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Abstract

To model a non-stationary signal as a superposition of amplitude and frequency-modulated

Fourier-like oscillatory modes is important to extract information, such as the underlying dy-

namics, hidden in the signal. Recently, the synchrosqueezed wavelet transform (SST) and its

variants have been developed to estimate instantaneous frequencies and separate the compo-

nents of non-stationary multicomponent signals.

The short-time Fourier transform-based SST (FSST for short) reassigns the frequency

variable to sharpen the time-frequency representation and to separate the components of a

multicomponent non-stationary signal. However FSST works well only with multicomponent

signals having slowly changing frequencies. To deal with multicomponent signals having fast-

changing frequencies, the 2nd-order FSST (FSST2 for short) was proposed. The key point for

FSST2 is to construct a phase transformation of a signal which is the instantaneous frequency

when the signal has a linear chirp. In this paper we consider a phase transformation for FSST2

which has a simple expression than that used in the literature. In the study the theoretical

analysis of FSST2 with this phase transformation, we observe that the proof for the error

bounds for the instantaneous frequency estimation and component recovery is simpler than

that with the conventional phase transformation. We also provide some experimental results

which show that this FSST2 performs well in non-stationary multicomponent signal separation.
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1 Introduction

To model a non-stationary signal x(t) as

x(t) = A0(t) +

K∑
k=1

xk(t), xk(t) = Ak(t)e
i2πφk(t), (1)

with Ak(t), φ
′
k(t) > 0 is important to extract information hidden in x(t) since most real signals

such as EEG and bearing signals can be formulated as (1), and its trend A0(t), instantaneous am-

plitudes Ak(t) (k ≥ 1) and instantaneous frequencies φ′k(t) can be used to describe the underlying

dynamics of x(t). Thus the representation (1) of non-stationary signals has been used in many

applications including geophysics (seismic wave), atmospheric and climate studies, oceanographic

studies, medical data analysis and speech recognition, see for example [10]. The empirical mode

decomposition (EMD) [9] is a widely used method to separate a signal as a sum of finitely many

intrinsic mode functions (IMFs) and represent the signal in the form of (1) by the Hilbert analysis.

EMD is a data-driven decomposition algorithm and it was studied by many researchers and has

been used in many applications, see e.g. [7, 17, 20, 27, 31, 34, 36, 37, 41]. However EMD hardly

distinguishes two close IMFs and sometimes it leads to false components.

Recently the continuous wavelet transform-based synchrosqueezing transform (WSST) was

developed in [6] as an alternative EMD-like tool to separate the components of a non-stationary

multicomponent signal. In addition, the short-time Fourier transform-based SST (FSST) was

also proposed in [30] and further studied in [23, 35] for this purpose. SST has been proved to

be robust to noise and small perturbations [11, 21, 29]. However SST does not work well for

multicomponent signals having fast changing frequencies.

To provide sharp representations for signals with significantly frequency changes, the 2nd-

order FSST (FSST2) and the 2nd-order WSST (WSST2) were introduced in [24] and [22], and

the theoretical analysis of them was carried out in [1] and [26] respectively. The 2nd-order SST

improves the concentration of the time-frequency representation. The higher-order FSST is pre-

sented in [25] and [18], which aims to handle signals containing more general types. Other SST

related methods include the generalized WSST [13], a hybrid empirical mode decomposition-SST

computational scheme [5], the synchrosqueezed wave packet transform [38], the demodulation-

transform based SST [12, 32, 33], signal separation operator [4], vertical synchrosqueezing [8]

and empirical signal separation algorithm [16]. In addition, the synchrosqueezed curvelet trans-

form for two-dimensional mode decomposition was introduced in [40] and the statistical analysis

of synchrosqueezing transforms has been studied in [39]. Furthermore, the SST with a window

function having a changing parameter was proposed in [28] and the FSST with the window func-

tion containing time and frequency parameters was studied in [2]. Very recently the authors of
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[14, 15] considered the 2nd-order adaptive FSST and WSST with a time-varying parameter. They

obtained the well-separated condition for multicomponent signals using the linear frequency mod-

ulation signals to approximate a non-stationary signal at any local time. The theoretical analysis

of 2nd-order adaptive FSST and WSST was studied in [3] and [19] respectively. In this paper we

conside an FSST2 with a phase transformation which has a simpler expression than that used

in the literature. In the study the theoretical analysis of FSST2 with this phase transformation,

we find that the proof is simpler. Our experimental results show that the performance of this

FSST2 in instantaneous frequency estimation and component recovery is comparable with, and

even better in some cases than, that of conventional FSST2.

The rest of this paper is organized as follows. In Section 2 we first briefly review FSST and

FSST2. After that we introduce a phase transformation and the associated FSST2. In Sections

3 and 4, we consider the theoretical analysis of the FSST2 with this phase transformation. We

establish an error bound for instantaneous frequency estimation in Section 3, and error bounds

for component recovery in Section 4. We provide some experimental results in Section 5.

2 The second-order FSST with a simple phase transformation

In this section we first provide a brief review of FSST and FSST2. After that we propose a simple

phase transformation for the 2nd-order FSST.

The (modified) STFT of x(t) ∈ L2(R) with a window function g(t) ∈ L2(R) is defined by

Vx(t, η) = V g
x (t, η) :=

∫
R
x(τ)g(τ − t)e−i2πη(τ−t)dτ, (2)

where t and η are the time variable and the frequency variable respectively. For simplicity, we

drop g in V g
x (t, η). Thus, unless otherwise stated, in this paper Vx(t, η) denotes the STFT of x(t)

with window function g(t).

If g(0) 6= 0, then the original signal x(t) can be recovered back from its STFT:

x(t) =
1

g(0)

∫
R
Vx(t, η)dη. (3)

In addition, if the window function g(t) ∈ L2(R) is real, then for a real-valued x(t) ∈ L2(R), we

have

x(t) =
2

g(0)
Re
(∫ ∞

0
Vx(t, η)dη

)
. (4)

Here we remark that if the window function g(t) has certain smoothness and certain decaying

order as t→∞, then STFT Vx(t, η) of a slowly growing x(t) with g(t) is well defined. Furthermore,

the above formulas still hold. In this following, we always assume a window function g(t) has

certain smoothness and decaying properties, and a signal x(t) is a slowly growing function. In
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addition, in this paper we assume g(0) 6= 0. For a signal x(t), its Fourier transform x̂(ξ) (maybe

in the distribution sense) is defined by

x̂(ξ) :=

∫
R
x(t)e−i2πξtdt.

