > 1, it
follows from (1.31) and (1.25) that

drbp(@) = > 3 Y (an-1(malB— Mn)) ® (an-1(v)a(a+ B — M)

BEZ® neZ® veZ?

= (Z M®an—1(n+v))<z m®“(“+ﬂ_Mﬂ)'

YEZ® ‘neZ® BEZs

It follows that
bn(e) = Y bn1(y)b(a—M7), aeZ’ (1.33)

THEOREM 5.1. Let a € (5" (Z?), and let a, (n = 1,2,...) be given as in (1.25).
Then for v € £5(Z?),

. 1
Tim [lagrolly™ = v/dp(Tylw),
where b is the sequence given in (1.6) and W is the minimal invariant subspace of the

transition operator Ty generated by w := vec(v ® vT).
Proof. We first establish the following identity for w € €62 (Z°):

TP w Z bn(Mmra — B)w(B), o€ Z’. (1.34)
pezs
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This will be proved by induction on n. By the definition of the transition operator Tj,
(1.34) is true for n = 1. Suppose n > 1 and (1.34) is valid for n — 1. For a € Z*® we have

Trw(a) = Z bn—1(Mn~1a — B)(Tyw)(B)

Bezs

=3 Y bpa(Mnla— B)b(MB — y)w(y)

BEZ® veZ?

-y [ S buoa(B)b(Mra —y — MB) | w(y)

YEZ® ~BeZ?

=Y ba(Mra —y)w(y),

vezs

where (1.33) has been used to derive the last equality. This completes the induction
procedure.

Let v be an element in ¢§(Z°) and let w := vec(v ® vT). For n € IN, let vy, := ap*v
and wy, := vec (v, ® vl). Then wy, = d*by*w, by (1.32). This together with (1.34) yields

drTiw(a) = dbpxw(Mra) = wa (M), o€ Z°.
Since wy, = vec (v, © v4 ), we have
A || Tgw||oo < [[walloo < [lvall3-

On the other hand,

dnTw(0) = wn (0) = vec ( 3 vn(,@)mT> .

BeZ®
Consequently,
loall < rd™ [Ty wlleo < rllonll3.
Therefore,
lim [ansolly™ = lim fonlly"™ = d lim | Tywl|L" = dp(Tolw).
n—o0 n—00 n—oo
where W is the minimal invariant subspace of T} generated by w. a

Now suppose a satisfies the sum rules of order k with respect to y € T[‘lxr(]Rs). Let
Wiy, .= span{vec(u ® vT) : u,v € Vi },

where Vi is the linear space given in (1.18). By Lemma 3.3, Vj is invariant under the
transition operator T,. We claim that Wj is invariant under the transition operator Tj.
Suppose w = vec(u ® vT), where u,v € Vi. By (1.32) we have

Tyw(a) = bxw(Ma) = %vec ((axu) ® (axv)T)(Ma), o€ Z’.



TRANSITION OPERATOR AND SMOOTHNESS OF WAVELETS 25

Let E be a complete set of representatives of the distinct cosets of Z°/MZ*®. Then we
have

((a*u) ® (axv)T)(Ma) = Z (axu)(Ma + B) (a*v)(ﬁ)T

Bez®

= Z Z (axu) (Mo + M~y + n)(a*xv)(My + 77)T-
n€EE veZ?

But
() (Ma+ My + 1) = T (u(- +m) (@ +7), o€ Z"

We observe that Vj is shift-invariant, i.e., u € Vi implies u(-+n) € Vi for n € Z*. Since Vj,
is invariant under Ty, we see that u, = T, (u(-+n)) lies in V. Similarly, v, := T, (v(-+n))
lies in V. Consequently,

((axu) ® (axv)T)(Ma) = Z Z Un(a + ) WT, acZ’.

neE yeZ®

Therefore,

1
Tyw = — Zvec(u,7 Oul) € Wy.
d vy

This shows that W is invariant under Tp.
Let us consider the special case £ = 1. Suppose a satisfies the basic sum rule with
respect to yo # 0. In this case, it is easily seen that

Vi = {v CG@)ipYy, . v() = o}

and

Wi = {w EEBQ(ZS) : (%@yo)z w(a) :0}.

It was shown in [25] and [4] that the cascade algorithm associated with mask a con-
verges in the Lo norm if limy o [|an*v||2 = 0 for each v € V3. Conversely, suppose
® € (L2(IR%))" is a compactly supported solution to the refinement equation (1.1) and @
is stable. Then the proof of Theorem 4.1 tells us that limy,_, o ||an*v||2 = 0 for each v € V4.
Thus, we have the following result.

