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Abstract

The quad/triangular subdivision, whose control net and refined meshes con-
sist of both quads and triangles, provides better visual quality of subdivision
surfaces. While some theoretical results such as polynomial reproduction
and smoothness analysis of quad/triangle schemes have been obtained in the
literature, some issues such as the basis functions at quad/triangle vertices
and design of interpolatory quad/triangle schemes need further study. In
our study of quad/triangle schemes, we observe that a quad/triangle subdi-
vision scheme can be derived from a nonhomogeneous refinement equation.
Hence, the basis functions at quad/triangle vertices are shifts of the refinable
function associated with a nonhomogeneous refinement equation. In this
paper a quad/triangle subdivision surface is expressed analytically as the
linear combination of these basis functions and the polynomial reproduction
of matrix-valued quad/triangle schemes is studied. The result on polynomial
reproduction achieved here is critical for the smoothness analysis and con-
struction of matrix-valued quad/triangle schemes. Several new schemes are
also constructed.

Keywords: Quad/triangle subdivision, nonhomogeneous refinement
equation, basis function, subdivision limiting surface, polynomial
reproduction, interpolatory scheme

∗Corresponding author.Tel.: +01 314-516-6358; fax: +01 314-516-5400.
Email addresses: jiangq@umsl.edu (Qingtang Jiang), libb@gucas.ac.cn (Baobin

Li)

Preprint submitted to Mathematics and Computers in Simulation June 18, 2012



1. Introduction

The subdivision process is carried out iteratively from an initial polyhe-
dron, called control net or control mesh, to generate finer and finer meshes.
The control mesh and its finer meshes produced by a conventional subdi-
vision scheme consist of either quadrilateral (quads) or triangles, but not
both. More precisely, a quad subdivision scheme starts with a control net
consisting of quads, and generated finer and finer meshes of quads, while a
triangle subdivision scheme generates triangular meshes from an initial tri-
angular mesh. For either the quad or triangle subdivision, the dyadic (or
1-to-4 split) refinement is the most commonly used refinement. During each
iteration step of a dyadic subdivision, one quad (triangle resp.) is split into
four quads (triangles resp.). During this process, new vertices (also called
“odd” vertices) are inserted among old vertices (also called “even” vertices)
on the coarser mesh (i.e. the mesh before the next iteration step is carried
out) and the positions of old vertices may be changed. The exact positions
of the “odd” vertices (and possibly “even” vertices) in the finer mesh are
given by the local averaging rule. If the positions of “even” vertices are not
changed during the subdivision process, then the subdivision scheme is called
an interpolatory scheme. Otherwise, it is called an approximation scheme.

The local averaging rule (for regular vertices) is associated with a certain
refinement equation

ϕ(x) =
∑
k∈ZZ2

pkϕ(2x− k), x ∈ IR2 (1.1)

with a (finite) sequence {pk} called the refinement mask or subdivision mask,
and a compactly supported function ϕ(x) called the refinable function. For
a (regular) control net with vertices v0k, the refinement equation (1.1) yields
the local averaging rule:

vℓ+1
k =

∑
n∈ZZ2

vℓnpk−2n, k ∈ ZZ2, ℓ = 0, 1, · · · , (1.2)

where vℓ+1
k are the vertices of the refined mesh obtained after ℓ + 1 steps of

subdivision iterations. The local averaging rule (1.2) is sometimes described
and represented in the plane with a set of subdivision templates (stencils).
The finer and finer polyhedra with vertices vℓk give an approximation to the
limiting surface given by

∑
k v

0
kϕ(x − k). In particular, if the initial net is
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Figure 1: Quad/triangle mesh (left) and refined quad/triangle mesh (right)

δk, the kronecker-delta sequence, then the limit surface is ϕ(x − k). Thus
ϕ(x− k) is also called the basis function at k.

Catmull-Clark’s scheme [2] and Loop’s scheme [11] are the two most com-
monly used schemes. The former is for the quad mesh and the latter for the
triangle mesh. In CAD modeling, the designers often want to model certain
regions with quad meshes and others with triangle meshes to get better vi-
sual quality of subdivision surfaces. Thus, it is desirable to have surfaces that
have a hybrid quad/triangle mesh structure (see e.g. [16]). The quad/triangle
subdivision was introduced for this purpose (see [12, 16, 15], and refer to [13]
for its advantages and to [9, 10] for the polynomial reproduction and smooth-
ness analysis). A subdivision algorithm for a regular quad/triangle vertex, a
vertex surrounded by 2 adjacent quads and 3 adjacent triangles, can be rep-
resented in the parametric plane as the origin of the mesh in the left picture
of Fig.1, where all vertices on the y-axis are called quad/triangle vertices.
During the quad/triangle subdivision, “odd” vertices (denoted as ◦ in the
right picture of Fig.1) are inserted among the “even” vertices (denoted as •),
and then, they are connected appropriately such that each quad and triangle
in the coarser mesh are split into 4 quads and 4 triangles in the finer mesh,
see the right picture of Fig.1. The exact positions of the “odd” and “even”
vertices in the finer mesh are given by the local averaging rule.