The idea of the STFT-based synchrosqueezing transform (FSST) is to reassign the frequency

variable [30]. More precisely, we first look at STFT of x(t) = Aei2πω0t, where A,ω0 are constants

with ω0 > 0. We have

Vx(t, η) =

∫
R
Aei2πω0(t+τ)g(τ)e−i2πητdτ = Aei2πtω0 ĝ(η − ω0). (5)

Thus, the instantaneous frequency (IF) ω0 of x(t) can be obtained by

∂tVx(t, η)

2πiVx(t, η)
= ω0.

Hence, for a signal x(t), at (t, η) for which Vx(t, η) 6= 0, the quantity ωx(t, η) defined by

ωx(t, η) := Re
( ∂tVx(t, η)

2πiVx(t, η)

)
(6)

should be a good candidate for the IF of x(t), and it is called the “phase transformation” in [6]

or “instantaneous frequency information” in [30].

With ωx(t, η) defined by (6), FSST is to reassign the frequency variable η by transforming

STFT Vx(t, η) of x(t) to a quantity, denoted by Rλx,γ(t, ξ), on the time-frequency plane:

Rλx,γ(t, ξ) :=

∫
|Vx(t,η)|>γ

Vx(t, η)
1

λ
h
(ξ − ωx(t, η)

λ

)
dη, (7)

where γ > 0, λ > 0, and throughout this paper h(t) is a compactly supported function with

certain smoothness and
∫
R h(t)dt = 1. In addition, in this paper

∫
|Vx(t,η)|>γ means the integral∫

{η: |Vx(t,η)|>γ} with η over the set {η : |Vx(t, η)| > γ}.

To define and analyze the 2nd-order FSST (FSST2), we denote

g1(τ) := τg(τ), g2(τ) := τ2g(τ), g3(τ) := τg′(τ).

We use V
gj
x (t, η) and V g′

x (t, η) to denote the STFTs defined by (2) with g replaced by gj and g′

respectively, where 1 ≤ j ≤ 3.

[24] and [1] introduced different phase transformations for the 2nd-order FSST, one of which

is given by

ω2nd
x (t, η) =


Re
{ ∂tVx(t,η)
2πiVx(t,η)

}
+ Re

{
q̃(t, η)

∂ηVx(t,η)
Vx(t,η)

}
,

if ∂t
(∂ηVx(t,η)
Vx(t,η)

)
6= i2π and Vx(t, η) 6= 0;

ωx(t, η), if ∂t
(∂ηVx(t,η)
Vx(t,η)

)
= i2π and Vx(t, η) 6= 0,

(8)
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where

q̃(t, η) :=
∂t

(
∂tVx(t,η)
Vx(t,η)

)
i2π − ∂t

(
∂ηVx(t,η)
Vx(t,η)

) .
The quantity ω2nd

x (t, η) is defined in such a way that when x(t) is a linera chrip, then ω2nd
x (t, η)

will be the IF of x(t). A linear chirp (also called a linear frequency modulation signal) considered

here is a signal of

x(t) = Aept+
q
2
t2ei2πφ(t) = Aept+

q
2
t2ei2π(ct+

1
2
rt2), (9)

with IF φ′(t) = c+rt, where A, p, q, c, r are real numbers and the chirp rate r 6= 0. Next proposition

shows that for (t, η) satisfying ∂η
( Vx(t,η)
V
g1
x (t,η)

)
6= 0 and V g1

x (t, η) 6= 0, the quantity defined by

Re
{ 1

i2π∂η
( Vx(t,η)
V
g1
x (t,η)

)∂η(∂tVx(t, η)

V g1
x (t, η)

)}
(10)

is also c+ rt, the IF of linear chirp x(t).

Proposition 1. Let x(t) be the linear chirp defined by (9). Then for (t, η) satisfying ∂η
( Vx(t,η)
V
g1
x (t,η)

)
6=

0 and V g1
x (t, η) 6= 0, the quantity defined by (10) is c+ rt.

The proof of Proposition 1 is postponed to the end of this section. Thus for a general signal

x(t), we may define a phase transformation for FSST2 as the real part of

u2nd,cx (t, η) :=


1

i2π∂η
(
Vx(t,η)

V
g1
x (t,η)

)∂η(∂tVx(t,η)V
g1
x (t,η)

)
, if ∂η

( Vx(t,η)
V
g1
x (t,η)

)
6= 0 and V g1

x (t, η) 6= 0;

∂tVx(t,η)
i2πVx(t,η)

, if ∂η
( Vx(t,η)
V
g1
x (t,η)

)
= 0 and Vx(t, η) 6= 0.

(11)

We denote

u2ndx (t, η) := Re
{
u2nd,cx (t, η)

}
. (12)

Here and below, the letter c in u2nd,cx (t, η) denotes the complex-valued version of the phase trans-

formation. Comparing u2ndx (t, η) with ω2nd
x (t, η) in (8), we know that u2ndx (t, η) is simpler.

Next we define the 2nd-order FSST with this phase transformation u2ndx (t, η), where Vx(t, η) 6=
0, V g1

x (t, η) 6= 0 and ∂η

(
Vx(t,η)

V
g1
x (t,η)

)
6= 0 are described by thresholds γ0 > 0, γ1 > 0, γ2 > 0. More

precisely, we define

u2ndx,γ0,γ1,γ2(t, η) :=



Re
{

1

i2π∂η
(
Vx(t,η)

V
g1
x (t,η)

)∂η(∂tVx(t,η)V
g1
x (t,η)

)}
, if

∣∣∂η( Vx(t,η)V
g1
x (t,η)

)∣∣ > γ2 and
∣∣∣V g1
x (t, η)

∣∣∣ > γ1;

Re
{
∂tVx(t,η)
i2πVx(t,η)

}
, if

∣∣∂η( Vx(t,η)V
g1
x (t,η)

)∣∣ ≤ γ2 or
∣∣∣V g1
x (t, η)

∣∣∣ ≤ γ1;
and

∣∣∣Vx(t, η)
∣∣∣ > γ0.

(13)
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Let h(t) be a compactly supported function with certain smoothness and
∫
R h(t)dt = 1. We define

the 2nd-order FSST S2nd,λ
x,γ1,γ2 with phase transformation u2ndx,γ1,γ2(t, η) by

S2nd,λ
x,γ0,γ1,γ2(t, ξ) :=

∫{
η: |Vx(t,η)|>γ0

} Vx(t, η)
1

λ
h
(ξ − u2ndx,γ0,γ1,γ2(t, η)

λ

)
dη. (14)

The phase transformation u2ndx (t, η) will be used to approximate IFs φ′k(t) and S2nd,λ
x,γ0,γ1,γ2(t, ξ)

will be employed to recover components xk(t), which are the topics to be studied in the next two

sections. Before moving on to the next section, we give the proof of Proposition 1.