THEOREM 5.2. Let b € 862 (Z?) be defined as in (1.6). If a satisfies the basic sum
rule, and if p(Ty|w,) < 1, then there exists a compactly supported solution ® € (L2(IR®))"
to the refinement equation (1.1) with a being the mask. Conversely, if ® € (L2(IR%))" is a
compactly supported solution to the refinement equation (1.1) with a being the mask, and
if © is stable, then a satisfies the basic sum rule and p(Tp|w,) < 1.

We conclude this section with the following characterization of the critical exponent
of ® in terms of the mask.

a€Zs
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THEOREM 5.3. Let ® be a 1 X r vector of compactly supported functions in La(IR®)
satisfying the refinement equation (1.1). Suppose the mask a satisfies the sum rules of
order k and the matrix M 1is isotropic. Then

A(P) > —(logd p(Tb\Wk)) s/2.

The equality holds true in the above relation if, in addition, ® is stable and k is the largest
integer such that $(®) D j_4.
Proof. Let v € V. Then w := vec(v ® vT) lies in Wj. By Theorem 5.1 we have

lim [lanso[l3" < dp(Tyw,)-

n—00

Write py for p(Tp|w, ). For € > 0, there exists a positive constant C such that
lan*v||2 < Cd™/2(p +€)*/2 Vn € IN.

Let
Ae := —(logy(pr +€))s/2.

Then the above inequality can be rewritten as
lan*v|l2 < Cd(1/2=A</8)n ¥ € IN.
By Theorem 4.1, ® lies in (Lip(Ae, L2(IR®)))r. Hence,
(@) = Ae = —(logy(pk +€))s/2.

But € > 0 could be arbitrarily small. Therefore, we obtain

A(®) > —(log pi) /2.

Now suppose ® is stable and & is the largest integer such that $(®) D IIx_;. We must
have A\(®) < k, for otherwise A(®) > k would imply $(P) D IIi (see [40] and [4]). Since
® is stable and $(®) D IIx_1, the corresponding mask a satisfies the sum rules of order
k with respect to some y € T'*"(IR®). Let . := A(®) — &, where 0 < € < A(®). Then
® lies in (Lip(Ae, L2(IR®)))™ and k > Ac. Note that p(Ts|w,) = p(Ts|yy, npr2 (1)), Where K
is the set Z° Ny o2 M—n(suppb). Since Wy, N ¢r°(K) is finite dimensional, we can find
uj,vj € Vg, 3 =1,..., N, such that

Wi, N 4% (K) C span{vec(u; @vf) :j=1,...,N}L

Let wj := vec(u; ©v]) : j=1,...,N. We have

_ . 11/n
pi = P(Thlyg, et () < max { lim [T 2L }.
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By (1.32) we have
d*|[brxw;lloo < llan¥usllz llan*vj|2.

Thus, from the proof of Theorem 5.1 we obtain

lim ||T"'wj||é</)n < d—1< lim ||an*uj||;/n> ( lim ||an*vjl|, )
n—oo n—o0

Since ® € (Lip(Ae, L2(IR?)))" with A. < k, and since ® is stable, by Theorem 4.1 we have

hm ||an*ug||1/n < dl/2=A/s  and hm ||an*vj||1/" < d/2=A/s,
n—

n—

Therefore,
pr < d—1d1/2=XAc/sdl/2—Ae/s = d—2Ac/s

It follows that
A®@) —e =X < —(log, pr)s/2.

We conclude that A(®) < —(log, pr)s/2. This

But € > 0 could be arbitrarily small.

completes the proof. O
6. Invariant subspaces. In the previous section, we reduced calculation of the crit-

ical exponent of a refinable vector of functions to the spectral radius of the transition
operator Ty restricted to Wy. The purpose of this section is to find a basis for WkL In this

way, we will be able to apply Lemma 2.3 to calculate p(Tp|w, )
Let y € T'*"(IR®). Recall that
Vi = {v € (5(Z°) : Dr(y0)(0) =0V |u| < k}

(1.35)

and
Wi, = span{vec(u ©® vT) : u € Vi, v € Vi }.

For £ € R?, we have
—i(a-i-ﬂ)feiﬁ'ﬁ

a)e"trd = Z Z (a+ B)v(B)

(wovT) (€)= ) (uevT)(
a€Z® a€Z® BEZ®
= 3 (3 o ﬂ)e_“”m'g)”(ﬂ')e—iﬁf = (§) 3(E) -

Bezs
Let us first consider the special case r =1 and y = 1. In this case, we claim that

Wi = {w € £o(Z°) : Drw(0) = 0V || < 2k).
Dv$(0) = 0 for all |v| < k. Hence, D#(49)(0) = 0
0) = 0 for all

Indeed, if u,v € Vi, then D¥4(0) =
for all |u| < 2k. Conversely, suppose w € £o(Z*) and h := w satisfies Dr#h(0)

|u| < 2k. The following lemma tells us w € Wy,
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LEMMA 6.1. Let h be a trigonometric polynomial on IR® such that D»h(0) = 0 for all
|p| < 2k. Then

h € span{g19z : 91,92 € T(IR?), D¥g1(0) = D¥g2(0) =0V |v| < k}.