For a conventional quad or triangle subdivision, the basis function at
a regular vertex is an integer-shift of the refinable function ϕ. For the
quad/triangle subdivision, we have the basic question: what is the basis
function at a quad/triangle vertex? Whether it is also related to a refinable
function, and whether a quad/triangle scheme can be derived a refinement
equation similar to (1.1)? If yes, whether the subdivision surface is also given
as the series of the basis functions with the control vertices as the coefficients?
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In our study of quad/triagle schemes, we realize that the above issues are
associated with the nonhomogeneous refinement equation of the form

ϕ(x) =
∑
k∈ZZ2

Akϕ(2x− k) +N0(x), x ∈ IR2, (1.3)

where ϕ = [ϕ0, ϕ1, · · · , ϕr−1]
T for some r is called refinable function vector,

and N0(x) is called the nonhomogeneous term. In our paper [8], we show
that a quad/triangle subdivision scheme with either scalar-valued templates
or matrix-valued templates can be derived from a nonhomogeneous refine-
ment equation. Thus, the basis functions at quad/triangle vertices are the
integer shifts of the refinable functions associated with nonhomogeneous re-
finement equations. In this paper, we obtain that the limiting surfaces can
be expressed as the linear combination of the shifts of the refinable functions.
For the purpose of constructing interpolatory quad/triangle schemes, in this
paper we also study polynomial reproduction of matrix-valued quad/triangle
schemes. The result on polynomial reproduction obtained in this paper leads
to the construction of matrix-valued C2 interpolatory quad/triagle schemes.
The analytical expression of a quad/triangle subdivision limiting surface is
obtained in §2, and the polynomial reproduction of quad/triangle schemes
with both scalar-valued and matrix-valued schemes is presented in a uniform
way in §3. With the conditions for polynomial reproduction obtained in §3,
we construct a few new quad/triangle schemes in §4.

In this paper we consider subdivision schemes for regular vertices only.
Thus, in the following, a vertex means a regular vertex, namely, it has valence
4 if it is a quad vertex; it has valence 6 if it is a triangle vertex; and it is sur-
rounded by 2 adjacent quads and 3 adjacent triangles if it is a quad/triangle
vertex. Throughout this paper, we use Γ1 and Γ2 to denote the subsets of
ZZ2: Γ1 := {n = (n1, n2) : n1 ≤ −2, n1, n2 ∈ ZZ}, Γ2 := {m = (m1,m2) :
m1 ≥ 2,m1,m2 ∈ ZZ}. For m = (m1,m2) ∈ ZZ2, denote

m̃ :=

{
m, if m1 is even,
(m1,m2 − 1

2
), if m1 is odd.

(1.4)

2. Nonhomogeneous refinement equation, quad/triangle scheme
and limiting surface

2.1. Nonhomogeneous refinement equation and quad/triangle scheme

Recently in their study of matrix-valued templates for surface design, the
authors in [3] introduce a natural definition of matrix-valued interpolatory
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scheme which results in interpolatory schemes with small supports. In this
subsection we show that a scalar or matrix-valued quad/triangle scheme can
be derived from a nonhomogeneous refinement equation.

O O

Figure 2: Quad grid (left) and triangle grid (right)

Let S(x) = [S0(x), S1(x), · · · , Sr−1(x)]
T and T (x) = [T0(x), T1(x), · · · ,

Tr−1(x)]
T be the basis function vectors for the quad grid and triangle grid

respectively in a matrix-valued quad/triangle scheme. More precisely, S(x)
is refinable along lattice ZZ2 with the grid shown on the left of Fig.2 and T (x)
is refinable along lattice {(2j, k) : j, k ∈ ZZ} ∪ {(2j + 1, k + 1

2
) : j, k ∈ ZZ}

with the grid shown on the right of Fig.2:

S(x) =
∑
k∈ZZ2

QkS(2x− k), x ∈ IR2, (2.1)

T (x) =
∑
k∈ZZ2

PkT (2x− k̃), x ∈ IR2 (2.2)

for some r × r constant matrices Qk, Pk with finitely many nonzeros, where
for k ∈ ZZ2, k̃ is defined in (1.4). Thus mask {Qk} is used for quad vertices on
the left but far from the y-axis of the quad/triangle grid (separated along the
y-axis) shown in Fig.1, and {Pk} is used for triangle vertices on the right but
far from the y-axis. For simplicity of presentation of the paper, we assume
that each Sj(x) is supported on a neighborhood of the origin consisting of
2-ring quads (the shadowed region on the left of Fig.2) and each Tj(x) is
supported on a neighborhood of the origin consisting of 2-ring triangles (the
shadowed region on the right of Fig.2). We also assume that both S(x) and
T (x) satisfy the partition unity property

y0

∑
k∈ZZ2

S(x− k) = 1, y0

∑
k∈ZZ2

T (x− k̃) = 1, x ∈ IR2, (2.3)

with
y0 = [1, 0, · · · , 0]. (2.4)
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When the matrix-valued refinement equation (2.1) or (2.2) is applied to
surface subdivisions, the local averaging rule for either the quad subdivision
(Gk = Qk) or the triangle subdivision (Gk = Pk) is given by

vℓ+1
k =

∑
j

vℓ
jGk−2j, ℓ = 0, 1, · · · , (2.5)

where
vℓ
k =: [vℓk, s

ℓ
k,1 · · · , sℓk,r−1] (2.6)

are “row-vectors” with r components of points vℓk, s
ℓ
k,i, i = 1, · · · , r−1, in IR3.

With S(x), T (x) satisfying (2.3), as in [3, 4], we may use the first components
vℓk of vℓ

k to denote the vertices of the subdivision meshes generated after the
ℓ steps of iterations, with v0k being the initial vertices on the control net. The
other components s0k,1, · · · , s0k,r−1 of v0

k, can be used to control the surface

geometric shape. In [3], the scheme is said to be interpolatory if vℓ+1
2k = vℓk,

namely, the vertices on the coarse mesh remain in the refined mesh. With
this definition of interpolatory, C2 interpolatory quad subdivision schemes
with the matrix-valued templates having the same sizes as those of Catmull-
Clark’s scheme and C2 interpolatory triangle subdivision schemes with the
matrix-valued templates having the same sizes as those of Loop’s scheme are
constructed in [3]. For example, with templates in Figs. 3 and 4, where

R =

[
1, −129

64

0, − 43
128

]
, J =

[
3
8
, 0

− 11
128

, 17
128

]
, K =

[
1
4
, 0

− 1
16
, 1

16

]
,

L =

[
0, 99

256

0, − 33
256

]
, M =

[
1
16
, 0

− 5
256

, − 1
256

]
, N =

[
0, 15

128

0, − 9
256

]
,

(2.7)

and

P =

[
1, −435

256

0, − 91
256

]
, B =

[
3
8
, 0

− 47
512

, 69
512

]
,

C =

[
1
8
, 0

− 17
512

, − 5
512

]
, D =

[
0, 145

512

0, − 45
512

]
,

(2.8)

one has an interpolatory quad scheme and an interpolatory triangle scheme
with the associated refinable function vectors in C2, see [3].