Proof of Proposition 1. Let x(t) be the linear chirp given by (9). From

x′(t) =
(
p+ qt+ i2π(c+ rt)

)
x(t)

and

Vx(t, η) =

∫ ∞
−∞

x(t+ τ)g(τ)e−i2πητdτ,

we have

∂tVx(t, η) =

∫ ∞
−∞

x′(t+ τ) g(τ)e−i2πητdτ

=
(
p+ qt+ i2π(c+ rt)

)
Vx(t, η) + (q + i2πr)

∫ ∞
−∞

τx(t+ τ) g(τ)e−i2πητdτ

=
(
p+ qt+ i2π(c+ rt)

)
Vx(t, η) + (q + i2πr)V g1

x (t, η).

Thus, if V g1
s (t, η) 6= 0, we have

∂tVx(t, η)

V g1
x (t, η)

=
(
p+ qt+ i2π(c+ rt)

) Vx(t, η)

V g1
x (t, η)

+ q + i2πr. (15)

Taking partial derivative ∂η to the both sides of (15),

∂η

(∂tVx(t, η)

V g1
x (t, η)

)
=
(
p+ qt+ i2π(c+ rt)

)
∂η

( Vx(t, η)

V g1
x (t, η)

)
.

Therefore, if in addition, ∂η

(
Vx(t,η)

V
g1
x (t,η)

)
6= 0, then

p+ qt

i2π
+ c+ rt =

1

i2π∂η

(
Vx(t,η)

V
g1
x (t,η)

)∂η(∂tVx(t, η)

V g1
x (t, η)

)
.

Thus,

c+ rt = Re
{ 1

i2π∂η

(
Vx(t,η)

V
g1
x (t,η)

)∂η(∂tVx(t, η)

V g1
x (t, η)

)}
.

This completes the proof of Proposition 1. �
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3 Instantaneous frequency estimation

We consider multicomponent signals x(t) given by (1) with the trend A0(t) of x(t) removed,

namely,

x(t) =

K∑
k=1

xk(t) =

K∑
k=1

Ak(t)e
i2πφk(t). (16)

One may refer to [5] about how to remove A0(t). We assume

Ak(t) ∈ C1(R) ∩ L∞(R), φk(t) ∈ C3(R), φ′′k(t) ∈ L∞(R), (17)

Ak(t) > 0, inf
t∈R

φ′k(t) > 0, sup
t∈R

φ′k(t) <∞. (18)

For a given t, we use Gk(ξ) to denote the Fourier transform of eiπφ
′′
k(t)τ

2
g(τ), namely,

Gk(ξ) :=

∫
R
eiπφ

′′
k(t)τ

2
g(τ)e−i2πξτdτ. (19)

Note that Gk(ξ) depends on t also if φ′′k(t) 6= 0. We drop t in Gk for simplicity.

In the following we assume that each component xk(t) of x(t) is well approximated locally by

linear chirp signals of (9) with A′k(t) and φ
(3)
k (t) small:

|A′k(t)| ≤ ε1, |φ
(3)
k (t)| ≤ ε3, t ∈ R, 1 ≤ k ≤ K, (20)

for some small positive numbers ε1, ε3.

Let x(t) be a multicomponent signal of (16) satisfying (17), (18) and (20). Write x(t+ τ) as

x(t+ τ) = xm(t, τ) + xr(t, τ),

where

xm(t, τ) :=

K∑
k=1

xk(t)e
i2π(φ′k(t)τ+

1
2
φ′′k(t)τ

2),

xr(t, τ) :=
K∑
k=1

{
(Ak(t+ τ)−Ak(t))ei2πφk(t+τ)

+xk(t)e
i2π(φ′k(t)τ+

1
2
φ′′k(t)τ

2)
(
ei2π(φk(t+τ)−φk(t)−φ

′
k(t)τ−

1
2
φ′′k(t)τ

2) − 1
)}
.

Then we have

Vx(t, η) =
K∑
k=1

∫
R
xk(t+ τ)g(τ)e−i2πητdτ

=

K∑
k=1

∫
R
xk(t)e

i2π(φ′k(t)τ+
1
2
φ′′k(t)τ

2)g(τ)e−i2πητdτ + res0

=
K∑
k=1

xk(t)Gk
(
η − φ′k(t)

)
+ res0, (21)
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where

res0 :=
K∑
k=1

∫
R
xr(t, τ)g(τ)e−i2πητdτ. (22)

The conditions in (20) imply that |Ak(t+ τ)−Ak(t)| ≤ ε1|τ | and

|ei2π(φk(t+τ)−φk(t)−φ′k(t)τ−
1
2
φ′′k(t)τ

2) − 1| ≤ π

3
ε3|τ |3.

Thus we have

|res0| ≤
K∑
k=1

∫
R
ε1|τ ||g(τ)|dτ +M(t)

∫
R

π

3
ε3|τ |3|g(τ)|dτ

= Kε1I1 +
π

3
ε3I3M(t) =: Π0(t), (23)

where M(t) and In are defined by

M(t) :=

K∑
k=1

Ak(t), In :=

∫
R
|τng(τ)|dτ, n = 1, 2, · · · . (24)

Observe that if ε1, ε3 are small, then |res0| could be negligible. Thus Gk
(
η − φ′k(t)

)
governs

the time-frequency zone in which Vxk(t, η) lies. Let 0 < τ0 < 1 be a given small number as the

threshold for 0. Denote

Ok := {(t, η) : |Gk
(
η − φ′k(t)

)
| > τ0, t ∈ R}. (25)

In this paper we assume |Gk(ξ)| is even and decreasing for ξ ≥ 0. In this case Ok can be written

as

Ok = {(t, η) : |η − φ′k(t)| < αk, t ∈ R}

with αk = αk(t) = ξk(t), where ξk(t) > 0 is the root of |Gk(ξ)| = τ0. As in [14], we could let Ok

be a larger zone by selecting an αk(t) ≥ ξk(t). In either case, we have that

|Gk
(
η − φ′k(t)

)
| ≤ τ0, for (t, η) 6∈ Ok. (26)

In the following we assume that the multicomponent signal x(t) is well-separated in the sense that

Ok ∩O` = ∅, k 6= `. (27)