Proof. For € Z*° we use dg to denote the sequence on Z* given by dg(a) = 0 for
a € Z°\ {B} and 0g(B) = 1. Let

V :=span{VHdg : |u| = 2k, 8 € Z°},

and let U := VL. Suppose u is a polynomial sequence of degree at most 2k — 1. For
|u| = 2k we have

(u, Vedg) = > u(e)Vedg(—a) = > Vru(a)ds(—a) = 0.

a€Zs a€Zs

Hence, u lies in U. Conversely, if u € U, then (u, V#ég) = 0 for all |u| = 2k and g € Z°.
It follows that (Vru,dg) = 0 for all B € Z°®. Therefore, Viu = 0 for all |u| = 2k. This
shows that u is a polynomial sequence of degree at most 2k — 1.
Suppose h(§) =), czs v(a)emi¢, where v € £o(Z°). If Drh(0) = 0 for all [u| < 2k,
then
3 (—ie)pv(a) =0V |p| < 2.
a€”Z?®

Consequently, (u,v) = 0 for every polynomial sequence u of degree at most 2k — 1. This
shows v € UL = (VL)L = V. Thus, h = ¢ lies in span{(V*#dg)" : |u| = 2k, € Z*}. The
symbol of V£ig is

(1= emiti)pn oo (1= emi)emif, € = (6u,...,E) € R,
For || = 2k, this expression can be written as g1(£)g2(§), where g1 and g2 are trigonometric
polynomials satisfying D¥g1(0) = D¥g2(0) = 0 for all |v| < k. O
The following lemma extends Lemma 6.1 to the general case.
LEMMA 6.2. Suppose y = (y1,...,yr) € T (IR®) and y(0) # 0. Let

G:={geT(R®): D"(yg)(0) =0 V|v| <k},

and let H be the set of those r X r matrices h of trigonometrical polynomials for which
Dv(yh)(0) = D¥(hgT)(0) = 0 for all |v| < k and Dr(yhGr)(0) =0 for all k < |p| < 2k.
Then

H = span{g135" : g1, 92 € G}.

Proof. We observe that both G and H are linear spaces. If g1, g2 € G, then h := ¢1g2°

satisfies
D (yh)(0) = D*(yg1g2")(0) =0 V|v| <k

and
D¥(hy")(0) = D*(g192" 5" )(0) = D¥(yg2g1")(0) =0 V|v| < k.



TRANSITION OPERATOR AND SMOOTHNESS OF WAVELETS 29

Moreover,

Dr(yhg")(0) = Dr(ygigz’ g )(0) = D ((yg1)([@g2)T) (0) =0 V|u| < 2k.

Hence, h = ¢1g2° € H for all g1,¢2 € G.

Conversely, suppose h = (hmn)i1<mn<r € H. Then D¥(yh)(0) = D”(hy )(0) = 0 for
all [v| < k. Consequently, D¥(y (him, - - -, hrm)T)(0) = D¥((hm1, - - -, hmr) 72 )(0) = 0 for
each m =1,...,r and all |v| < k. Hence, (Aim, .. ., hrm)T € G and (hml, hmn) €G.
Without loss of any generality, we may assume that y1(0) # 0. Thus, for m = 2,...,r we
can find u,, € T(IR®) such that

DY (y1um +ym)(0) =0 Vv| <k.

For m = 2,...,r, consider the vector (um,0,...,0,1,0,...,0)T, where 1 is in the mth
position. In light of our choice of u,, we have (um,0,...,0,1,0,...,0)T € G. Let

h! = h — Z(um,o,...,0,1,0,...,o)T(hml,...,hmT).

T
Recall that (Ami, ..., Amr) € G. Therefore, b’ lies in H. Moreover, for m = 2,...,r, the
mth row of A’/ vanishes. Suppose the first row of b’ is (h), h},,..., k), ). Since b’ € H, we
have (b, ,0,...,0)0T € Gform=1,...,7. Let

im>

T

Wo=1 =Y (W 0,2, 0)T (1, 0,....,0,1,0,...,0).

m=2

Then A" € H. All the entries except the (1,1)-entry of the matrix A" are zero. Let hY; be
the (1,1)-entry of h”. Since h” € H, we have D¥(y1h};)(0) = 0 for all |v| < k. Moreover,
D (|y1]2hY)(0) = Dr(y1h,77)(0) = 0 for k < |u| < 2k. But y1(0) # 0. Hence, it follows
that D#(hY,)(0) = 0 for all |p| < 2k. By Lemma 6.1,

hyy € span{fifa : f1, f2 € T(IR®), D¥ f1(0) = D f2(0) = 0 V|v| < k}.

