ON THE REGULARITY OF MATRIX REFINABLE FUNCTIONS*

QINGTANG JIANGT

Abstract. It is shown that the transition operator Tp associated with the matrix refinement
mask P(w) = 27¢ Eae[O,N]d P,exp(—iaw) is equivalent to the matrix (27%Ay;—;);; with A; =
Zne[o,N]d P,_j®P, and P,_; ® P, denoting the Kronecker product of matrices P,_;, P,. Some

spectral properties of Tp are studied and a complete characterization of the matrix refinable functions
in the Sobolev space W"(Rd) for nonnegative integers n is provided. The Sobolev regularity estimate
of the matrix refinable function is given in terms of the spectral radius of a restricted transition
operator. These estimates are analyzed in some examples.
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1. Introduction. Let {P,} be a real r x r matrix sequence with finite elements
nonzero. The vectors ®, r-dimensional column functions, used in this paper are
solutions to functional equations of the type

(1.1) =) P,3(2-—a)

a€Z?

Define

P(w):=2"1 Z P, exp(—iaw),
a€Zd

then in the Fourier domain, functional equations (1.1) can be written as
(1.2) d(w) = P(w/2)d(w/2).

Equations of the type (1.1) or (1.2) are called matriz (vector) refinement equations;
P ({P.}) is called the (matriz) refinement mask and any solution ® of (1.1) is called
a matriz refinable function (or refinable vector). Equations (1.1) are considered in the
area, of wavelets for the construction of multiwavelets and there are many papers on
the existence of the solutions of equations (1.1), the constructions of multiwavelets
and related topics, see e.g. [1], [3], [7], [8], [11] to [16], [21] to [23], [25] to [27] and [29]
to [31]. The present paper considers the Sobolev regularity of the matrix refinable
functions.

For the case r = 1,d = 1, compactly supported refinable functions are solutions
of the two-scale equation

¢(x) = D _hio(2x - j).

M-

Jj=0

Over the years, several techniques have been developed to determine the regularity of
refinable functions, see [5], [9], [32], [6], [10], [17] and [2] (in [17] and [2], the refinement

*This work was supported by an NSTB post-doctoral research fellowship at The National Uni-
versity of Singapore.

fDepartment of Mathematics, The National University of Singapore, 10 Kent Ridge Cres-
cent, Singapore 119260 and Department of Mathematics, Peking University, Beijing 100871
(ajiang@haar.math.nus.sg).



2 QINGTANG JIANG

mask {h;} is not necessarily finitely supported). One of the main results is following
(see [32], [9]): assume that the refinement mask

J

1 .

(1.3) mo(w) = 2 E hje™"
J=0

can be factorized as

(14) () = (2 ) K g(w)

where ¢(w) is a trigonometric polynomial. Then the Sobolev exponent s(¢) :=
sup{s > 0: [(1 + |w|*)?|¢p(w)|?dw < 400} satisfies

s(¢) 2 K —log, p(Ty),

where T, is the transition operator associated with ¢ and p(T,) is the spectral radius
of T,. For a trigonometric polynomial p(w) = ElL:O pre” % the transition operator
associated with p is defined by

Tpf (@) = ()P FG) + (G +mPFG +m), fe Vi,

where V7, denotes the vector space of trigonometric polynomials defined by

L
Vi = { Z fieT®™:  fieC}.

I=—L

Further, if refinable function ¢ is stable and ¢(7) # 0, then above regularity estimate
is optimal, i.e.

5(¢) = K — log, p(T,).

There is another method to give regularity estimates of refinable functions. Let ¢
be a compactly supported refinable function with corresponding mask mg(w) given by
(1.3) for some positive integer J. Assume that mgo(w) satisfies the vanishing moment
conditions of order K + 1, i.e. (;L—aam() (W)|w=r = 0,0 < a < K. Equivalently, mq(w)
can be written in the form of (1.4). Let VY denote the subspace of V; defined by

J
(1.5) VP9i={feVs: > j"fj=0, n=0,---,2K—1}.
j=—J

Then V} is invariant under T,,,. Let Tm0|VJo denotes the restriction of T, to VY.
If p(Trmy|vo) <1, then

5(¢) = —logy p(Trme|vr0)-

In fact above two methods are completely equivalent, see [6]. The first method relies
upon the factorization of the refinement mask mg(w). However in the higher dimension
case, the refinement mask is often irreducible. The second method was successfully
used by Riemenschneider and Shen to estimate the regularities of two dimension
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refinable functions constructed in [28]. Further studies on the problem of the regularity
in higher dimensions with dilation matrices were carried out in [20] and [4].

The regularity of the matrix refinable function ® (for the case d = 1) was first
studied by Cohen, Daubechies and Plonka [3] based on the factorization of the matrix
refinement mask P(w). However such estimates of regularity are usually hard to
compute. There is another approach (essentially the second method for the scalar
case) to the regularity estimate of refinable vector ® carried out by Shen in [29], and
such estimates are provided in terms of the spectral radius of a restricted transition
operator. More precisely, letting P(w) = 2—¢ > acfo, N2 P,e~ " be the corresponding
matrix refinement mask, the transition operator Tp associated with P is defined by

(16) TpHW):= Y. P +m)H(S +m)P* (% +m), HeHy.
2 2 2
vEZ4 /274

Throughout this paper Hy denotes the space of all r x r matrices with each entry a
trigonometric polynomial whose Fourier coefficients are supported in [-N, N]¢, M*
and M7 denote the Hermitian adjoint and the transpose of a matrix M, respectively.
The transition operator Tp leaves Hy invariant. In [29], the regularity of & was
given in terms of the spectral radius of Tp|H9V , the restricted operator of Tp to an
invariant subspace HY; of Hy under Tp. The smaller is the invariant subspace HY;,
the smaller will be p(Tp|po ) and hence the better the estimate on the regularity of
®. Thus a small Tp invariant subspace of Hy is required.

For the case r = 1,d = 1, let mo be a given refinement mask defined by (1.3)
for some positive integer J, then the transition operator T,,, is equivalent under the
basis {e7“}J__; of V to the matrix

Tmo = (27 a2i ) N<ij<n,

where a; is the autocorrelation of {c,} defined by a; := ), cx—jCx, see [24], [6]. We
note that the invariant subspace VY defined by (1.5) can be written as

V?={feVi: w(foy,-,f1)' =0, n=0,--,2K — 1},
where
(1.7) vn = (=), ™), =0, 2K — 1.