Now let us return back to matrix-valued quad/triangle schemes. Consider

V0 := spanL2{φj(x, y − k), fj(x, y − k), gj(x, y − k), Sj(x− n),
Tj(x− m̃) : 0 ≤ j ≤ r − 1, k ∈ ZZ,n ∈ Γ1,m ∈ Γ2},

(2.9)
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Figure 3: Matrix-valued templates of quad subdivision scheme for “even” vertices
(left) and “odd” vertices (right)

P B B

C

C

D D

DD

D D

Figure 4: Matrix-valued templates of triangle subdivision scheme for “even” vertices
(left) and “odd” vertices (right)

and Vℓ := {F (x) : F ( x
2ℓ
) ∈ V0}, where φj(x), fj(x) and gj(x) are compactly

supported functions with supp(φj) ⊂ [−2, 2] × IR, supp(fj) ⊂ [−3, 1] × IR,
supp(gj) ⊂ [−1, 3] × IR, 0 ≤ j ≤ r − 1. To assure that {Vℓ}ℓ is nested,
φ := [φ0, φ1, · · · , φr−1]

T , f := [f0, f1, · · · , fr−1]
T and g := [g0, g1, · · · , gr−1]

T

satisfy the following refinement relation:

φ(x) =
∑
k∈ZZ

a0,kφ(2x, 2y − k) +
∑
k∈ZZ

a1,kg(2x, 2y − k) + (2.10)∑
k∈ZZ

a−1,kf(2x, 2y − k) +
∑
n∈Γ1

anS(2x− n) +
∑
m∈Γ2

amT (2x− m̃),

f(x) =
∑
k∈ZZ

b0,kφ(2x, 2y − k) +
∑
k∈ZZ

b−1,kf(2x, 2y − k) +
∑
n∈Γ1

bnS(2x− n),

(2.11)

g(x) =
∑
k∈ZZ

d0,kφ(2x, 2y−k)+
∑
k∈ZZ

d1,kg(2x, 2y−k)+
∑
m∈Γ2

dmT (2x− m̃), (2.12)

where x = (x, y), and aj,k,bj,k,dj,k are some r × r matrixes with finitely
many nonzeroes.

Denote Φ := [φ0, φ1, · · · , φr−1, f0, f1, · · · , fr−1, g0, g1, · · · , gr−1]
T .

Then equations (2.10)-(2.12) can be written as a nonhomogeneous refinement
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equation:

Φ(x, y) =
∑
k∈ZZ

HkΦ(2x, 2y − k) +N(x, y), (2.13)

where

Hk =

 a0,k a−1,k a1,k

b0,k b−1,k 0
d0,k 0 d1,k

 , N(x) =

 N1(2x)
N2(2x)
N3(2x)

 , (2.14)

with

N1(x, y) :=
∑
n∈Γ1

anS(2x− n) +
∑
m∈Γ2

amT (2x− m̃),

N2(x, y) :=
∑
n∈Γ1

bnS(2x− n), N3(x, y) :=
∑
m∈Γ2

dmT (2x− m̃).

Let F (x) be a function in V0. Suppose

F (x) =
∑
k∈ZZ

[v0
0,k,v

0
−1,k,v

0
1,k]Φ(x−(0, k))+

∑
n∈Γ1

v0
nS(x−n)+

∑
m∈Γ2

v0
mT (x−m̃).

Since V0 ⊂ Vℓ, ℓ = 1, 2, · · ·, F (x) can be written as

F (x) =
∑
k∈ZZ

[vℓ
0,k,v

ℓ
−1,k,v

ℓ
1,k]Φ(2

ℓx−(0, k))+
∑
n∈Γ1

vℓ
nS(2

ℓx−n)+
∑
m∈Γ2

vℓ
mT (2ℓx−m̃).

The above two equations for F (x) and refinement equations (2.13), (2.1) and
(2.2) yield the following quad/triangle subdivision algorithm.

Quad/triangle subdivision algorithm For initial control vectors
v0
k = [v0k, s

0
k,1, · · · , s0k,r−1], {Hk}, {Qk}, {Pk} and ak,bk,dk yield a quad/triangle

subdivision with the vectors vℓ+1
k = [vℓ+1

k , sℓ+1
k,1 , · · · , s

ℓ+1
k,r−1] after ℓ+1 steps of

subdivision iterations given by

[vℓ+1
0,j ,v

ℓ+1
−1,j,v

ℓ+1
1,j ] =

∑
k∈ZZ

[vℓ
0,k,v

ℓ
−1,k,v

ℓ
1,k]Hj−2k, j ∈ ZZ, (2.15)

vℓ+1
n =

∑
k∈ZZ{vℓ

0,kan−(0,2k) + vℓ
−1,kbn−(0,2k)}

+
∑

n′∈Γ1
vℓ
n′Qn−2n′ , n ∈ Γ1,

(2.16)

vℓ+1
m =

∑
k∈ZZ{vℓ

0,kam−(0,2k) + vℓ
1,kdm−(0,2k)}

+
∑

m′∈Γ2
vℓ
m′Pm−2m̃′ , m ∈ Γ2.