In the following we let Dε1,ε3 denote the set of multicomponent signals of (16) satisfying (17),

(18), (20) and (27).
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Let res1, res2, res′0, and res′1 be the residuals defined as res0 in (22) with g(τ) replaced respec-

tively by g1(τ), g2(τ), g′(τ), and g3(τ) = τg′(τ). Then we have the estimates for these residuals

similar to (23):

|res1| ≤ Π1(t), |res2| ≤ Π2(t), |res′0| ≤ Π̃0(t), |res′1| ≤ Π̃1(t), (28)

where

Π1(t) := Kε1I2 +
π

3
ε3I4M(t), Π2(t) := Kε1I3 +

π

3
ε3I5M(t),

Π̃0(t) := Kε1Ĩ1 +
π

3
ε3Ĩ3M(t), Π̃1(t) := Kε1Ĩ2 +

π

3
ε3Ĩ4M(t),

with In defined by (24) and Ĩn given by

Ĩn :=

∫
R
|τng′(τ)|dτ, n = 1, 2, · · · . (29)

Next we introduce more notations to describe our main theorems on the 2nd-order FSST. For

j ≥ 0, denote

Gj,k(t, η) :=

∫
R
ei2π(φ

′
k(t)τ+

1
2
φ′′k(t)τ

2)τ jg(τ)e−i2πητdτ (30)

= F
(
eiπφ

′′
k(t)τ

2
τ jg(τ)

)
(η − φ′k(t)).

Then we have

G0,k(t, η) = Gk(η − φ′k(t)),

and for j ≥ 1,

Gj,k(t, η) =
1

−i2π
∂

∂η
G(j−1),k(t, η) =

1

(−i2π)j
G

(j)
k (η − φ′k(t)). (31)

In addition, we denote

Res1 := i2πBk(t, η) + i2πDk(t, η) + i2π
(
η − φ′k(t)

)
res0 − res′0 − i2πφ′′k(t)res1, (32)

where

Bk(t, η) :=
∑
6̀=k
x`(t)

(
φ′`(t)− φ′k(t)

)
G0,`(t, η), Dk(t, η) :=

∑
`6=k

x`(t)
(
φ′′` (t)− φ′′k(t)

)
G1,`(t, η).

Throughout this paper,
∑
6̀=k denotes

∑
{`: `6=k,1≤k≤K}.

Let Res2 := ∂
∂η

(
Res1

)
. Then by direct calculations, we have

Res2 = 4π2Ek(t, η) + 4π2Fk(t, η) (33)

+i2π res0 + 4π2
(
η − φ′k(t)

)
res1 + i2π res′1 − 4π2φ′′k(t) res2,
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where

Ek(t, η) :=
∑
6̀=k
x`(t)

(
φ′`(t)− φ′k(t)

)
G1,`(t, η), Fk(t, η) :=

∑
`6=k

x`(t)
(
φ′′` (t)− φ′′k(t)

)
G2,`(t, η).

To present the estimate of IFs φ′k(t) using u2ndx (t, η), first we have the following lemma.

Lemma 1. Let Res1 be the quantity defined by (32). Then

∂tVx(t, η) = i2πφ′k(t)Vx(t, η) + i2πφ′′k(t)V
g1
x (t, η) + Res1. (34)

One can obtain (34) by direct calculations (also refer to Lemma 1 in [3]).

Theorem 1. Suppose x(t) ∈ Dε1,ε3 for some ε1, ε3 > 0. Suppose the window function g is in S.

Then we have the following.

(i) For (t, η) satisfies |V g1
x (t, η)| 6= 0, |∂η

(
Vx(t, η)/V g1

x (t, η)
)
| 6= 0, we have

u2nd,cx (t, η)− φ′k(t) = Res4, (35)

where

Res4 :=
1

i2π∂η
( Vx(t,η)
V
g1
x (t,η)

)
(V g1
x (t, η))2

(
Res2 V

g1
x (t, η) + i2πRes1 V

g2
x (t, η)

)
, (36)

with Res1 and Res2 defined by (32) and (33) respectively.

(ii) For (t, η) ∈ Ok satisfies |V g1
x (t, η)| > ε̃1, |∂η

(
Vx(t, η)/V g1

x (t, η)
)
| > ε̃2, we have

|u2ndx (t, η)− φ′k(t)| < Bdk, (37)

where

Bdk :=
1

2πε̃1ε̃2
sup

{η:(t,η)∈Ok}

{
|Res2|+

2π

ε̃1
|Res1||V g2

x (t, η)|
}
. (38)

Proof By (34), we have, if V g1
x (t, η) 6= 0, that

∂tVx(t, η)

V g1
x (t, η)

= i2πφ′k(t)
Vx(t, η)

V g1
x (t, η)

+ i2πφ′′k(t) +
Res1

V g1
x (t, η)

.

Taking the partial derivative with respect to η to both sides of the above equation, we have

∂η
(∂tVx(t, η)

V g1
x (t, η)

)
= i2πφ′k(t)∂η

( Vx(t, η)

V g1
x (t, η)

)
+ ∂η

( Res1
V g1
x (t, η)

)
.
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Thus if in addition, ∂η
( Vx(t,η)
V
g1
x (t,η)

)
6= 0, then the above equation leads to

1

i2π∂η
( Vx(t,η)
V
g1
x (t,η)

)∂η(∂tVx(t, η)

V g1
x (t, η)

)
= φ′k(t) +

1

i2π∂η
( Vx(t,η)
V
g1
x (t,η)

)∂η( Res1
V g1
x (t, η)

)
.

Observe that the left-hand side of the above equation is u2nd,cx (t, η), while the facts that ∂η(Res1) =

Res2 and ∂ηV
g1
x (t, η) = −i2πV g2

x (t, η) lead to that the second term in the right-hand side of the

above equation is Res4. Hence, (35) holds true. This shows (i) of Theorem 1.

Using |V g1
x (t, η)| > ε̃1 and |∂η

(
Vx(t, η)/V g1

x (t, η)
)
| > ε̃2, we have from (35), that for any η with

(t, η) ∈ Ok,

|u2ndx (t, η)− φ′k(t)| ≤ |u2nd,cx (t, η)− φ′k(t)|

= |Res4| <
1

2πε̃1ε̃2

{
|Res2|+

2π

ε̃1
|Res1||V g2

x (t, η)|
}
≤ Bdk.

Therefore, (37) holds true. This completes the proof of Theorem 1. �

We conclude this section by looking at the estimate error bounds Bdk when g(t) is the Gaussian

function given:

g(t) =
1√
2πσ

e−
t2

2σ2 , (39)

where σ > 0.