The row vector v, is a generalized left 2~ ™-eigenvector of the matrix 7y, (see [6]).
Thus to give the regularity estimates of refinable vectors, we at first change equiv-
alently the transition operator Tp into its representing matrix 7p, then find left
2~ "-eigenvectors of the matrix 7p. Using these left eigenvectors, we construct the
invariant subspace HY, and then provide the regularity estimates in terms of the
spectral radius of the restricted transition operator Tp|go, -

This paper is organized as follows. In §2 we show that the transition operator
Tp is equivalent to the matrix Tp = (27%Azi—;); je[—n,nje, Where A; is the 72 x 2
matrix given by

.Aj = Z Pn—j ® PK;
KE[O,N]4

and P,_; ® P, is the Kronecker product of P._; and P,. In §2, we also find left
eigenvectors of 7p which will be used for the regularity estimate of refinable vectors.
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In the first part of §3, we will give a characterization of refinable vectors in the Sobolev
space W"(R?),n € Z,. In the second part of §3, we provide a Tp invariant subspace
HY, of Hy and give the regularity estimate of refinable vectors in terms of the spectral
radius of the restricted transition operator TPlHSJV . In the last part of this paper, §4,
we will give the estimates on the smoothness of some matrix refinable functions.
About the B-splines defined by knots 0,0,1,1 and 0,1, 1,2, and the GHM-orthogonal
scaling functions, our estimates on their regularities are optimal.

Before going to the next section, we introduce some notations used in this paper.
Let Z, denote the set of all nonnegative integers and Zi denote the set of all d-tuples
of nonnegative integers. We shall adopt the multi-index notations

W= WPt =B Bal, (Bl =B+ + Ba

for w = (w1, -+,wq)T €RE,B=(B1,--+,B4)" € ZL. If o, B € Z¢ satisfy B —a € Z2,
we shall write a < 8 and denote

() =
(B~ )

For B8 = (B1,--,B4)T € Zi, denote
ok B4

DB - e
ﬂ )
Oz'}*

-: 1
Ox

where 0; = % is the partial derivative operator with respect to the jth coordinate,
J

1< j <d. For w,( € R?, we use (w to denote their scalar product.

For j = 1,---,r, let e; := (J;(k))}_, denote the standard unit vectors in R".
In this paper, for an 7 x 1 vector function f = (f1,---, f-)¥, f is in a space on R¢
means that every component f; of f is in this space, and we will use the notation
Ifl = (i Ifil?)2.

For a matrix or an operator A, we sayA satisfies Condition FE if the spectral radius
of A <1, 1 is the unique eigenvalue of A on the unit circle and 1 is simple. For two
matrices A, B, A < B should be understood as that B — A is positive semidefinite.

For a finitely supported sequence s on Z, its support is defined by supps := {3 €
Z? : 5(B) # 0}, and for a finitely supported r x r matrix sequence S on Z¢, its support
is defined by suppS := Usupps;j, where s;; is the (i, j)-entry of S. Throughout this
paper, we assume that the matrix refinement mask P satisfying supp{P,} C [0, N]¢
for some positive integer N, and we use ¢ to denote the universal constant which may
be different at different occurrences.

2. Transition operator. In this section, we first show that the transition op-
erator Tp defined by (1.6) is equivalent to a matrix, then we study some spectral
properties of Tp.

Forany H =} .c(_n nja Hje U € Hy,

PHWPw)* =27 Y Y P “"H(w)Pfe™!
£€[0,N]4 ke[0,N]4

=27 N Y P.H(w)Pje w0

£€[0,N]4 ke[o,N]4

=272 N N P H(W)PI_ e ®"

k€[0,N]¢ ne[—N,N]4
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=272 ) > > P.HPL emintd),

j€[—N,N]4 ke[0,N]¢ ne[—N,N]e

Thus
TpH(w) =271 3 > > Y. P.HPT (1) rHemiglntd),

veZd/2Z? je[—N,N]¢ n€e[—N,N]? ke[0,N]?

For any n € [-N, N4, j € [-N, N]?, write n + j = 2£ + u for some £ € [-N, N]¢ and
p € Z4/2Z%. By the fact that 3,4 /nz4(—1)"" = 2%,

Z (_1)V("+j) = 2d‘5u-

vEZd 274

Hence

(2.1) TpHw)=2"" > > > PL.HPL 5, et

jE[—N,N]d ée[—N,N]d h:E[O,N]d

= 2 @ 33 PuHPL e

Le[—N,N]4 j€[—N,N1]4¢ ke[0,N]2

That is Tp changes sequence {H;};c[_n,n) into another sequence

{Z_d Z Z P”HJ'Pff(M—j)}ZE[fN,N]d-

J€[-N,N]¢ ke[0,N]¢

Let M be an r x r matrix with M (j) the jth column of M, define the r2 x 1
vector vec(M) by

vec(M) := (M(D)T, -+, M(r)")T.

For H = 3. nnja Hie™™? € Hy, let vec(H) be the (r?(2N + 1)%) x 1 vectors
defined by

22)  vec(H) = ((vec(H))) [j—(=N ey - » (Ve H)) vy -
For the matrices of the form P,H;PT, we have (see [19])
(2.3) vec(P H;PL) = (P, ® Py)vec(H;),
where (P, ® Py) denotes the Kronecker product of matrices P, and Py:
P, ®Pr= (pu(T,0)P0)1<ricrs Pr = 0n(T:9) 1<, i< -

For j € Z%, define the 72 x 72 matrices

Aj= Y PL;®P,
tefo,N]e

and define the (r2(2N + 1)) x (r2(2N + 1)%) matrix

(2.4) Tp = (27" Az ) 4,j€[~N,N]d "
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Then from (2.1), (2.3), for any x € [-N, N]%,

vec((TpH),) =271 Z Z VeC(PlHjP;?F—(zn—j))
j€[-N,N]* elo,N]¢
=24 Z Z (Po—(2x—j) ® Py)vec(H;)
jE[—N,N]dKE[O,N]d
= Z 27d¢42,¢_jVBC(Hj) = (Tevec(H))(k).

jE[—N,N]d

Hence we have
THEOREM 2.1. The transition operator Tp is equivalent to the matriz Tp defined
by (2.4) under the basis {e’“"f}ee[_NiN]d of Hx and for any H € Hy,

(2.5) vec(TpH) = Tpvec(H),

where vec(H) is the vector defined by (2.2).