(2.17)
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Obviously, vℓ
0,j above are the vectors associated with quad/triangle nodes

(0, 2−ℓj) on the y-axis, vℓ
−1,j and vℓ

1,j are the vectors associated with nodes
(−2−ℓ, j2−ℓ) and (2−ℓ, 2−ℓ(j − 1

2
)) resp., and vℓ

n,n ∈ Γ1 and vℓ
m,m ∈ Γ2 are

the vectors associated with quad nodes 2−ℓn and triangle nodes 2−ℓm̃ resp.
Observe that since there are only finitely many ak,bk,dk are nonzero, for

n = (n1, n2) ∈ Γ1 and m = (m1,m2) ∈ Γ2 with −n1,m1 large enough, the
first terms in both of (2.16) and (2.17) are zero. Therefore, the averaging
rule (2.16) for the vertices on the left but far from the y-axis coincides with
the conventional subdivision algorithm with mask {Qk} given in (1.2), while
the averaging rule (2.17) for the vertices on the right but far from the y-axis
is the ordinary subdivision algorithm with mask {Pk}.

1

Y

Y X

Z

X

G

W

W

V

V

U

U

W

Figure 5: Templates of matrix-valued scheme for “even” vertices (left) and “odd”
vertices (right) on the y-axis

Quad/triangle subdivision schemes constructed in [16, 10] can be derived
from nonhomogeneous equations and they can be given in the form of (2.15)-
(2.17), see [8] for the details. In the following as an example, we give the
masks Hk, ak, bk and dk for the quad/triangle schemes with the templates
in Fig.3 for vertices on the left of the y-axis, and the templates in Fig.4 for
vertices on the right of the y-axis, and the templates in Fig.5 for vertices on
the y-axis, where G,U, V,W,W1, X, Y, Z are some r × r constant matrices.
In this case, the corresponding nonzero Hk are

H−2 =

 V, M, 0
W, M, 0
U, 0, C

 ,H−1 =

 X, K, C
Y, K, 0
Z, 0, B


H0 =

 G, J, B
W1, J, 0
U, 0, B

 ,H1 =

 X, K, B
Y, K, 0
0, 0, C

 ,H2 =

 V, M, C
W, M, 0
0, 0, 0

 (2.18)
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and the corresponding nonzero aj,k,bj,k,dj,k are

a2,0 = C,a2,1 = a2,−1 = D,a−2,0 = L,
a−2,1 = a−2,−1 = N,a−2,2 = a−2,−2 = M,
b−2,0 = R,b−2,1 = b−2,−1 = J,b−2,2 = b−2,−2 = L,
b−3,0 = J,b−3,1 = b−3,−1 = K,b−3,2 = b−3,−2 = M,
b−4,0 = L,b−4,1 = b−4,−1 = M,b−4,2 = b−4,−2 = N,
d2,−1 = P,d2,0 = d2,−2 = B,d2,1 = d2,−3 = D,
d3,−1 = d3,−2 = B,d3,0 = d3,−3 = C,d4,−1 = C,d4,0 = d4,−2 = D.

(2.19)

This quad/triangle scheme has the same sizes of templates as Stam-Loop’s
scheme.

2.2. Limiting surfaces

In this subsection we consider the limiting surfaces. First, let us discuss
the case r = 1. Let h(x) = 1 − |x| for |x| ≤ 1 and h(x) = 0 for |x| > 1 be
the 1-D hat function. Let h1(x) = h(x)h(y) be the 2-D hat function. See
the support of h1 in the middle of Fig.6. Let h0(x) be the “hat” function
supported on the region shown on the left of Fig.6 with h0(0, 0) = 1, h0(x)
being a piecewise linear polynomial on each of three triangles on the right
of the y-axis, and h0(x) = (1 + x)h(y) for x = (x, y),−1 ≤ x ≤ 0. Let
h2(x) be the hat function supported on a neighborhood of (0, 0) consisting
of 6 triangles shown on the right of Fig.6 with h2(0, 0) = 1, h2(x) being a
piecewise linear polynomial on each of these six triangles.

(−1, 0)

y

(0, 1)

(1, 1/2)

O

y

(1, −1/2)

(1, 1/2)

O

y
(0, 1)

O

Figure 6: Supports of hat functions h0(x), h1(x), h2(x)

For a conventional dyadic (scalar-valued) quad or triangle subdivision
scheme with refinement mask {pk}, let vℓk be the vertices of the refined mesh
after the subdivision is applied ℓ times to an initial regular mesh with vertices
v0k. Then, for sufficiently large values of ℓ, vℓk provide an accurate discrete
approximation of the limiting surface. More precisely, let

∑
k v

ℓ
kC0(2ℓx− k)
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be the polyhedron (refined mesh) with vertices vℓk, where C0(x) is a suitable
hat function. (One can choose C0(x) to be h1(x) for the quad subdivision and
C0(x) to be h2(x) for the triangle subdivision.) Then the sequence of finer
and finer polyhedra gives an approximation to the limiting surface given by∑

k v
0
kϕ(x−k), where ϕ is the refinable function associated with {pk}, see e.g.

[4]. Next, we consider the limiting surface of a quad/triangle subdivision.
Let vℓk be the vertices of the refined mesh given by (2.15)–(2.17) after ℓ

steps of quad/triangle subdivision iterations with masks {Hk}k∈ZZ, {qk}k∈ZZ2 ,
{pk}k∈ZZ2 and ak, bk, dk applied to an initial control net with vertices v0k. We
say this scheme is L∞-convergent if for any v0k, there is a continuous function
F (x) on IR2 such that F ̸≡ 0 for at least one {v0k}k, and that for any R > 0,

{∥vℓk − F (
k

2ℓ
)∥∞,∥k∥≤2ℓR,k1≤0 + ∥vℓk − F (

k̃

2ℓ
)∥∞,∥k∥≤2ℓR,k1>0} → 0, (2.20)

as ℓ → ∞. Next we show that the limiting function (surface)F (x) is given
by a linear combination of S(x), T (x),Φ(x) and their integer-shifts, where
S(x), T (x) are the compactly supported refinable functions associated with
{qk} and {pk} resp., and Φ = [φ, f, g]T be the refinable function vector
satisfying the nonhomogeneous refinement equation (2.13). To this regard,
we consider the cascade operator SH,N associated with (2.13) defined by