If f1,f2 € T(IRS) satisfy D”fl(()) = D”fz(()) = 0 for all |1/| < k, then g7 := (fl,O, .. .,O)T
and g2 := (f2,0,...,0)T belong to G. This shows that

h!" € span{glg_2T 191,92 € G}.

Therefore, h itself lies in span{g192° : g1, 92 € G}. O

. an 2T
Since (v ® vT)" =49 , we have

span{(u ©@ vT)" :u € Vi, v € Vi } = span{&ET cu € Vi, v € Vi)
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By Lemma 6.2, w € Wy if and only if @ = vec(h) for some h satisfying the following
conditions:

Dr(yh)(0) = Dr(hgT)(0) =0V |u| <k and Dr(yhy?)(0) =0VEk < |u| < 2k.
Let {t1,...,t-} be a basis for C'*". Tt is easily seen that
Dr(yh)(0) = 0 < Dr(yhth) =0 Vm=1,...,r.

Similarly,
Dr(hgT)(0) = 0 <= DF(tmhy?) =0 Ym=1,...,r

We observe that
vec(yhth) = (tm®@y)vec(h), vec(tmhy’) = (®tm)vec(h), and vec(yhy’) = (FQy)vec(h).
Therefore, u € Wy, if and only if

Dt ((tm @ y)W) (0) = DE((T Q@ tm)®)(0) =0 V|p| <k

and
Dr((goy)w)(0) =0 Vk<|u| <2k

By Leibniz rule for differentiation we have

(D ({tn @U))O) _ 5 (iD)r=*{tm ©1)(0) (D)0
! = (u—v)! V! '

But (—iD)¥w(0) = >, czs (—@)?w(a). Hence,
(=iD)#((tm ® y))(0)

! - Z (tm ® up) (—)w(@) = (tm ® Uy, w),

a€”Zs

where u, (|u| < k) is given by

ql/,

_ N~ (=iD)rvy(0)
e ; (u—)!
and ¢, (o) = a¥ /v, a € Z*. Thus,

Dt ((tm @ y)w)(0) = 0 <= (tm ® uy, w) = 0.

Similarly,
Dr((F @ tm)w)(0) = 0 <= (u}) ® tm,w) =0,
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where uj), is given by up, () = uy(—a), a € Z°. Finally, for |u| < 2k, let

- (D) (@ y)(0)
iy, ._g ) ”. (1.36)
Then

Dr(([y @ y)w)(0) = 0 <= (@, w) = 0.

The above discussions are summarized in the following lemma.

LEMMA 6.3. Suppose y is a 1 X r vector of trigonometric polynomials on IR® such that
y(0) # 0. Let {t1,...,t,} be a basis for C1*". If Wy, is the linear space defined in (1.35),
then Wy = Ukl, where

Uk := span{ty, @ uy,uy Qtm : || < kand m =1,...,r} +span{a, : k < |u| < 2k}.
w Up I

Since W}, is invariant under the transition operator Tj, Uy is invariant under the
subdivision operator Sy, by Lemma, 2.1.

In the above lemma, {t1,...,%,} could be any basis for C'*". But a particular choice
of bases will facilitate our study. Recall that A(0) =" 7. a(a)/d. Suppose

spec(A(0)) = {n1,m2,--- 0},

where 71 = 1 and 7; # 1 for j = 2,...,7. We choose a basis {t1,t2,...,t-} for C'*" such
that tlA(O) =t7 and

tmA(0) € span{ta,...,t,}, m=2,...,r.

Suppose

T

tmA0) = fmntn, m=1,...,r.

n=1
Then m11 =1 and Nm1 = Nim =0form=2,...,r.

7. Spectral analysis. In this section we will establish Theorem 1.1 and other related
results. For this purpose we shall first find the spectrum of the subdivision operator S
restricted to U.