In the rest of this section, we will find some left eigenvectors of Tp. These eigen-
vectors are associated with the vanishing moment conditions of the matrix refinement
mask P. We say that mask P(w) satisfies the vanishing moment conditions of order
m € Z if there exist 1 x r real vectors 15 with 1 # 0, 3 € Z%,|8| < m —1, such that

(2.6) > (ﬁ ) (20) e Phg(DP~2P)(vrr) = 6,27 1PN, v e Z4/2Z°.

0<a<p

Assume that ® = (¢;)]_, € L*(R?) is a compactly supported matrix refinable
function with corresponding mask P. Under the assumption that ¢;(x —j), 1 <1 <,
j € Z4, are linearly independent, (2.6) is equivalent to that ¢;, 1 < I < r, provide
approximation of order m, see [15], [27] for d = 1; and for d = 1 (2.6) implies a matrix
factorization of P(w) under the assumption that ® is stable (see [27], [3]). It is shown
in [23] that if detGe(vw) # 0,v € Z?/2Z%, then P(0) satisfies Condition E and P
satisfies the vanishing moment conditions of order at least 1, where

Go(w) = Y B(w+ 2mk)®" (w + 27K).
KEZ?
Thus in the sequel we will assume that P(0) satisfies Condition E and m > 1 in (2.6).
In this case, if ® is a compactly supported nontrivial refinable vector, then ®(0) = cr
for some nonzero constant ¢, where r is the normalized right 1-eigenvector of P(0).

Let mo € Zy,mo < m be the largest integer such that there exist row vectors
13 eR", B € Z4,m < |B| <m+mg — 1 satisfying

(2.7) > (i) (2i)12=Phg (DP~2P)(0) = 271P115.
0<a<p

Equations (2.7) can be written as

2.8 1Y (2-18lL, — P(0)) = BY (2i)la-Bl1a (DF-aP)(0 ,

2.3 2 ( ) 0;6((1)( )la=Al13 (D5~ 0)

where I, is the 7 x r identity matrix. Thus if each of all numbers of 27™,2™~1 ...
2-m=mo s not an eigenvalue of P(0) for some mo € Z,, then vectors 15 € R,
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B8 € Zi,m < 18] € m+ mo — 1 can be chosen iteratively by (2.8). Since in the
examples which are analyzed below mg = m, in the following we will assume that
mgo = m. For the case r = 1, since P(0) = 1, such assumption is not needed.

Let B(w) = Znezi,wgzm—l B, be the vector trigonometric polynomial sat-

isfying
(2.9) DPB(0) =iy, peZd,|p <2m—1.
The coefficients By, 1 X r vectors, can be found by the following equations

> KB.=1], BeZ,|p|<2m-1.

|k|<2m—1

One can check that the vanishing moment conditions (2.6) and (2.7) can be written
equivalently in the form

(2.10) DP(B(2w)P(w))|w=0 = D’ B(0), VB €Zf,|8| <2m -1,
and
(2.11) D? (B(2w)P(w))|w=vr =0, VB € Z%,|8| <m —1,v € Z?/2Z4\{0}.

Let l(ﬁ), B € Z1,|B| < 2m — 1 be the row vectors satisfying (2.6) and (2.7). For
k € Z2, define row vectors 12 by

(2.12) =) (i) kPme1g,  for B e ZL, |8 < 2m -1,

0<a<h
and then define the 1 x (r>(2N + 1)4) vectors L%, by

(2.13) L3 = (P (K) e (= Ny o) =5 PP (K) [,

with

Pr):= Y (-1)&(5)lg®1§—a, k€ 74

0<a<h “
For the case d = 1,18,k € Z?, are the coefficients for the reproduction of polynomials
by the integer translates of ®, see [15].
For two 1 x r vectors v,u and r X r matrix M, we have (see [19])

(2.14) (v @ u)vec(M) = uMv?.

LEMMA 2.1. Assume that the refinement mask P satisfies (2.6) and (2.7) for
some row vectors 1€, |8] € 2m — 1, and B is the vector trigonometric polynomial
satisfying (2.9). Let LjﬁV be the vectors defined by (2.13), then for any H € Hy

LY vee(H) = (=i)°|D® (B(w)H (@) B*()) lo=0, B € Z%,|B| < 2m — 1,

where vec(H) is the vector defined by (2.2).
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Proof. By (2.14), for any 8 € Z4,|3| < 2m —1, and any H € Hy

L'?Vvec Z LB yvec(H,

=% % (D) aw

Kk 0<a<pB

=2 2 ()lﬁ “w) Y w(2) o5

Kk 0<a<p

0<y<a

=3 3 3 -yl )m(:)(—i)wO"DBaB(O)H(/s)i")‘W'D“_”B*(O)

Kk 0<a<poy<La

B E 00

0<a<B0<y<a

(0) > (—ir)"H(x)D*"B*(0)
©

)
DY Y ( )( )Dﬂ *B(0) DY H(0) D~ B*(0)

0<a<p0<y<La

= (=) DF (B(w)H (@) B* () |u=o-

0

THEOREM 2.2. Assume that the refinement mask P satisfies (2.6) and (2.7) for
some row vectors lg, |IB] < 2m — 1, and B is the vector trigonometric polynomial
satisfying (2.9). Let Llﬁv be the vectors defined by (2.13), then

L3Te =27 1FIL8, BeZi,|f <2m—1.