SH,NG(x) :=
∑
k∈ZZ

HkG(x− (0, k)) +N(x), (2.21)

for G(x) = [g1(x), g2(x), g3(x)]
T , where N(x) is the nonhomogeneous term

in (2.13). Clearly if {(SH,N)
nG(x)}n, which is called the cascade algorithm

sequence, converges pointwise or in L2-norm, then its limit is Φ, the refinable
function satisfying (2.13). Let

Φ0(x) := [h0(x), h1(x+ (1, 0)), h2(x− (1,−1

2
))]T ,

where h0, h1, h2 are the hat functions mentioned above. Then for ℓ = 0, 1, · · ·,
the polyhedron with vertices vℓk, the refined quad/triangle mesh after ℓ steps
of iterations, is given by

Lℓ(x) :=
∑

k∈ZZ[v
ℓ
0,k, v

ℓ
−1,k, v

ℓ
1,k]Φ0(2

ℓx, 2ℓy − k)
+
∑

n∈Γ1
vℓnh1(2

ℓx− n) +
∑

m∈Γ2
vℓmh2(2

ℓx− m̃).
(2.22)
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Proposition 1. Suppose a quad/triangle scheme with mask {Hk}k∈ZZ, {qk}k∈ZZ2,
{pk}k∈ZZ2 and ak, bk, dk are L∞-convergent. If in addition, the cascade al-
gorithm sequence {(SH,N)

nΦ0(x)}n converges pointwise, then the sequence
{Lℓ(x)}ℓ defined by (2.22) converges pointwise to

L(x) =
∑
k∈ZZ

[v00,k, v
0
−1,k, v

0
1,k]Φ(x, y − k) +

∑
n∈Γ1

v0nS(x− n) +
∑
m∈Γ2

v0mT (x− m̃).

(2.23)

Proof. Since this quad/triangle scheme is L∞-convergent, the schemes with
masks {qk}k∈ZZ2 , {pk}k∈ZZ2 used for quad vertices and triangle vertices are also
L∞-convergent. Thus both

∑
n∈Γ1

vℓnS(2
ℓx− n)−

∑
n∈Γ1

vℓnh1(2
ℓx− n) and∑

m∈Γ2
vℓmT (2ℓx− m̃)−

∑
m∈Γ2

vℓmh2(2
ℓx− m̃) approach to zero as ℓ → ∞.

Therefore, it is enough to show that

L̃ℓ(x) :=
∑

k∈ZZ[v
ℓ
0,k, v

ℓ
−1,k, v

ℓ
1,k]Φ0(2

ℓx, 2ℓy − k)
+
∑

n∈Γ1
vℓnS(2

ℓx− n) +
∑

m∈Γ2
vℓmT (2ℓx− m̃),

converges pointwise to L(x) in (2.23).
Denote wℓ

k := [vℓ0,k, vℓ−1,k, vℓ1,k], ℓ = 0, 1, · · ·. From the subdivision
algorithm (2.15)–(2.17), we have∑

k∈ZZ

w1
kΦ(2x, 2y − k) +

∑
n∈Γ1

v1nS(2x− n) +
∑
m∈Γ2

v1mT (2x− m̃)

=
∑
k∈ZZ

w0
kΦ(x, y − k) +

∑
n∈Γ1

v0nS(x− n) +
∑
m∈Γ2

v0mT (x− m̃). (2.24)

On the other hand, for any G(x) = [g1(x), g2(x), g3(x)]
T ,∑

k∈ZZ

w0
kSH,NG(x, y − k) =

∑
k∈ZZ

w0
k{
∑
j∈ZZ

HjG(2x, 2y − 2k − j) +N(x, y − k)}

=
∑
j∈ZZ

∑
k∈ZZ

w0
kHj−2kG(2x, 2y − j) +

∑
k∈ZZ

w0
kN(x, y − k)

=
∑
j∈ZZ

w1
jG(2x, 2y − j) +

∑
k∈ZZ

w0
kN(x, y − k).

In particular, when G = Φ, since SH,NΦ = Φ, we have∑
k∈ZZ

w0
kΦ(x, y − k) =

∑
j∈ZZ

w1
jΦ(2x, 2y − j) +

∑
k∈ZZ

w0
kN(x, y − k).
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This and (2.24) imply that∑
n∈Γ1

v1nS(2x− n) +
∑
m∈Γ2

v1mT (2x− m̃)

=
∑
k∈ZZ

w0
kN(x, y − k) +

∑
n∈Γ1

v0nS(x− n) +
∑
m∈Γ2

v0mT (x− m̃),

which leads that

L̃1(x) =
∑
k∈ZZ

w1
kΦ0(2x, 2y − k) +

∑
n∈Γ1

v1nS(2x− n) +
∑
m∈Γ2

v1mT (2x− m̃)

=
∑
k∈ZZ

w1
kΦ0(2x, 2y − k) +

∑
k∈ZZ

w0
kN(x, y − k) +

∑
n∈Γ1

v0nS(x− n) +
∑
m∈Γ2

v0mT (x− m̃)

=
∑
k∈ZZ

w0
k(SH,NΦ0)(x, y − k) +

∑
n∈Γ1

v0nS(x− n) +
∑
m∈Γ2

v0mT (x− m̃).

Similarly, we have for ℓ > 1,

L̃ℓ(x) =
∑
k∈ZZ

wℓ
kΦ0(2

ℓx, 2ℓy − k) +
∑
n∈Γ1

vℓnS(2
ℓx− n) +

∑
m∈Γ2

vℓmT (2ℓx− m̃)

=
∑
k∈ZZ

w0
k(SH,N)

ℓΦ0(x, y − k) +
∑
n∈Γ1

v0nS(x− n) +
∑
m∈Γ2

v0mT (x− m̃).