Let y be a 1 x r vector of trigonometric polynomials on IR® such that y(0) # 0 and
y(0)A(0) = y(0). We choose a basis {t1,t2,...,t,} for C'*" such that t; = y(0) and
tmA(0) € span{te,...,t,}, m =2,...,7. Recall that ¢,(a) = a¥/v!, a € Z?, and

U =Y Yu—vt, |ul <K,
v<p

where y,—, = (—iD)#—7y(0)/(u — v)!. In particular, yo = y(0) = ¢t1. Moreover,

Up = Z yM—V(_1)|V|QV-

v<p
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For j=1,...,k, let
U; := span{tm @ uy, up @tm : [p| <jand m=1,...,r}.
LEmMmA 7.1. The set
{tm Quy: |p| <k,m=1,...,7r}U{u, @tm : lu|<k,m=2,...,r}

forms a basis for U,,.
Proof. For |u| =0, we have

up ® Yo = Jodo ® Yo = Jo ® Yodo = Jo ® Uo-
For |u| > 0 we have
up ® yo — (—1)Mlgo @
= Z(_1)|u|yu—v ® Yoqy — (—1) ¥ Z%%J Q Yp—v

v<p vp
=Y (D= @ yoe — (=D Y Toaw © yu—v-
vy v<p
Note that
Yoqv = Uy — Z Yo—rqr and (=1)"Igoq, = ui, — Zyu——f(—l)'”qf-
TV TV
Hence,

(1.37)

upy ® Yo — (_1)“”%@ Uy = Z(_l)h’lyu—v & Uy — Z(—l)l#ﬂ/lu{, ® Yu—v + J,

v<u v<p

where

Ji= 3 S OV @ gor + (DI @ g
v<p T<v

It follows that

J = Z Z [_(_1)|y|yu—v Q Yp—7 + (—1)|“_”+T|yu—7 ® yu_y} qr.
T TV I

Replacing v by p — v + 7 in the first part of the above inner sum, we obtain

Yo MG = Y (DT @y
Tv<u Tv<py
This shows J = 0. Therefore,

up ®@yo — (“D)Hm@ Uy = [(_1)|u|—yu_,, ® uy — (=1)b=¥lul, @ y,u_y |
v<p

(1.38)
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In light of (1.38) we see that the set in (1.37) spans U;. Actually this set is linearly
independent. To justify our claim, we first make the following observation. Suppose

t1,...,t, are linearly independent 1 x r vectors and w1, ..., w, are 1 X r vectors. Then
w1+ +wQt,=0=—=w; =0,...,w, =0. (1.39)
Indeed, there exist r x 1 vectors v, (n =1,...,r) such that
tmUn = Omn, m,n=1,...,r,
since t1,...,t, are linearly independent. Let I be the r X r identity matrix. Then

(w1 ®t1+-+w ®t:) (I ®vp) = 0.

verifies (1.39).
Suppose cju (lpl < k, j = 1,...,7r) and ¢}, (|u| < k, j = 2,...,7) are complex

numbers such that .

Z [Z Ciutj ® tp + ZCQMUL ® tj] = 0.

lpl<k j=1 j=2

We wish to show that all ¢j, = 0 and ¢, = 0. In terms of the expressions of u, and uj,
we have

r T
Z Z Z Cintj ® Yu-v v + Z Z Z CS'M(—l)”yu——u@@ tjq, = 0.

|p|<k j=1v<p |nl<k j=2v<p

As sequences on Z°, g, (|v| < k) are linearly independent. In the above sums, consider
those terms involving ¢, with |v| = k — 1. Then we have

S [Seumon+3d,cmon]u—o

lu|=k—1"j=1

It follows that

(chtj> ot +ch g5 @ 5 = 0.

Since t1,t2,...,t, are linearly independent, by (1.39) we have

T
Y ciuti=0 and &, (-)rg5 =0, j=2,...,7
j=1

Consequently, ¢j, =0 for all |y =k —1and j=1,...,r, and ¢, = 0 for all lu| =k —1

and j = 2,...,r. By using this argument repeatedly, we see that all ¢j, = 0 and c;- u =0

Therefore, the set in (1.37) is linearly independent, so it forms a basis for Uj. a
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Recall that spec (M) = {o1,...,05} and o# = o' --- ok for p = (p1,...,us) € Z°.
LEMMA 7.2. The spectrum of the subdivision operator Sy restricted to Uj, is

{mo=r:m=1,....r,|p| <k} U{pmo=# :m=2,...,r, |u| < k}.

Proof. Suppose |p| =j < k. Form=1,...,r and o € Z*, we have

Sp(tm ® up)(@) = D (m ® up) (7)b(c — M)
YEZ?

:% Y. Y (tm @ uu()(a(f) ® ala ~ My + B))

Y€EZ® BEZ?®

= @) ® ((Saw) e+ ).