Proof. We need only to show that for any H € Hy, L?\,ﬁ:vec(H) = 2_‘5|L1‘i,vec(H).
In fact by (2.5) and Lemma 2.1,

(20)PILA Tovec(H) = (2i)/PIL8 vec(Tp H) = D? (B(2w)Tp H(2w) B*(2w)) |u=0
= Z DP?(B(2w)P(w + va)H (w + v7)P(w + v7m)* B*(2w))|w=0

veZ /27

)IEED DD ()() * (BQw)P(®)) |umrr -

vEZd /272 0<a<B 0<y<a

"DV H(w)|w=vr D? =77 (B(2w)P())" lw=r-

Since for any f3,a,v € Z% with || <2m —1and v < a < 8, min(|a|, |8 —a —1|) <
m — 1, thus by (2.10) and (2.11),

(zi)lﬁ\Lﬁ ’Exvec(H)

B

= R
v

R

0<a<B0<7<a

> ()0)
220

p? (B( )H( )B*

=

Q

/N N
2

a) DB(0

~—~~

w)) [w=0

20)P () |w=0D" H (w)]w=0D?~ 7 (B(2w)P(w))" =0

YDYH(0)DP~>~7B*(0)

= i‘mLIB\,vec(H).

Therefore L3, Tpvec(H) = 2718117 vec(H) and the proof of Theorem 2.2 is completed.

|
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Since LY, = (18 ®13,---,1 ®13) # 0, 1 is an eigenvalue of Tp. In the case
r=1d =1, forany n € Zy, n < 2m — 1, the vector v, defined by (1.7) is a
generalized left eigenvector of eigenvalue 27" of Tp (see page 228 in [6]), and hence
27" 0 <n < 2m —1 are eigenvalues of Tp. Theorem 2.2 says that forn € Z,,n <
2m — 1, if there exists 8 € Z%,|B8| = n and L'?V # 0, then 27" is an eigenvalue of Tp
(also Tp) with L]BV being a corresponding left eigenvector. As the vectors v,, do for
the case r = 1,d = 1, vectors LJB\, also play an important role in the estimate of the
Sobolev regularity of refinable vector ®, which will be shown in the next section.

3. Sobolev regularity estimates. In this section we will consider the Sobolev
regularity of the matrix refinable function ® of (1.1). For s > 0, we say f € W*(R%)
if (1+ |w]?)5f(w) € L2(RY). In the first part of this section, we will provide a
characterization of ® in W"(R?) for n € Z,. We need a lemma.

LEMMA 3.1. Assume that P(w) satisfies (2.6) and (2.7) for some row vectors 15,
|B| < 2m — 1, and B is the vector trigonometric polynomial satisfying (2.9), then for
any compactly supported solution ® of (1.1),

DP (B(w)(f(w)) lo=2me =0, for any £ € Z\{0},B € Z%,|8| <m — 1.
Proof. Since ® is compactly supported, $(w) is analytic. For any ¢ € Z4\{0},

write £ in the form of £ = 2"y + 2"tk for some n € Z,,v € Z¢/2Z%\{0},x € Z¢,
then

27l + w P27T€+w 2l + w o 27l + w

Bt +w) = P(T2) (TP )R

w w w ~ 21l + w
ZP(E)"‘ (@)P(W+Vﬁ)q)(w)-

Thus by (2.6) and (2.7), or by its equivalent forms (2.10) and (2.11)

D? (B(w)A(w)) loeane = DP (B(w)cﬁ(w + w)) oo

= ¥ ()0 BOPG D Pl PP (o + 1B o
0<a<p

= R (g) DaB(g)\wZODﬁfa (P(%) . ..P(%)P(zn% + uw)@(%)) lw=0

w w w w =~ 2l +w

w w ~ 2l +w
= Dﬁ <B(2_n)P(2n+1 + VW)(I)(W)> |w=0 =0

since D (B(£ )P (5% + vm)) |w=o = 0 for any a < B. O
If a refinable vector ® is contained in W% (R%) for some n € Z_., then

(3.1) /R ]| (w) P dw < oo.

For any By € Z4, |Bo| = n, define

1 . S F* ikw
Hao(1) = s /R ()" B(0)B* () do, n € 7.
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Let F be the matrix function defined by
F(w) == (iw)? ®(w)®* (w).

The finiteness of the integral in (3.1) implies that every entry of F' is continuous and
hence Hp, (k) = F(k). (3.1) also implies the existence of D (auto(®))(= F), where

auto(®)(y) := /Rd &(2)®" (z — y)dz.

Since @ is compactly supported on [0, N]%, the support of F is contained in [-N, N]?.
Therefore Hg, (k) = 0 for k ¢ [—N, N]%. Define

GO0 W) 1= 3 Hy(m)e ™,

then G\%0) (w) € Hy for any |fy| = n.
PROPOSITION 3.1. Assume that the refinement mask P satisfies (2.6) and (2.7)

for some row vectors lg, |8l < 2m — 1. Suppose there exists a refinable vector ®
contained in W= (R?) for some n € Zy with n < 2m — 1, then for any Bo € Z4,

|ﬁ0| =n,
Tevec(GF0)) = 2 "vec(GA0)),

and for any B € 24,3 < fo,

B (Bo)y = ) {0 f<Po,
Ly vee(G\)) = Boldg, (B)158(0)|* = { BolBB(0)2, B = fo.

Proof. By the Poisson summation formula,

G (w) = D (iw + i200) P B(w + 2ml) &* (w + 27L).
LeZd

By the definition of Tp,

TpGP (W)= Y Y (iw/2+ 2mi + vmi)*®P(w/2 + vr) -
vEZ3 /274 LcZd
B (w/2 + 20m + v)®* (w/2 + 2Ur + vr)P* (w/2 + vr)

1 ~ ~
== Z Z (iw + 4lmi + 21/7ri)ﬂ°<1>(w + 4l + 2vm)®* (w + 4m + 2vum)

n

vEZ? /274 (cZ4

1
= 2—nG(5°)(w),

and hence Tpvec(G(F0)) = 2= "vec(GF0)) by (2.5).
By Lemma 3.1, for any a € Z4, |a| < 2m — 1 and £ € Z4\{0},

D (B(w)&)(w +20m) 3% (w + QIZw)B*(w)) loco = 0.
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Therefore by Lemma 2.1,

L5 vec(GP)) = (—i)#I DA (B(w)GP) (w) B* (w))|w=o
= (=) DA ((iw)° B(w)®(w)®" (w) B* (w))|w=0 +
(=)PIDA( 3" (iw + i26m)% B(w)B(w + 26m)3* (w + 21) B* (W) ]w—o
Leza\{0}
= Bo!d3, (B)1§D(0) -

O

We note that if A is a simple eigenvalue of a matrix, then the product of the cor-
responding left row eigenvector and right column eigenvector is not zero (see Lemma
6.3.10 in [18]). Thus 18:1\)(0) # 0 since P(0) satisfies Condition E and ®(0) is a right
1-eigenvector of P(0). By the fact that ® € W*(R?) if & € W*(R?) and s; < s,
Proposition 3.1 leads to the following corollary.