First we look at the bounds for Res1,Res2. From (32) and (33), we have for (t, η) ∈ Ok,

|Res1| ≤ 2π|Bk(t, η)|+ 2π|Dk(t, η)|+ 2παk Π0(t) + Π̃0(t) + 2π|φ′′k(t)|Π1(t),

|Res2| ≤ 4π2|Ek(t, η)|+ 4π2|Fk(t, η)|

+2πΠ0(t) + 4π2αk Π1(t) + 2πΠ̃1(t) + 4π2|φ′′k(t)| Π2(t).

Thus we need to look at the estimates for Bk(t, η), Dk(t, η), Ek(t, η), Fk(t, η), which are determined

by Gj,`(t, η), for (t, η) ∈ Ok.
When g(t) is given by (39), then one can obtain (see [14])

Gk(ξ) =
1√

1− i2πσ2φ′′k(t)
e
− 2π2σ2ξ2

1+4π2σ4φ′′
k
(t)2

(1+i2πσ2φ′′k(t))
, (40)

where
√

1− i2πσ2φ′′k(t) denotes one of the square-roots of 1− i2πσ2φ′′k(t) which lies in the same

quadrant as 1− i2πσ2φ′′k(t). Thus

|Gk(ξ)| =
1(

1 + 4π2σ4φ′′k(t)
2
) 1

4

e
− 2π2σ2ξ2

1+4π2σ4φ′′
k
(t)2 . (41)
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For (t, η) ∈ Ok, we have

|η − φ′`(t)| ≥ |φ′k(t)− φ′`(t)| − |η − φ′k(t)| > |φ′k(t)− φ′`(t)| − αk.

Therefore,

Bk(t, η) ≤
∑
6̀=k
A`(t)

∣∣φ′`(t)− φ′k(t)∣∣
(1 + 4π2σ4φ′′` (t)

2)
1
4

e
− 2π2σ2

1+4π2σ4φ′′
`
(t)2

(
|φ′k(t)−φ

′
`(t)|−αk

)2
.

In other words, Bk(t, η) is essentially bounded by

Ak±1(t)

∣∣φ′k±1(t)− φ′k(t)∣∣
(1 + 4π2σ4φ′′k±1(t)

2)
1
4

e
− 2π2σ2

1+4π2σ4φ′′
k±1

(t)2

(
|φ′k(t)−φ

′
k±1(t)|−αk

)2
.

For Dk(t, η) and Ek(t, η), we need to estimate G1,`(t, η). By (31), we have

G1,`(t, η) =
1

−i2π
G′`(η − φ′`(t)).

Thus when g is the Gaussian function, we have from (40)

G′`(ξ) = − 1√
1− i2πσ2φ′′` (t)

4π2σ2ξ

1 + 4π2σ4φ′′` (t)
2
(1 + i2πσ2φ′′` (t))e

− 2π2σ2ξ2

1+4π2σ4φ′′
`
(t)2

(1+i2πσ2φ′′` (t))
. (42)

Hence,

|G1,`(t, η)| = 1

2π
|G′`(η − φ′`(t))| ≤

2πσ2|η − φ′`(t)|(
1 + 4π2σ4φ′′` (t)

2
) 3

4

e
− 2π2σ2

1+4π2σ4φ′′
`
(t)2

(η−φ′`(t))
2

.

This estimate leads to that for (t, η) ∈ Ok,

Dk(t, η) ≤ 2πσ2
∑
6̀=k
A`(t)

∣∣φ′′` (t)− φ′′k(t)∣∣
(1 + 4π2σ4φ′′` (t)

2)
3
4

(
|φ′k(t)− φ′`(t)|+ αk

)
e
− 2π2σ2

1+4π2σ4φ′′
`
(t)2

(
|φ′k(t)−φ

′
`(t)|−αk

)2
,

Ek(t, η) ≤ 2πσ2
∑
6̀=k
A`(t)

∣∣φ′`(t)− φ′k(t)∣∣
(1 + 4π2σ4φ′′` (t)

2)
3
4

(
|φ′k(t)− φ′`(t)|+ αk

)
e
− 2π2σ2

1+4π2σ4φ′′
`
(t)2

(
|φ′k(t)−φ

′
`(t)|−αk

)2
.

Using the fact G2,`(t, η) = 1
(−i2π)2G

′′
` (η − φ′`(t)), we can obtain the estimate for Fk(t, η) similarly.

Here we omit the details.

By the above discussions, we can conclude that for (t, η) ∈ Ok, Bk(t, η), Dk(t, η), Ek(t, η) and

Fk(t, η) are all quite small if φ′′` (t) is not too large and αk is reasonable large. Thus, if addition

ε1 and ε3 are small, then Bdk is small.

When g(t) is given by (39), form (41), assuming τ0
(
1 + (2πφ

′′
k(t)σ2)2

) 1
4 ≤ 1, one case get the

positive root of |Gk(ξ)| = τ0 is

αk =
1√
2πσ

√
1 +

(
2πφ

′′
k(t)σ2

)2 √
ln
( 1

τ0

)
− 1

4
ln
(

1 +
(
2πφ

′′
k(t)σ2

)2)
. (43)
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4 Component recovery estimation

In this section, we consider the component recovery analysis. Denote

Bt :=
{
η : (t, η) ∈ Ok, |Vx(t, η)| > ε̃0, |V g1

x (t, η)| > ε̃1,
∣∣∂η( Vx(t, η)

V g1
x (t, η)

)∣∣ > ε̃2
}
, (44)

B̃t :=
{
η : (t, η) ∈ Ok, |Vx(t, η)| > ε̃0

}
∩
{
η : |V g1

x (t, η)| ≤ ε̃1 or
∣∣∂η( Vx(t, η)

V g1
x (t, η)

)∣∣ ≤ ε̃2}.(45)

Recall from Theorem 1 that we obtained an error bound of φ′k(t)− u2ndx (t, η) for η ∈ Bt as shown

in (37). In the next lemma, we provide an error bound for φ′k(t)−
∂tVx(t,η)
i2πVx(t,η)

when η ∈ B̃t.