BezZs

By Lemma 3.2, there are complex numbers ¢, such that
Sauy = Z Cuvlly, || =7
lv|=7

Moreover, the spectrum of the matrix (cuw)|u=j,jv|=; is {o=# : |u| = j}. For [v| =7, (1.19)
tells us that
uy(a+ B) —uy(a) = Z hor(B)ur(c), «,p€Z°,

|T|<3d

where h,, € £(Z*). Thus, for a, € Z° we have

(Saup)(a+ B) = Z Cuvtiy (4 B) = Z cuvty (@) + Z Z cuvhur (B)ur ().

lv|=j lv|=j lv|=7 |7|<j
Hence, there exists some element wmy € U such that
_ 1 —
Sl 0 ) = 52 Fa ) 3 ) + o
vi=)

But

Therefore, for m € {1,...,r} and |u| = j we have

b(tm @ uy) Z Z nmnc,w (tn ® uy) + Wy (1.40)

n=1|v|=j
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Let A; denote the index set {(m,u) :m =1,...,7 |p| = j}. With an appropriate ordering,
the matrix

(T €0) (m ye s mayeas,

can be viewed as the Kronecker product of the matrices (ﬂmn)ISm,nST and (cuv)
Hence, its spectrum is

lul=3,v|=3"

{mo=r:m=1,....r, |u| =j}.

An analogous argument shows that, for |u| = j and m € {2,...,r},
Sp(up @ tm) Z Z Nmn Cuw) (UL @ tn) + Winp, (1.41)
n=2|v|=j
where wyy,, € UJ’.. Note that the spectrum of the matrix (9mn)o<m,n<r is {n2,..., 10}

For j = 1,...,k, let S‘éj ) denote the quotient linear operator induced by Sy on the
quotient space U;/U;_;. Then (1.40) and (1.41) tell us that

spec(géj)) ={Tmo—r -m=1,....r |pl=7—-1YU{nmo=r:m=2....r, |ul=j— 1}
Since »
spec (Splu;) = Us_yspec (7).
the proof of the lemma is complete. a

By Lemma 6.3, we have Uy = Uj, +span{t, : k < |p| < 2k}, where @, (|p| < 2k) are
given by (1.36). As was done in §3, it can be easily proved that Uy, is the direct sum of U},
and span{u, : k < |u| < 2k}. Also, the set {4, : k < |u| < 2k} is linearly independent.
For j =k, k+1,...,2k, let

U == Uy, + span{iy, : k < |u| < j},

In particular, U} = U}, and U, = Uy.
LEMMA 7.3. The spectrum of the subdivision operator Sy restricted to Uy is

{mo=t,mmo=H :m =2,....7, |u| < k}U{o—#:|pl < 2k}. (1.42)

Proof. Suppose |u| = j € {k,...,2k — 1}. Since Uy is invariant under Sp, there exist
complex numbers ¢, (k < |v| < 2k) and an element w, € U}, such that

Syl = E Cuvlly + Wy
k<|v|<2k

Since Sp(VAty) = Vary (Sptiy) for v € Z°, it follows that

Sb(vTﬂ’P‘) = Z cl“/( M61 ) V ) v+t ( }-\/{fel T V}\-Zes)wu’ TE N(s)
k<|v|<2k
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We claim that ¢y, = 0 for |v| > j. If this is not the case, then N := max{|v|: ¢y # 0} > j.
For |7| = N, we have V7a, = 0 and (Vi ---V}7, Jw, = 0. Moreover, by (1.23) we have

(V;}Iel . --V;}es)ﬂu =bro for |7|=|v| =N,
where the matrix (bry)|,|=n,p|=n has {o# : |u| = N} as its spectrum. Consequently,
> b =0 Vir[=N. (1.43)
|lv|=N

Since the matrix (b;v)|;|=n,v|=n is invertible, we obtain c,, = 0 for all [v| = N. This
contradiction justifies our claim. Therefore,

Sb,a’p, = Z C,uz/au + 'U);;,, (144)
lv|=j
where wj;, € U}'. For |7| = j, we deduce from (1.44) that
5#7”&10 - Sb(v’rla/p‘) - Z Cuy(v’z}el ce VTAZCS)&V - Z Cuybq—ya().
lv|=j lv|=j

Hence, the spectrum of the matrix (cuv)|u|=j,|v|=; 18 {o7# : [u| = j}.