COROLLARY 3.1. Assume that the refinement mask P satisfies (2.6) and (2.7)
for some row vectors IOB , 1Bl < 2m — 1. Suppose there exists a nontrivial refinable
vector ® contained in W= (R?) for some n € Zy with n < 2m — 1, then for any
BeZl,|B] <n, L?V #0, and 1,271,--- 27" are eigenvalues of Tp.

The next theorem will give a characterization of the refinable vector ® in the
Sobolev space W™(R?), n € Z,. But first, we need another lemma. For j € Z,,
denote

I () = Xara(@)IE_, P2 ).

LEMMA 3.2. For any Hy(w), Ha(w) € Hy,

(3.2) Hy (W) (TL Hy) (w)dw = | Hy ()L (w) Hy (279 w)TT; (w)* dw.
Td Rd

Proof. The proof of (3.2) can be found in [26]. In fact for j =1,

Hy ()L () Ha ()T (w)* duw
Rd 2
=3 | H@PG + ) Ha(5 + Br)P* (5 + fm)xra (5 + fm)dw
geza” T
= Z Z o H1(w)P(2 +I/7T)H2( +1/7T)P*( +1/7T)XTd(2 + 2am + vr)dw

a€Zd veZ /27

/ Hy(w + I/7T)H2( + wr)P*(%) + vm)dw

2
vEZ? /274
= Hl(w)TpHg(w)dw.
Td
For general j, this formula can be found by induction. 0

THEOREM 3.1. Assume that the refinement mask P satisfies (2.6) and (2.7) for
some row vectors 13, |B] < 2m — 1, then a refinable vector ® is contained in W"(R?)
for some n € Zy with n < m — 1, if and only if there exists a positive semidefinite
H € Hy satisfying the following conditions:
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(i) TpH =4 "H;
(ii) there exist constants cp,d > 0 such that

H(w) > colwl?™ e, forw € [-3,4]",

where t is the normalized right 1-eigenvector of P(0).
Proof. “=" If ® € W"(RY), let

(3.3) Hw)=(-1)" Y G (w)>0.
|Bol=n

Then Proposition 3.1 leads to Tp H = 47" H.
Since P(0) satisfies Condition E, ®(w) — cr with ¢ # 0 as w — 0 (see [14], [23]
and [26]). Thus there exists a constant § > 0 such that

d(w)d*(w) > =rr”, for w € [-4,4]%
Therefore

Hw) = (D" Y > (iw +i20m)?°d(w + 26m) B* (w + 2¢r)
|Bo|=ntczZd

2

2603 (1)) P* S ot S W

> E w0 P(w)P®* (w) > 5 IT w=Po
|Bo|=n |Bol=n

_ C2|(;|2nrrT‘

“<=” Denote g;(w) := 4VII;(w)H (2 Jw)II;(w)*. Then

, w w
gj(w) > 004"]X{—6,6]d(§)ﬂj (w)('—.

w *
= colwl*"x[—g,612 (57) T (W)r (IL; (@)r)".
Thus by the fact that ®(w) = lim; 00 X[—5,574 (57 )11 (w)r and Fatou lemma,
~ - w
/ |w[*"|®(w)|?dw = c/ ZeiT lim inf |w|2nx[_5 514 (57)1L; (w)r (I (w)r) " e;dw
R4 R4 j—roo N2
T
. w .
< cge;?r hjrggolf /Rd |(AJ|2"X[_6,5]¢1(E)Hj(&))f(ﬂj((&))r) dwe;
T
< Tlim inf [(w)dwe; < 00,
_cizzlez im in Rdgj(w) we; < 00

where the last inequality follows from

/ 9j(w)dw = 4j"/ T H (w)dw = H(w)dw < oo.
R4 T4 T4
By the continuity of ®, this leads to ® € W"(RY). |

For n = 0, WO(R%) = L2(R?). In fact the characterization of ® € L?(R%) can
be given in a more easy checking way. In [23], it was shown that under assumption
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that P(0) satisfies condition E, ® € L2(RY) if and only if there exists a positive
semidefinite H € Hy satisfying Tp H = H and 1JH(0)(13)T > 0.

If ® € W*(R%), n <m—1, where H € Hy is defined by (3.3), then Proposition
3.1 implies that there exists a positive semidefinite H satisfying Tp H = 4 "H and

(3.4) L']avvec(H) =cff! Z 925, (B)
|Bol=n

for any 8 € Z4,|B| < 2n, where ¢ is a nonzero constant independent of 8. In the case
r = 1, the existence of such positive semidefinite H is also sufficient for & € W"(R?).
In fact by Lemma 2.1, (3.4) is equivalent to that for any 8 € Z¢, || < 2n,

(3-5) D (IBW)PHW)) lo—o =¢ Y 825,(8)

|Bo|=n

which implies that DPH(0) = c(13)™> 3|5, = 926,(8) (in this case 1 is a nonzero
real number). Thus H(w) = c|w|*" + o(|w|*") (as w — 0) and hence H(w) satisfies
condition (ii) of Theorem 3.1. For r = 1,d = 1, such results were given in [32].
Theorem 3.1 gives the characterization of refinable vectors ® € W*(R?) with s
being nonnegative integers. In the following, we will give an estimate of the Sobolev
regularity of ® in terms of the spectral radius of Tp|H?V , the restricted operator of

Tp to an invariant subspace HY, of Hy.
Forj€Z;,1<j<randa€Zi,|a] <m-—1,let;I%, jv% be the 1 x (r?(2N +
1)?) vectors defined by

(3.6) AN = GIY(E) k= (=N N) s = 5 1% (E) o=V, V) ),
TN = G (R) k==, =Ny 5 T (B) o=, ) )5
with
A%(k) == e ®11*,, %%k =15® ef, k€ Z¢,

where 1% are the vectors defined by (2.12).