Therefore, if {(SH,N)
ℓΦ0(x)}ℓ converges (to Φ), then L̃ℓ(x) is convergent

with limit
∑

k∈ZZw
0
kΦ(x, y − k) +

∑
n∈Γ1

v0nS(x − n) +
∑

m∈Γ2
v0mT (x − m̃),

as desired.

Next, we consider the limiting surface of a matrix-valued quad/triangle
subdivision scheme. First we recall some results on the limiting surfaces
generated by a conventional matrix-valued subdivision. Assume that {Gk}k
is a matrix-valued refinement mask (for either quad or triangle subdivision)
and ϕ = [ϕ0, · · · , ϕr−1]

T is the associated refinable function vector satisfying
(2.3) with y0 given in (2.4). Let vℓ

k = [vℓk, s
ℓ
k,1, · · · , sℓk,r−1] be the vectors

given by (2.5) from initial control vectors v0
k. Then for sufficiently large

values of ℓ, the refined mesh with vℓk, the first component of vℓ
k, provides

an accurate discrete approximation of the target subdivision surface. More
precisely, let

∑
k v

ℓ
kC0(2ℓx − k) be the polyhedron with vertices vℓk, where

C0(x) is a suitable hat function (again, one can choose C0(x) to be h1(x)
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for quad subdivision and C0(x) to be h2(x) for triangle subdivision). Then
under certain mild condition, the sequence of finer and finer polyhedra gives
an approximation to the limiting surface given by∑

k

{v0kϕ0(x− k) + s0k,1ϕ1(x− k) + · · ·+ s0k,r−1ϕr−1(x− k)}.

The reader refers to [4] for the detailed discussion on the L2 convergence.
Following the discussion in [4], one can show that for each j, 1 ≤ j ≤ r − 1,∑

k s
ℓ
k,jC0(2ℓx − k), the polyhedron with vertices sℓk,j (another component

of vℓ
k), and even

∑
k s

ℓ
k,jD0(2

ℓx − k), where D0 is a compactly supported
function, converge to the zero function.

Now let us consider the limiting surface of a matrix-valued quad/triangle
subdivision. For control vectors v0

k = [v0k, s
0
k,1, · · · , s0k,r−1], let v

ℓ
k = [vℓk, s

ℓ
k,1,

· · · , sℓk,r−1] be the subdivided vectors given by (2.15)–(2.17) after ℓ steps of
a quad/triangle subdivision iterations with mask H = {Hk}k∈ZZ, {Qk}k∈ZZ2 ,
{Pk}k∈ZZ2 and ak,bk,dk. We say this quad/triangle scheme is L∞-convergent
if for any v0

k, there is a continuous function vector F = [F0, F1, · · · , Fr−1]
T on

IR2 such that (2.20) with v0k replaced by v0
k holds. From the above discussion,

the condition that the associated S(x), T (x) satisfy (2.3) with y0 given by
(2.4) implies Fj = 0 for 1 ≤ j ≤ r − 1. Thus as in a conventional matrix-
valued subdivision, when we use matrix-valued masks for quad/triangle sub-
division, we should use the first components v0k of v0

k as the vertices of the
refined meshes. Clearly, such refined meshes can be expressed as

Lℓ(x) :=
∑
k∈ZZ

{
vℓ0,kh0(2

ℓx− (0, k)) + vℓ−1,kh1(2
ℓx− (−1, k)) (2.25)

+vℓ1,kh2(2
ℓx− (1, k − 1

2
))
}
+

∑
n∈Γ1

vℓnh1(2
ℓx− n) +

∑
m∈Γ2

vℓmh2(2
ℓx− m̃).

Next proposition shows that the limiting surface of the sequence of these
finer and finer polyhedra is given as the linear combination of the integer-
shifts of S, T and Φ, where S = [S0, · · · , Sr−1]

T and T = [T0, · · · , Tr−1]
T

are the compactly supported refinable function vectors associated with {Qk}
and {Pk} resp., and Φ = [φ0, · · · , φr−1, f0, · · · , fr−1, g0, · · · , gr−1]

T is the as-
sociated refinable function vector satisfying the nonhomogeneous refinement
equation (2.13). Again, to this regard, we introduce the cascade operator
SH,N associated with (2.13) defined by

SH,NG(x) :=
∑
k∈ZZ

HkG(x− (0, k)) +N(x), (2.26)
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for G(x) = [g1(x), · · · , g3r(x)]T . Clearly if {(SH,N)
nG(x)}n converges (point-

wise or in L2 norm), then its limit is Φ, the refinable function vector satisfies
(2.13). Denote

Φ0(x) := [h0(x), 0, · · · , 0, h1(x+ (1, 0)), 0, · · · , 0, h2(x− (1,−1

2
)), 0, · · · , 0]T

with the 1st, (r+1)-th and (2r+1)-th components to be h0(x), h1(x+(1, 0))
and h2(x− (1,−1

2
)) resp., where h0, h1 and h2 are the hat functions defined

above.

Proposition 2. Suppose a quad/triangle scheme with matrix-valued mask
{Hk}k∈ZZ, {Qk}k∈ZZ2, {Pk}k∈ZZ2 and ak,bk,dk are L∞-convergent. If in addi-
tion, the cascade algorithm sequence {(SH,N)

nΦ0(x)}n converges pointwise,
then the sequence {Lℓ(x)}ℓ defined by (2.25) converges pointwise to

L(x) =
∑
k∈ZZ

[v0
0,k, v

0
−1,k, v

0
1,k]Φ(x, y − k) +

∑
n∈Γ1

v0
nS(x− n) +

∑
m∈Γ2

v0
mT (x− m̃).