Lemma 2. For (t, η) satisfies |Vx(t, η)| 6= 0,

∂tVx(t, η)

i2πVx(t, η)
− φ′k(t) = φ′′k(t)

V g1
x (t, η)

Vx(t, η)
+

Res1
i2πVx(t, η)

, (46)

where Res1 is defined by (32). Hence for η ∈ B̃t,∣∣∣φ′k(t)− ∂tVx(t, η)

i2πVx(t, η)

∣∣∣ ≤ B̃dk :=
1

ε̃0
sup

{η:(t,η)∈B̃t}

{
|φ′′k(t)||V g1

x (t, η)|+ 1

2π
|Res1|

}
. (47)

Proof Following Lemma 1, we have (34). Dividing both sides of (34) by i2πVx(t, η) leads to

(46). (47) follows directly from (46) and the assumption |Vx(t, η)| > ε̃0. �

Next we provide the component recovery estimate by using Sλx,ε̃0,ε̃1,ε̃2(t, ξ).

Theorem 2. Suppose x(t) ∈ Dε1,ε3 for some small ε1, ε3 > 0. Let g be a window function in S.

Let Bdk, B̃dk be defined by (38) and (47) respectively. Then we have the following.

(i) Suppose ε̃0 satisfies ε̃0 ≥ Π0(t) + τ0M(t). Then for (t, η) with |Vx(t, η)| > ε̃0, there exists

k ∈ {1, 2, · · · ,K} such that (t, η) ∈ Ok.

(ii) Suppose that ε̃0 satisfies the condition in part (i) and max
1≤k≤K

{Bdk, B̃dk} ≤ 1
2Lk, where

Lk = Lk(t) := min{αk + αk−1, αk + αk+1}. (48)

Then for any ε̃3 = ε̃3(t) > 0 satisfying max
1≤k≤K

{Bdk, B̃dk} ≤ ε̃3 ≤ 1
2Lk(t),∣∣∣ lim

λ→0

∫
|ξ−φ′k(t)|<ε̃3

Sλx,ε̃0,ε̃1,ε̃2(t, ξ)dξ − g(0)xk(t)
∣∣∣ ≤ Ck, (49)

where

Ck := 2αk
(
ε̃0 + Π0(t)

)
+Ak(t)

∣∣ ∫
|ξ|≥αk

Gk(ξ)dξ
∣∣+
∑
`6=k

A`(t)M`,k(t), (50)

with Π0(t) defined by (23), and

M`,k(t) :=

∫
|ξ|<αk

|G`
(
ξ + φ′k(t)− φ′`(t)

)
|dξ. (51)
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Proof of Theorem 2 (i) Suppose t, η satisfy |Vx(t, η)| > ε̃0. Assume (t, η) 6∈ ∪Kk=1Ok. Then

for any k, by the definition of Ok in (25), we have (26), which together with (21) and (23), implies

|Vx(t, η)| ≤ |res0|+
K∑
k=1

|xk(t)Gk(η − φ′k(t))|

≤ Π0(t) +
K∑
k=1

τ0Ak(t) = Π0(t) + τ0M(t) ≤ ε̃0,

a contradiction to the assumption |Vx(t, η)| > ε̃0. Hence the statement in (i) holds. �

Proof of Theorem 2 (ii) First we have the following result which can be derived as that

on p.254 in [6]:

lim
λ→0

∫
|ξ−φ′k(t)|<ε̃3

S2nd,λ
x,ε̃0,ε̃1,ε̃2

(t, ξ)dξ =

∫{
η: |Vx(t,η)|>ε̃0, |φ′k(t)−u

2nd
x,ε̃0,ε̃1,ε̃2

(t,η)|<ε̃3
} Vx(t, η)dη. (52)

Denote

At :=
{
η : |Vx(t, η)| > ε̃0, |V g1

x (t, η)| > ε̃1,
∣∣∂η( Vx(t, η)

V g1
x (t, η)

)∣∣ > ε̃2, and (53)∣∣φ′k(t)− u2ndx,ε̃0,ε̃1,ε̃2
(t, η)

∣∣ < ε̃3

}
,

Ãt :=
{
η : |Vx(t, η)| > ε̃0,

∣∣φ′k(t)− Re
{ ∂tVx(t, η)

i2πVx(t, η)

}∣∣ < ε̃3

}
∩ (54){

η : |V g1
x (t, η)| > ε̃1 or

∣∣∂η( Vx(t, η)

V g1
x (t, η)

)∣∣ ≤ ε̃2}.
Then

{η : |Vx(t, η)| > ε̃0, |φ′k(t)− u2ndx,ε̃0,ε̃1,ε̃2
(t, η)| < ε̃3} = At ∪ Ãt. (55)

Let Bt and B̃t be the sets defined by (44) and (45) respectively. Next we show that Bt = At,

B̃t = Ãt.

Suppose η ∈ Bt. Then by Theorem 1 (ii), we have
∣∣φ′k(t)− u2ndx,ε̃0,ε̃1,ε̃2

(t, η)
∣∣ < Bdk ≤ ε̃3. Thus

η ∈ At. This concludes Bt ⊆ At.
To show At ⊆ Bt, let us consider η ∈ At. By Theorem 2 (i), the assumption |Vx(t, η)| > ε̃0

implies (t, η) ∈ O` for an ` in {1, 2, · · · ,K}. Thus, by Theorem 1 (ii), we have∣∣φ′`(t)− u2ndx,ε̃0,ε̃1,ε̃2
(t, η)

∣∣ < Bd` ≤ ε̃3.

If ` 6= k, then ∣∣φ′k(t)− u2ndx,ε̃0,ε̃1,ε̃2
(t, η)

∣∣ ≥ |φ′k(t)− φ′`(t)| − ∣∣φ′`(t)− u2ndx,ε̃0,ε̃1,ε̃2
(t, η)

∣∣
> Lk − ε̃3 ≥ ε̃3.
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This contradicts to the assumption η ∈ At with
∣∣φ′k(t) − u2ndx,ε̃0,ε̃1,ε̃2

(t, η)
∣∣ < ε̃3. Therefore, ` = k

and hence, η ∈ Bt. This shows At = Bt, as desired.

The proof for Ãt = B̃t is similar to that for At = Bt. In this case, one needs to apply (47) in

Lemma 2 to conclude that for (t, η) ∈ O`,∣∣∣φ′`(t)− ∂tVx(t, η)

i2πVx(t, η)

∣∣∣ ≤ B̃d` ≤ ε̃3.

The other details are omitted here.