LEMMA 3.3. Assume that the refinement mask P satisfies (2.6) and (2.7) for
some row vectors lg, B8] < 2m — 1, and B is the vector trigonometric polynomial
satisfying (2.9). For 1< j<r and a € Zi, o] <m —1, let ;1% and ;rQ be the row
vectors defined by (3.6), then for any H € Hy,

% vec(H) = i* D* (B(w)H (w)e;) =0, jriyvec(H) = (=i)* DY, (ef H(w) B*(w)) lw=o,

where vec(H) is the vector defined by (2.2).
Proof. For any H € Hy, H(w) = Zne[—N,N]d He irw,

D* (B)HW)ej) luco = 3 (:)D"’B(O)DO‘”H(O)e]-

0<v<La
—zzz () k)* M Hyej = i® Zlo‘He]
Kk 0<y<a

=i Z ®1%,)vec(H,) = i®;1%vec(H).
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The proof of the second formula is similar and details are omitted here. O
Let HY be the subspace of Hy defined by

(3.7) HY :={H e Hy: Livec(H)=0, ;1%vec(H) =0 and
jrvec(H) = 0,V8,a € Z4, |8 < 2m — L,]a| <m —-1,1 < j <r}.

PROPOSITION 3.2. Assume that the refinement mask P satisfies (2.6) and (2.7)
for some row vectors 1§, |B] < 2m — 1. Let HY be the subspace of Hy defined by

(3.7), then HY, is invariant under Tp.
Proof. By Theorem 2.2, for any H € HY and 8 € Z%,|8| < 2m — 1,

L3 vec(TpH) = L5 Tpvec(H) = 2718115 vec(H) = 0.

Let B be the vector trigonometric polynomial satisfying (2.9). By Lemma 3.3, for any
a€Z4,]|a] <m, 1%vec(H) = 0and jr%vec(H) = Oforall j,1 < j <r, are equivalent
to D* (B(w)H (w)) |w=0 = 0 and D* (H(w)B*(w)) |w=0 = 0, respectively. One can
check by (2.10) and (2.11), D* (B(w)Tp H(w)) |w=0 = 0 (D¢ (TpH(w)B*(w)) |w=0 =
0 resp.) for all a € Z¢,|a| < m if D* (B(w)H(w)) |w=o0 = 0 ( D¢ (H(w)B*(w)) |w=0
=0 resp.) for any a € Z%,|a| < m. Thus HY, is invariant under Tp. 0

Let TPlH?v denote the restriction of Tp to H?\,. By the fact that the product of
the left and right eigenvectors of a simple eigenvalue of a matrix is not zero again,
Theorem 2.2 leads to the following corollary,

COROLLARY 3.2. If27 ", 0 <n < 2m—1, is a simple eigenvalue of Tp and there
exists € Z4 such that |B] = n, L?V # 0, then 27™ is not an eigenvalue of Tle?v.

For the next proposition, we need to consider the transition operators on other
spaces. Let P ({P}) be a given matrix mask satisfying (2.6) and (2.7) for some row
vectors 15, |8] < 2m — 1, and supp{P,} C [0, N]%. Denote N := max(N,2m). Let
H s denote the space of all r x r matrices with each entry a trigonometric polynomial
whose Fourier coefficients are supported in [-A, V]¢ and Tp, v denote the transition
operator on Hys defined by

Tp yH(Ww) := E P(ﬂ —}—71'1/)H(E + 71'1/)P"‘(E +7nv), HeHy.
2 2 2
vEeZd /274

Then Tp y is a linear operator on Hys leaving Hy and Hy invariant and Tp ar is
equivalent to the matrix

Tp.N = (2_dA2i—j)i,je[fN,N]da

where .Aj = ZZE[O,N]d Pg_j R Py.

Let H}, be the subspace of Hy defined as follows: H € HY, if and only if
L% vec(H) = 0, ;1%vec(H) = 0 and jr{vec(H) = 0 for all 8,a € Z4,|8] < 2m —
1,la] £ m—1,1 < j < r. In this case Lj’i/, ;1% and ;v are 1 x (r2(2N + 1)9)
vectors defined by (2.12) and (3.6) respectively with A instead of N. It can be shown
similarly that H%[ is invariant under Tp y and let Tp, N|H9\/ denote the restriction

of Tp n to HY,. Let Hy € Hy defined by

d
(3.8) Hy(w) := 2(1 —cosw;)?™,, w=(wi, --,wq) €TY,

i=1
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then Ho(w) € HY, .

We note that the transition operator Tp defined by (1.6) is the restriction of
Tp n to the subspace Hy of Hy and Tp defined by (2.4) is a submatrix of Tp ar. In
fact, if ' > N, then 7p » can be written as

M; O 0
TP,N = * TP * y
0 0 M,

where M; (M- resp.) is a strictly lower (upper resp.) triangular matrix. Thus Tp ar
(Tp, N|H?v resp.) and Tp (Tp|H9v resp.) have the same nonzero eigenvalues and the
eigenvectors of Tp n are in Hy. Hence p(Tp|H9v) = p(TP’N|H?\/), where p(Tp|H9V)
and p(Tp, N|Hf,’\/ ) denote the spectral radii of Tp|go, and Tp, N|H?\/ , respectively.

Choose a vector norm on space H}, and define the operator (matrix) norm
| Tp, N|Hg/ | with respect to this vector norm, then

Tim [[(Te i) = p(Tp,xlig,) = p(Telig,)-

PROPOSITION 3.3. Assume that P satisfies conditions (2.6) and (2.7) for some

row vectors lg, |B] < 2m — 1. Let HY be the subspace of Hy defined by (3.7) and
p(Tp|H?v) the spectral radius of Tp|H9v. Then for any € > 0, for the corresponding
refinable function ®, there exists a constant ¢ independent of n such that

/nn B(w)| dw < e (p(Tolug) +¢)"

where Q,, :=2"TN\2"1T¢ neZ,.

This proposition together with the usual Littlewood-Paley technique leads to the
following Sobolev estimate of refinable vector ®.

THEOREM 3.2. Assume that P satisfies conditions (2.6) and (2.7) for some row
vectors l'g, |B| < 2m—1. Let HY; be the subspace of Hy defined by (3.7) and p(Tp|H<1)V)
the spectral radius of Tp|H?V . Then the matriz refinable function ® is in W*(R?) for
any s < so := —log, p(Tp|H?v).