For j =k +1,...,2k, let Séj ) denote the quotient linear operator induced by Sp on
the quotient space U} /U}"_,. Then (1.44) tells us that

spec(Si)) = {o=r: |yl = j - 1}.
Since B
spec(Shlu,) = spec(Shluy, ) = spec(Spluy) U (U3k,1spec(S(7)),

we conclude that the set in (1.42) is indeed the spectrum of Sj restricted to Uy. d
By Lemma 7.3 and Lemma 2.3 we have the following formula:

p(Tolw,) = ma,x{ | : v € spec (b(Ma — ﬁ))a,ﬂEK \ Ex }

where
Ek = {njg—ﬂ777_j0_” : ‘,U,| < k,_] = 2,...,7‘}U{0'_'u’ : |,LL‘ < 2]{1}

This together with Theorem 5.3 verifies Theorem 1.1.
Let B be the matrix (b(Ma — ﬁ))a sek- We say that B satisfies condition E, if 1 is

a simple eigenvalue of B and other eigenvalues of B are less than 1 in modulus. Suppose
a satisfies the basic sum rule. Then Wi is invariant under T} and

p(Tylw,) = max{ |v] : v € spec(B) \ {1,nz, ... 00, 7, -, 77} -
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Thus, if B satisfies condition E, then p(T|w,) < 1, and hence the refinement equation
(1.1) has a compactly supported solution ® € (Ly(IR%))", by Theorem 5.2. Conversely, if
® € (L2(IR?))r is a compactly supported solution to the refinement equation (1.1), and if
® is stable, then Wi is invariant under T} and p(Ty|w,) < 1. But, in this case, |n;| < 1
for j =2,...,r (see [9] and [4]). Therefore, the matrix B satisfies condition £. When the
matrix M is 2 times the s X s identity matrix, this result was established in [42].

8. Examples. In this section we give three examples to illustrate the general theory.
Our first example, taken from [14], is concerned with orthogonal multi-wavelets.

Ezample 8.1. Let r = 2, s = 1, and M = (2). Suppose a € £3(Z) is supported on
{0,1,2,3}. Moreover,

16 8/2 176 0
= — _ ]_:—
-5 %] 5[5 0]
170 0 170 0
“(2):E[% —3}’ 93 =15 | = o}

We have

A(0) = [a(0) + a(1) + a(2) + a(3)]/2 = % _ 4\6/5 4\2/5] .

The eigenvalues of A(0) are 71 = 1 and 72 = —1/5. It can be easily verified that a satisfies
the sum rules of order 2, but a does not satisfy the sum rules of order 3. Let b be the
element in £3(Z) given by

b(a) = Z a(f) ®ala+B)/2, aclZ.

BEZ

Then b is supported on Z> N [—3,3]. Let B be the 28 x 28 matrix (b(2a — f))-3<a,8<3-
The nonzero eigenvalues of B are

1111 1 1 1 1 1 1 1 1 1 1 1

e
'2°4°8°8 5 5 10 10° 207 20° 20° 20" 25° 50" 50

Thus, there exists a unique compactly supported solution ® = (41, ¢2)T € (La(IR))2 to

the refinement equation
3

¢ = Z a(a)®(2- — )

a=0

subject to the condition [/2,1]®(0) = 1. The shifts of ¢; and ¢ are orthogonal (see [14]).
Consequently, ® is stable. Hence, we may apply Theorem 1.1 to obtain

A(®) = —(logy p2)/2,
where ps = max{|v|: v € spec(B) \ Fa} and
By ={1,1/2,1/4,1/8,~1/5,—1/5,—1/10, —1/10}.
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Therefore, p2 = 1/8 and A(®) = —(log, p2)/2 = 3/2. Note that
max{|v|: v € spec(B) \ {(1/2)» : p < 4}} =1/5.
But we have A\(®) = 3/2 > —(log, 1/5)/2. O
Our second example is motivated by the study given in [37] on norm bounds for
iterated transfer operators related to numerical solutions to partial differential equations.
Ezxample 8.2. Let r = 2, s = 2, and M = 2I5, where Is denotes the 2 x 2 identity

matrix. Suppose a € £2(Z?) is supported on (Z*N[0, 5]2)\{(4,0), (5,0), (4,1), (5,1),(0,5)}.
Moreover, a(0,0),a(1,0),a(2,0) are given by

10 o] 1o o] 1[0 o
8|-1 0] 8|1 0" 8|-1 of"

a(0,1),a(1,1),a(2,1) are given by

100 100 100
g1 O’ 8|5 1|2 8|1 1|’

a(0,2),a(1,2),a(2,2),a(3,2),a(4,2) are given by

1fo o] 1t -1] 18 1] 11 1] 1Jo -1
8|1 0|” 8|5 8] 8|1 8" 8|0 0" 8[0 O

a(0,3),a(1,3),a(2,3),a(3,3),a(4,3) are given by

1o o] 1[t 1] 1[8 5
g§|-1 0] 8|1 1]’ 8|-1 1|

and a(1,4),a(2,4),a(3,4),a(4,4) are given by
1fo —1] 1fo 1] 1o 1] 1[0 -1
80 O 8|0 Of" 8|0 Ol 8|0 O [

o= oo=1[3 3]

acZ?