From (52) and (55), we have

lim
λ→0

∫
|ξ−φ′k(t)|<ε̃3

S2nd,λ
x,ε̃0,ε̃1,ε̃2

(t, ξ)dξ =

∫
At∪Ãt

Vx(t, η)dη

=

∫
Bt∪B̃t

Vx(t, η)dη =

∫
{|Vx(t,η)|>ε̃0}∩{η:(t,η)∈Ok}

Vx(t, η)dη

=

∫
{η:(t,η)∈Ok}

Vx(t, η)dη −
∫
{|Vx(t,η)|≤ε̃0}∩{η:(t,η)∈Ok}

Vx(t, η)dη. (56)

Clearly, ∣∣∣ ∫
{|Vx(t,η)|≤ε̃0}∩{η:(t,η)∈Ok}

Vx(t, η)dη
∣∣∣ ≤ ∫

{|Vx(t,η)|≤ε̃0}∩{η:(t,η)∈Ok}
ε̃0dη ≤ 2ε̃0αk. (57)

In addition,∣∣ ∫
{η:(t,η)∈Ok}

Vx(t, η)dη − g(0)xk(t)
∣∣ (58)

=
∣∣ ∫
{η:(t,η)∈Ok}

( K∑
`=1

x`(t)G0,`(t, η) + res0
)
dη − g(0)xk(t)

∣∣
≤ 2αk Π0(t) +

∣∣xk(t)∫
|ξ|<αk

Gk(ξ)dξ − g(0)xk(t)
∣∣+
∑
`6=k

A`(t)|
∫
{η:(t,η)∈Ok}

G0,`(t, η)dη|

≤ 2αk Π0(t) +
∣∣xk(t)∫

R
Gk(ξ)dξ − g(0)xk(t)− xk(t)

∫
|ξ|≥αk

Gk(ξ)dξ
∣∣+
∑
` 6=k

A`(t)M`,k(t)

= 2αk Π0(t) +
∣∣xk(t)g(0)− g(0)xk(t)− xk(t)

∫
|ξ|≥αk

Gk(ξ)dξ
∣∣+
∑
`6=k

A`(t)M`,k(t).

In the above we have used the facts∫
{η: (t,η)∈Ok}

|G0,`(t, η)|dη =

∫
|ξ|<αk

|G`
(
ξ + φ′k(t)− φ′`(t)

)
|dξ = M`,k(t),

and ∫
R
Gk(ξ)dξ =

∫
R
F
{
eiπφ

′′
k(t)τ

2
g(τ)

}
(ξ)dξ =

(
eiπφ

′′
k(t)τ

2
g(τ)

)∣∣∣
τ=0

= g(0), (59)
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where F denotes the Fourier transform of function eiπφ
′′
k(t)τ

2
g(τ) with indepedent variable τ . Thus

we have∣∣ ∫
{η:(t,η)∈Ok}

Vx(t, η)dη − g(0)xk(t)
∣∣ ≤ 2αk Π0(t) +Ak(t)

∣∣ ∫
|ξ|≥αk

Gk(ξ)dξ
∣∣+
∑
`6=k

A`(t)M`,k(t).

(60)

This estimate, together with (56) and (57), leads to (49). This completes the proof of Theorem 2

(ii). �

Denote

gk :=

∫
|ξ|<αk

Gk(ξ)dξ. (61)

If we replace g(0) in (58) by gk, then as the proof of (60), we have∣∣ ∫
{η:(t,η)∈Ok}

Vx(t, η)dη − gkxk(t)
∣∣ ≤ 2αk Π0(t) +

∑
`6=k

A`(t)M`,k(t).

This and the proof of Theorem 2 lead to the following corollary.

Corollary 1. Suppose the conditions in Theorem 2 hold. Then we have∣∣∣ lim
λ→0

∫
|ξ−φ′k(t)|<ε̃3

Sλx,ε̃0,ε̃1,ε̃2(t, ξ)dξ − gkxk(t)
∣∣∣ ≤ 2αk

(
ε̃0 + Π0(t)

)
+
∑
` 6=k

A`(t)M`,k(t), (62)

where gk is defined by (61).

Next we consider another type of the 2nd-order FSST, which is defined as:

R2nd,λ
x,γ0,γ1,γ2(t, ξ) =

∫{
η: |Vx(t,η)|>γ0, |V

g1
x (t,η)|>γ1,

∣∣∂η( Vx(t,η)

V
g1
x (t,η)

)∣∣>γ2} Vx(t, η)
1

λ
h
(ξ − u2ndx,γ0,γ1,γ2(t, η)

λ

)
dη.

(63)

Theorem 3. Let x(t) ∈ Dε1,ε3 for some small ε1, ε3 > 0. Suppose that ε̃0 satisfies the condi-

tion in Theorem 2 part (i) and max
1≤k≤K

{Bdk} ≤ 1
2Lk. Then for any ε̃3 = ε̃3(t) > 0 satisfying

max
1≤k≤K

{Bdk} ≤ ε̃3 ≤ 1
2Lk, we have

∣∣∣ lim
λ→0

∫
|ξ−φ′k(t)|<ε̃3

R2nd,λ
x,ε̃0,ε̃1,ε̃2

(t, ξ)dξ − g(0)xk(t)
∣∣∣ ≤ Ck + C ′k, (64)

where Ck is defined by (50) and

C ′k := 2αk Π0(t)
)

+Ak(t) ‖g‖1|B̃t|+
∑

`6=k A`(t)M`,k(t), (65)

with |B̃t| denoting the Lebesgue measure of the set B̃t defined by (45).
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Proof of Theorem 3 One can show that

lim
λ→0

∫
|ξ−φ′k(t)|<ε̃3

R2nd,λ
x,ε̃0,ε̃1,ε̃2

(t, ξ)dξ =

∫
At

Vx(t, η)dη, (66)

where At is defined by (53). Let Bt and B̃t be the sets defined by (44) and (45) respectively. In

the proof of Theorem 2 (ii) we have shown Bt = At. This fact, together with Bt ∩ B̃t = ∅ and

(66), leads to that

lim
λ→0

∫
|ξ−φ′k(t)|<ε̃3

R2nd,λ
x,ε̃0,ε̃1,ε̃2

(t, ξ)dξ =

∫
Bt

Vx(t, η)dη

=

∫
Bt∪B̃t

Vx(t, η)dη −
∫
B̃t

Vx(t, η)dη

=

∫
{|Vx(t,η)|>ε̃0}∩{η:(t,η)∈Ok}

Vx(t, η)dη −
∫
B̃t

Vx(t, η)dη

=

∫
{η:(t,η)∈Ok}

Vx(t, η)dη −
∫
{|Vx(t,η)|≤ε̃0}∩{η:(t,η)∈Ok}

Vx(t, η)dη −
∫
B̃t

Vx(t, η)dη. (67)

In addition,

∣∣ ∫
B̃t

Vx(t, η)dη
∣∣ =

∣∣ ∫
B̃t

( K∑
`=1

x`(t)G0,`(t, η) + res0
)
dη
∣∣

≤ 2αk Π0(t) +Ak(t) sup
η∈B̃t
|Gk
(
(η − φ′k(t)

)
| |B̃t|+

∑
`6=k

A`(t)|
∫
{η:(t,η)∈Ok}

G0,`(t, η)dη|

≤ 2αk Π0(t) +Ak(t)‖g‖1 |B̃t|+
∑
`6=k

A`(t)M`,k(t).