The proof of Proposition 3.3 and Theorem 3.2 can be carried out by modifying
the proofs of Proposition 4.4 and Theorem 4.5 in [29]. For completeness, we give them
here.

Proof of Proposition 3.3. Let Ho(w) € H}, defined by (3.8). Note that Hy(w) > I,
for w € T4\ (3T?), and 3 is continuous on T¢, thus for any positive integer n,

/Q B (w)3* (w)dw = /n I, (0)B(2~ ) B* (2~ "w)TT () o

<o
Q,

= [ (Tpc) (@)

I, ()T (w)dw < c /ﬂ T, () Ho (2" w)1T, (o) d

where last equation can be shown similarly to (3.2). Since the Hilbert-Schmidt norm
[|M]||2 = v/ Tr(MM*) is an equivalent norm for finite matrices, by applying the trace
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operation, we obtain

/ |<f(w)|2dw = /nn Tr(@(w)a*(w)) dw

n n
< e (p(Towlug) +¢) = cc (p(Telg,) +)

with ¢, independent of n. O
Proof of Theorem 3.2. For s < sp, let € > 0 be a constant satisfying s <
—log,(p(Tp|mo ) + €). Since

| Bw)Pdo < cle+ p(Tol,)",

n

for some constant ¢ independent of n and d is continuous on T4, thus
~ ~ 0 ~
| @+ loPrlBePdos [ 1+ el P+ [ 0+ wP) )P
R4 Td =1/

e n
< c—}—cZZQ"S (e+p(Tp|H?v)) < oo.

n=1

Therefore ® € W*(R?). 0

Let C7(RY) denote the space defined in the following way: if v = n + 71 with
n € Zy and 0 < 41 < 1, then f € C?"(RY) if and only if f € C(™(R?) and f(™ is
uniformly Hélder continuous with exponent vy, i.e.

|D?f(z +y) — DP f(z)| < cly|™, for any B € Z¢,|8] = n,

for some constant ¢ independent of z,y € R?. With the well-known inclusion
d
W4RY c C'(RY), fors>~+ 2

Theorem 3.2 leads to the following corollary.

COROLLARY 3.3. Suppose P satisfies conditions (2.6) and (2.7) for some row
vectors lg,|ﬂ| < 2m — 1. Let HY be the subspace of Hy defined by (3.7) and
p(Tp|uo,) the spectral radius of Tp|yo , then refinable vector € C"(RY) for any
v < —logy p(Telug) — §-

4. Examples. In this section, we will give the Sobolev regularity estimates of
some refinable vectors ®. Before doing this, we shall decide if ® = (¢;)]_, is stable
or orthogonal. It was shown (see [7], [13], [21] and [26]) that @ is stable if and only
if there exists a positive constant ¢ such that Gg(w) > I, for all w € T?; and that
® is orthogonal if and only if Ge(w) = I, for all w € T? and the matrix mask P is a
CQF (Conjugate Quadrature Filter), i.e. P satisfies

Z P(w+ vm)P*(w +vw) =1,.
vEZd /27

Assume that P satisfies the vanishing moment conditions of order at least one, and
P(0) satisfies Condition E. By Theorem 2.2, 1 is an eigenvalue of Tp. If the 1-
eigenmatrix of Tp is positive (or negative) definite on T?, then there exists a nontrivial
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refinable vector ® in L?(R%) by Theorem 3.1, and Gg(w) is also a 1-eigenmatrix of
Tp. Therefore if eigenvalue 1 is simple, then Gg(w) is the unique (up to a constant)
1-eigenmatrix of Tp and hence @ is stable. If P is a CQF, then I, is a 1-eigenmatrix
of Tp. Thus if 1 is a simple eigenvalue of Tp, then ® € L?(R?) and G¢(w) = cl, for
some nonzero constant c. Hence ® is orthogonal, i.e. the integer shifts of ¢;, 1 <1 <r,
form an orthogonal basis of their closed linear span in L2(R%). Therefore to decide if
the refinable vector ® is stable (or orthogonal), we need only to check that if 1 is a
simple eigenvalue of Tp and the corresponding eigenmatrix is positive (or negative)
definite on T¢. In fact the stability of ® implies that Tp satisfies Condition E and
the 1-eigenmatrix of Tp is positive (or negative) definite on T¢, see [29)].

Assume that ® is a compactly supported refinable vector with refinement mask
P satisfying (2.6) and (2.7) for some row vectors 1§ , |B] < 2m — 1. To estimate the
regularity of ® by Theorem 3.2, we need to find p(Tp|gg ). We note that A is an
eigenvalue of Tp|H§>v if and only if there exists a right eigenvector v of eigenvalue A

of Tp satisfying that for any B,a € Z4,|8| <2m —1,|a| <m—-1,1<j<r
(4.1) LAv =0, j%v=0and ;r$v =0,

where LIBV, ;1% and ;r% are the vectors defined by (2.13) and (3.6), respectively. Let
Hy € Hy be the unique matrix function such that vec(Hy) = v, then Hy is a A-
eigenmatrix of Tp|go . Thus p(Tp|po ) is the largest modulus of all such eigenvalues
of Tp that have corresponding right eigenvectors satisfying (4.1).

We say that the Sobolev regularity estimate sq is optimal if ® € W*(R?) if and
only if s < sp.

Ezxample 4.1. Let ¢; and ¢2 be the B-splines defined by the knots 0,0,1,1 and
0,1,1,2, respectively, i.e. ¢1(x) = 22(1 — x)x[0,1](x) and ¢2(x) = z*x[0,1)(x) + (2 —
2)®x[1,2)(x). Then ® = (¢1,¢2)" satisfies the matrix refinement equation (1.1) with
mask
1 —w
P(w) = Z e—]z:w_}—_fe—%w % + 2e—z'w1+ %e—%w
Mask P satisfies the vanishing moment conditions of order 3 with 13 = (1,1), 1§ =
(3,1) and I2 = (0,1), see [27]. The eigenvalues of P(0) are 1, . We can find vectors
15 =(—%,1),1§ = (—1/10,9/10) and I3 = (1, 1) satisfying (2.7). In this case, Tp is a
20 x 20 matrix. For 0 < g <5, Lg # 0. Thus 277, 0 < B < 5, are eigenvalues of Tp.
In fact the eigenvalues of Tp or Tp are 1,3,%(3),3(4), 15 (3), 5(2),0(4). Here for an
eigenvalue A, the notation A(f) means that the algebraic multiplicity of A is £. Thus
Tp satisfies Condition E. We can find a right 1-eigenvector v of Tp:

v=(0 000003 1433120301000 0

That is

_ 4 3+3e™
H@) =1 3 go-iv 194 ¢ 4 i
is a l-eigenmatrix of Tp. Checking directly, H(w) > 2I, for all w € T?, thus & is
stable since Tp satisfies Condition E.