(2.27)

Proof. Since this quad/triangle scheme is L∞-convergent, the schemes with
masks {Qk}k∈ZZ2 , {Pk}k∈ZZ2 used for quad vertices and triangle vertices are
also L∞-convergent. Thus, both

∑
n∈Γ1

vℓnS0(2
ℓx − n) −

∑
n∈Γ1

vℓnh1(2
ℓx −

n) and
∑

m∈Γ2
vℓmT0(2

ℓx − m̃) −
∑

m∈Γ2
vℓmh2(2

ℓx − m̃) approach to zero

as ℓ → ∞. Furthermore, for 1 ≤ j ≤ r − 1,
∑

n∈Γ1
sℓn,jSj(2

ℓx − n) and∑
m∈Γ2

sℓm,jTj(2
ℓx− m̃) approach to zero as ℓ → ∞. Therefore, it is enough

to show that

L̃ℓ(x) :=
∑

k∈ZZ[v
ℓ
0,k, v

ℓ
−1,k, v

ℓ
1,k]Φ0(2

ℓx, 2ℓy − k)
+
∑

n∈Γ1
vℓ
nS(2

ℓx− n) +
∑

m∈Γ2
vℓ
mT (2ℓx− m̃),

converges pointwise to L(x) in (2.27). Indeed, with wℓ
k := [vℓ

0,k, v
ℓ
−1,k, v

ℓ
1,k],

ℓ = 0, 1, · · ·, one can obtain as in the proof of Proposition 1 that for ℓ ≥ 1,

L̃ℓ(x) =
∑
k∈ZZ

wℓ
kΦ0(2

ℓx, 2ℓy − k) +
∑
n∈Γ1

vℓ
nS(2

ℓx− n) +
∑
m∈Γ2

vℓ
mT (2ℓx− m̃)

=
∑
k∈ZZ

w0
k(SH,N)

ℓΦ0(x, y − k) +
∑
n∈Γ1

v0
nS(x− n) +

∑
m∈Γ2

v0
mT (x− m̃).

Therefore, if {(SH,N)
ℓΦ0(x)}ℓ converges pointwise (to Φ), then L̃ℓ(x) is also

convergent pointwise with limit
∑

k∈ZZw
0
kΦ(x, y − k) +

∑
n∈Γ1

v0
nS(x− n) +∑

m∈Γ2
v0
mT (x− m̃), as desired.
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3. Polynomial reproduction

Polynomial reproduction, or polynomial preservation is an important
property for a subdivision scheme. Under certain condition, for example,
the stability of the associated refinable function, a scheme’s reproduction
of polynomials of (total) degree at least m is a necessary condition for its
Cm smoothness. Polynomial reproduction of quad/triangle schemes is stud-
ied in [9]. As shown in [10], the result on the polynomial reproduction in
[9] is critical for the smoothness analysis and construction of quad/triangle
schemes. In this section, we study polynomial reproduction of matrix-valued
quad/triangle schemes. Since both schemes are associated with a nonhomo-
geneous refinement equation, we can treat this issue for either scalar-valued
or matrix-valued quad/triangle schemes in a uniform way.

Let {Hk}k, {Qk}k, {Pk}k and ak,bk,dk be the masks for a quad/triangle
scheme, where Hk are 3r × 3r matrices, Qk, Pk and ak,bk,dk are r × r
matrices. Assume that the masks {Qk}k and {Pk}k for quad vertices and
triangle vertices have sum rule of order (at least) m+1. The reader sees the
definition of sum rule order for a 1-D matrix-valued mask below, and refers
to e.g. [1, 7, 6] for the definition of sum rule order for a 2-D matrix-valued
mask. Throughout this section, a Greek letter such as α denotes a multi-
index α = (α1, α2) ∈ ZZ2

+. For α = (α1, α2) ∈ ZZ2
+ and x = (x1, x2) ∈ IR2, xα

denotes the monomial xα1
1 xα2

2 of x of degree |α| := α1 + α2. In the following
uα
n, ũ

α
n are some 1× r vectors.

Let S(x) and T (x) be the associated function vectors. Then both S(x)
and T (x) generate polynomials of total degree up to m:∑

n∈ZZ2

uα
nS(x− n) = xα, x ∈ IR2, |α| ≤ m, (3.1)

and ∑
n∈ZZ2

ũα
nT (x− ñ) = xα, x ∈ IR2, |α| ≤ m, (3.2)

with 1× r row vectors uα
n, ũ

α
n satisfying∑

k∈ZZ2

uα
kQn−2k =

1

2|α|
uα
n,

∑
k∈ZZ2

ũα
kPn−2k =

1

2|α|
ũα
n,n ∈ ZZ2. (3.3)

Next, we obtain conditions for Hk, ak,bk,dk such that V0 defined by
(2.9) reproduces polynomials of total degree m, namely, there are vectors
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Y α(k), |α| ≤ m such that∑
k∈ZZ

Y α(k)Φ(x− (0, k))+
∑
n∈Γ1

uα
nS(x−n)+

∑
m∈Γ2

ũα
mT (x− m̃) = xα, x ∈ IR2,

which is equivalent to that for |α| ≤ m, and for x = (x, y) ∈ IR2 with x ≤ 0∑
k∈ZZ

Y α(k)Φ(x− (0, k)) +
∑
n∈Γ1

uα
nS(x− n) = xα, (3.4)

and for x = (x, y) ∈ IR2 with x > 0,∑
k∈ZZ

Y α(k)Φ(x− (0, k)) +
∑
m∈Γ2

ũα
mT (x− m̃) = xα. (3.5)

Before giving the main result on the polynomial reproduction, we first
have following lemmas which will be used later.