The above estimate, together with (67), (57) and (60), leads to (64). This completes the proof of

Theorem 3. �

5 Experimental results

In this section, we present some experimental results with the second-order FSST with a phase

transformation u2ndx introduced in this paper. We denote this FSST as FSST2s. We will compare

the performance of FSST2s in instantaneous frequency estimation and component recovery with

that by the conventional second-order FSST, denoted by FSST2, with ω2nd
x given by (8) [1]. One

can verify that when the window function g is the Gaussian function, then the quantity in the

first line of (8) is that in (10). Thus in this case FSST2s is essentially FSST2. In the following

we consider the window function function to be h(t) defined by

ĥ(ξ) := e−2π
2σ2|ξ|5/2 . (68)
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We use the relative root mean square error (RMSE) to evaluate the signal separation performances

of FSST2 and FSST2s with this window function h(t). RMSE is defined by

RMSE :=
1

K

K∑
k=1

‖xk − x̂k‖2
‖xk‖2

, (69)

where x̂k is the reconstructed (recovered) xk andK is the number of components. For a component

xk(t) defined by [a, b], due to the big errors of FSST near the end points, which is caused by the

boundary issue, we calculate RMSE on [a+ 1
50(b− a), b− 1

50(b− a)]. In addition, here we remark

that the errors displayed in the following pictures are the errors on these intervals excluding the

end points a, b.

We proceed with two signals. The first one is a three-component non-stationary signal given

by x(t) = x1(t) + x2(t) + x3(t), where

x1(t) = ln(10 + t) cos
(
118π(t− 1

2) + 100π(t− 1
2)2
)
1[ 1

2
,1],

x2(t) = e−0.2t cos
(
94πt+ 110πt2 + 13 cos(4πt− π

2 )
)
, t ∈ [0, 1],

x3(t) = ln(1.5 + t2) cos
(
194πt+ 112πt2

)
1[0, 3

4
].

(70)

Signal x(t) and its components x1(t), x2(t) and x3(t) are shown in Fig.1.

Figure 1: Signal x(t) and its components x1(t), x2(t) and x3(t).
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Figure 2: RMSEs for x(t) by FSST2 and FSST2s with σ = 0.006 + 0.001j, 0 ≤ j ≤ 34.

σ 0.014 0.015 0.016 0.017 0.018 0.019 0.020 0.021

RMSE with FSST2 0.0657 0.0631 0.0605 0.0602 0.0605 0.0609 0.0616 0.0618

RMSE with FSST2s 0.0607 0.0596 0.0580 0.0577 0.0567 0.0570 0.0581 0.0596

Table 1: RMSEs by FSST2 and FSST2s with some σ near 0.018.

Figure 3: Errors between reconstructed components and original components by FSST2 and

FSST2s: x1(t) (top-left), x2(t) (top-right), x3(t) (bottom row).

19



Here, we test some parameters of σ from 0.006 to 0.04 for component recovery. In Fig.2, we

provide the RMSEs for signal x(t) with FSST2 and FSST2s for σ ∈ [0.006, 0.04]. Observe that

when σ is near 0.017, the resulting RMSEs gain their minima. In Table 1, we provide the RMSEs

for some σ near 0.017. In Fig.3, we show the difference between reconstructed component and

original component by FSST2 and FSST2s with σ = 0.017. As we can see from Fig.2, Table 1

and Fig.3, the performances of FSST2s and FSST2 are essentially similar, with FSST2s resulting

in a little smaller recovery error. In Fig.4, we show the original IFs of xj(t), j = 1, 2, 3 and the

reconstructed IFs by FSST2 with σ = 0.017 and by FSST2s with σ = 0.018. Overall, both

methods perform well in IF estimation.

Figure 4: IFs of the components of x(t) (top row); Estimated IFs by FSST2 (bottom-left) and by

FSST2s (bottom-right).

The second signal we consider is a two-component signal given by

y(t) = y1(t)+y2(t), y1(t) = e0.2t cos(2π(12t+25t2)), y2(t) = ln(2+
√
t) cos(2π(34t+32t2)), (71)

for t ∈ [0, 1]. In Fig.5, we provide the RMSEs for signal y(t) with FSST2 and FSST2s for

σ ∈ [0.006, 0.09]. Observe that for σ ∈ [0.015, 0.06], the recovery errors for either FSST2 or

FSST2s are quite small. In Table 2, we provide the RMSEs for some σ near 0.02. For y(t),

FSST2 and FSST2s perform similarly in component recovery and IF estimation. In Fig.6, we

provide the pictures of the reconstructed components of y1(t), y2(t) by FSST2 (with σ = 0.022)

and FSST2s (with σ = 0.02).
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Figure 5: RMSEs for y(t) by FSST2 and FSST2s with σ ∈ [0.006, 0.09]

σ 0.018 0.019 0.020 0.021 0.022 0.023 0.024 0.025

RMSE with FSST2 0.0287 0.0278 0.0272 0.0268 0.0266 0.0268 0.0276 0.0272

RMSE with FSST2s 0.0248 0.0240 0.0235 0.0236 0.0241 0.0239 0.0242 0.0242

Table 2: RMSEs by FSST2 and FSST2s with some σ near 0.02.

Figure 6: Errors between reconstructed components and original components by FSST2 and

FSST2s: y1(t) (left) and y2(t) (right).

From the above two examples, we see FSST2s performs similiarly to or even better in some

cases than the conventional FSST2 in instantaneous frequency estimation and component recovery.

6 Conclusion

In this paper we consider a second-order STFT-based synchrosqueezing transform (FSST2s).

This transform has a phase transformation which has a simpler expresion than that used in
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the literature. We study the theoretical analysis of FSST2s. We establish an error bound for

instantaneous frequency estimation and error bounds for component recovery with FSST2s. We

also present more accurate component recovery formulas. Our experimental results show that

the performance of FSST2s in instantaneous frequency estimation and component recovery is

comparable with, and even better in some cases than, that of conventional second-order STFT-

based synchrosqueezing transform.
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