To estimate the regularity by our method, we need to find the largest eigenvalue
module of Tp|H9V . By Corollary 3.2, 1, % are not eigenvalues of TP\H% . We find %
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is the largest eigenvalue module of Tp|H9V with a corresponding eigenmatrix

(efiu) + eiw)/Z —1-— eiw
—1—e ™ 2

Therefore ® € W2—¢(R) or ® € C1~¢(R) for any € > 0, and our estimate is optimal
from the definition of ®.
Ezample 4.2. Let ® = (¢1,$2)T be the refinable vectors treated in [11]. The
mask of & is given by
P(w) = = [ 646 V2o
. 20 (_1 + Qe 1w + ge—sz _ e—3zw)/\/§ -3 + 10e~ % — 36—21w

Mask P is a CQF and satisfies the vanishing moment conditions of order 2 with
1§ = (1.4142,1) and 1§ = (.7071,1), see [27]. The eigenvalues of P(0) are 1,—.2
and we can find vectors 12 = (.4714,.8333) and 13 = (.3536,.5) satisfying (2.7). For
0 < B8 < 3, vectors Lg # 0, thus 277 are eigenvalues of Tp. The eigenvalues of Tp
or Tp are 1,1, %,%(2),—.2(2),.2(2), —.1(2), —.05(4), .04 and 0(12). Thus Tp satisfies
Condition E and hence ® is orthogonal.

By Corollary 3.2, 1,1 and 1 are not eigenvalues of Tp|uo,- We find that the

largest eigenvalue module of Tp|yo is & with a corresponding eigenmatrix H(w) =
S _ 4 Hie ™ given by

[ 0875 0674 o [ —.0042 0004
Ho=| o674 —.1085 ] » Hi=Hoy = [ 0674 —.0417
and
_gr _| 0 0O _ _
Hy =H-y = [ 0004 o |@ H3=H-=0

Thus & € W3—¢(R) or ® € C*~¢(R) for any € > 0. It was shown in [11] that ® is
in the Lip space, i.e. |®(z) — ®(y)| < ¢|z — y| for some constant ¢ independent of
z,y € R. However ® ¢ C'(R) since %(q&l () + ¢1(xz — 1)) + ¢2(z) is the hat function
zX[0,1](®) + (2 — x)x(1,2() (see [31]), thus our estimate is optimal.

At last we will analyze two refinable vectors from [1].

Ezample 4.3. Let ® = (¢1,$2)7 be the refinable vector treated in [1]. The mask
of ® is given by

1[ 24 4e ™ 4 272w 2 — 2¢— 2w

g _\/7 + ﬁe—in _\/7+ 2e—iw _ ﬁe—%w

Mask P is a CQF and satisfies the vanishing moment conditions of order 2 with
1§ = (1,0) and 1§ = (1,.2743), see [1]. The eigenvalues of P(0) are 1,—.4114 and
we can find vectors 12 = (1.0752,.5486) and 13 = (1.2257,.7909) satisfying (2.7). For
0 < B < 3, vectors Lg # 0, thus 277, 0 < # < 3 are eigenvalues of Tp. The eigenvalues
of Tp or Tp are 1,1, 5,3, —.4114(2),.2318, —.2057(3),.0130(2) and 0(8). Thus Tp
satisfies Condition E and @ is orthogonal.

By Corollary 3.2, 1, %, % and % are not eigenvalues of TP|H§>V . We find the
largest eigenvalue module of Tp|go is .2318 with a corresponding eigenmatrix H (w) =

Pw) =
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S, Hie ™ given by

2117 0

~ [ —.1059 .1930
HO_[ 0 .7564]’ Hl—H—l—[ ]

—.1930 .3253

and Hy = H 5 = 0. Thus ® € W94~ ¢(R) or ® € C-*5%°~¢(R) for any € > 0.
Ezample 4.4. Let ® = (¢1,¢2)T be another refinable vector treated in [1]. The

mask P(w) := 1 373 Pre < of & is given by

_ 1] 10-3V10 5v6-2v15|  _ 1] 30+3vV10 5v6-2v15

T 40| 5v6-3V15 5-3v10 | ' 40| -5v6-7V/15 5-3V10

and Py = SoP15y,P3 = SoP¢Sy, where Sy = diag(1,—1). Mask P is a CQF and
satisfies the vanishing moment conditions of order 3 with 1§ = (1,0), 1§ = (1.5,.2372)
and 12 = (2.3063,.7117), see [1]. The eigenvalues of P(0) are 1,.0257 and we can
find vectors I3 = (3.6283,1.8980), 14 = (6.0943,4.9822) and 13 = (11.5329, 13.4836)
satisfying (2.7). Vectors Lg # 0, thus 277, 0 < B < 5, are eigenvalues of Tp.
The eigenvalues of Tp or Tp are 1,1, 1,5, 15> 33,-1357,—.0625, —.0576,.0257(2),
.0128(2),.0078(2), .0064(4), —.0016(4), .0032(2), .0007 and .0003(2). Thus Tp satisfies
Condition E and & is orthogonal.

By Corollary 3.2, £, £, 1, L and & are not eigenvalues of Tplao,. We find
the largest eigenvalue module of Tp|H?V is .1357 with a corresponding eigenmatrix

H(w) = Ei:,3 Hye " given by

Pq

1180 0

—.0506 .1602
HO_[ 0 .8072

—gT —
] o H=Ho = [ —.1602 .3362

and

—.0084 .0087

—_gT _
Hy=H,= [ —.0087 .0086

], Hy=H 3 =0.

Thus ® € W14108=¢(R) or & € C-21%=¢(R) for any € > 0.
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