We have

The eigenvalues of A(0) are 71 = 1 and 72 = 1/4. Moreover, [1,1]A(0) = [1,1]. It can be
verified that the optimal order of sum rules satisfied by a is £ = 2. Let b be the element
in £4(Z?) given by

b(a) = Z a(f) ®ala+B)/4, aeZ’

Bez?



TRANSITION OPERATOR AND SMOOTHNESS OF WAVELETS 39

Then b is supported in [—5,5]2. Let B be the 484 x 484 matrix (b(2cc— f3))q,ge[—5,512- The
leading eigenvalues of B are

1,1/2,1/2,1/4,1/4,1/4,1/4,1/4,0.13129521, 0.13060779, . . ..

Thus, there exists a unique compactly supported solution ® € (La(IR?))2 to the refinement
equation

o = Z a(a)®(2- — )

acz?
subject to the condition [1,1]®(0) = 1. By using the method in [18] we can show that ®
is stable. Hence, we may apply Theorem 1.1 to obtain
)\(Q)) = - 10g4 P2,
where pa = max{|v|: v € spec(B) \ Fa} and

111111 111111111
B={iryees o rrresess

Therefore, p2 ~ 0.13129521 and A(®) = — log, p2 ~ 1.46436842. d

Our third example is a refinable vector of functions with Hermite interpolation prop-
erties (see [16]). Such refinable functions are useful in computer aided geometric design.
FEzxample 8.3. Let r =3, s =2, and

Clearly, the eigenvalues of M are o1 = 1414 and 02 = 1 — ¢, where ¢ denotes the imaginary
unit. Suppose a € £3(Z?) is supported on {(0,0), (1,0),(0,1),(=1,0), (0,—1)}. Moreover,
a(0,0), a(1,0), and a(0, 1) are given by

1 0 0 1/4  —3/4 0 1/4 0 -3/4
o 1/2 1/2|, | 1/16 —1/8 o, |1/16 0 —1/8],
0 —1/2 1/2 ~-1/16  1/8 0 1/16 0 —1/8

and a(—1,0), a(0,—1) are given by

1/4  3/4 0 [ 1/4 0 3/4
-1/16 -1/8 0|, |—-1/16 0 —1/8
1/16  1/8 0 | —1/16 0 —1/8
We have _
1 1 0 0
A(O)ZEZa(a): 0 1/8 1/8
aczZ? |0 —1/8 1/8




40 RONG-QING JIA AND QINGTANG JIANG

The eigenvalues of A(0) are 1 = 1, n2 = (1 +14)/8, and n3 = (1 — i)/8. Moreover,
[1,0,0]A(0) = [1,0,0]. It can be verified that the optimal order of sum rules satisfied by a
is k = 4 (see [16]). Let b be the element in £3(Z?) given by

ba)= Y aB)®@ala+p)/2, acZ’
Bez?
Then b is supported on the set
{(a1,2) € Z’:2<a1—a2<2, -2<a1+az < 2}.

We observe that

=2

K =7Z°n (Zn_ M-n suppb))
= {(a1,a2) € /A lai| <6, |az| <6, a1 — az| <8, |a1 + az| < 8}.

The set K has exactly 129 points. Let B be the 1161 x 1161 matrix (b(2a — f))a,pek-
The first 27 eigenvalues of B (in terms of their absolute values) are

1, (14+14)/2, (1—1)/2,1/2,4/2, —i/2, (1 +14)/4, (1 —1)/4,—(1+14)/4, (-1 +14)/4,
1/4, —1/4, —1/4, i/4, —i/4, (1+1)/8, (1 +4)/8, (1 +14)/8, (1 —i)/8, (1 —i)/8, (1 —14)/8,

—(1+14)/8, —(1+14)/8, (=1 +1)/8, (=1 +14)/8, 0.149024, 0.148796.

Thus, there exists a unique compactly supported solution ® € (Ls(IR?))?2 to the refinement
equation

¢ = Z a(a)®(M- — )

a€cZ?

subject to the condition [1,0,0]®(0) = 1. It is known that ® is stable (see [16]). Hence,
we may apply Theorem 1.1 to obtain

)\(Q)) = - 10g2 P4,
where ps = max{|v|: v € spec(B) \ F4} and
Ey = {mo~#, o=+ 3o~ go~+ : |u| <4} U{o~k : |uf < 8}.

We see that
ps = max{|v| : v € spec(B) \ E1} ~ 0.149024.

Therefore, A\(®) = —log, pa & 2.746387. O
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