Lemma 1. Let N(x) be the function vector in (2.13) and uα
n, |α| ≤ m,

be the row vectors satisfying (3.1). If there are (row) vectors Y α(k) =
[Y α

1 (k), Y α
2 (k), Y α

3 (k)] such that for n ∈ Γ1,∑
k∈ZZ

{Y α
1 (k)an−(0,2k) + Y α

2 (k)bn−(0,2k)}+
∑
n′∈Γ1

uα
n′Qn−2n′ =

1

2|α|
uα
n, (3.6)

then for x = (x, y) ∈ IR2, x ≤ 0,∑
k∈ZZ

Y α(k)N(x, y − k) +
∑
n∈Γ1

uα
nS(x− n) =

1

2|α|

∑
n∈Γ1

uα
nS(2x− n). (3.7)

Lemma 2. Let N(x) be the function vector in (2.13) and ũα
n, |α| ≤ m,

be the row vectors satisfying (3.2). If there are (row) vectors Y α(k) =
[Y α

1 (k), Y α
2 (k), Y α

3 (k)] such that for m ∈ Γ2,∑
k∈ZZ

{Y α
1 (k)am−(0,2k) + Y α

3 (k)dm−(0,2k)}+
∑

m′∈Γ2

ũα
m′Pm−2m̃′ =

1

2|α|
ũα
m, (3.8)

then for x = (x, y) ∈ IR2, x > 0,∑
k∈ZZ

Y α(k)N(x, y − k) +
∑
m∈Γ2

ũα
mT (x− m̃) =

1

2|α|

∑
m∈Γ2

ũα
mT (2x− m̃). (3.9)
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One can obtain Lemma 1 and Lemma 2 by direct calculations.
Recall that for G(ω) = 1

2

∑
k∈ZZGke

−ikω, where i =
√
−1, and {Gk}k is a

1-D matrix-valued mask with finitely many s × s matrices Gk nonzero, we
say G(ω) has sum rule of order m+1 if there exist 1×s row constant vectors
y0,y1, · · · ,ym with y0 ̸= [0, · · · , 0] such that for j = 0, · · · ,m,

j∑
n=0

(
j
n

)
2nij−nyn(D

j−nG)(0) = yj,

j∑
n=0

(
j
n

)
2nij−nyn(D

j−nG)(π) = 0

where Dj−nG(ω) denotes the (j − n)-th derivative of G(ω).
Let {Hk}k be the 1-D matrix-valued mask for the quad/triangle scheme.

Suppose that H(ω) :=
1

2

∑
k∈ZZ

Hke
−ikω has sum rule of order m + 1 with the

vectors y0
0,y

0
1, · · · ,y0

m. Furthermore, we assume for each j with 1 ≤ j ≤ m,
2jH(ω) has sum rule of order m + 1 − j with the vectors yj

0,y
j
1, · · · ,y

j
m−j.

Define for k ∈ ZZ,

Y 0,l(k) =
l∑

n=0

(
l
n

)
kl−ny0

n, l = 0, 1, · · · ,m,

Y 1,l(k) =
l∑

n=0

(
l
n

)
kl−ny1

n, l = 0, 1, · · · ,m− 1,

...

Y m−1,l(k) =
l∑

n=0

(
l
n

)
kl−nym−1

n , l = 0, 1,

Y m,0(k) = ym
0 .

Lemma 3. Assume that for 0 ≤ j ≤ m, 2jH(ω) has sum rule of order
m + 1 − j with vectors yj

0,y
j
1, · · · ,y

j
m−j. Let Y α(k) be the vectors defined

above. Then∑
k′∈ZZ

Y α(k′)Hk−2k′ =
1

2|α|
Y α(k), k ∈ ZZ, |α| ≤ m, α ∈ ZZ2

+. (3.10)

Since for each j with 0 ≤ j ≤ m, 2jH(ω) has sum rule of order m+1− j
with vectors yj

0,y
j
1, · · · ,y

j
m−j, one has that (see Theorem 3 in [5]) for l =
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0, · · · ,m− j, Y j,l(k) =
∑l

n=0

(
l
n

)
kl−nyj

n satisfies

∑
k′∈ZZ

Y j,l(k′)2jHk−2k′ =
1

2l
Y j,l(k).

Therefore,
∑

k′∈ZZ Y
j,l(k′)Hk−2k′ =

1
2j+lY

j,l(k), which is (3.10).
Now we have our theorem on the polynomial reproduction of a quad/triangle

scheme.

Theorem 1. For a quad/triangle scheme with {Hk}k, {Qk}k, {Pk}k and
ak,bk,dk. Assume both {Qk}k and {Pk}k have sum rule of order m+1 with
vectors uα, ũα, |α| ≤ m, resp. Suppose for 0 ≤ j ≤ m, 2jH(ω) has sum rule
of order m + 1 − j with vectors yj

0,y
j
1, · · · ,y

j
m−j. Let uα

k, ũ
α
k and Y α(k) be

the vectors defined above. If (3.6) and (3.8) hold, then V0 defined by (2.9)
reproduces polynomials of total degree up to m:∑
k∈ZZ

Y α(k)Φ(x− (0, k))+
∑
n∈Γ1

uα
nS(x−n)+

∑
m∈Γ2

ũα
mT (x−m̃) = xα, |α| ≤ m.

Remark 1. Because only finitely many of an,bn,dn are nonzero, for n =
(n1, n2) ∈ Γ1,m = (m1,m2) ∈ Γ2 with −n1,m1 large enough, (3.6) and (3.8)
hold automatically since in the case they are reduced to (3.3). Therefore, we
need only to verify (3.6) and (3.8) for n,m near the y-axis.

To prove Theorem 1, we need the following lemma on the structure of
Y α(k). Such a property of Y α(k) can be found in the literature on sum
rule order of matrix-valued masks. Here we provide its proof for the self-
containing purpose.

Lemma 4. For j = 0, · · · ,m,

Y j,l(k + 1) =
l∑

n=0

(
l
n

)
Y j,n(k). (3.11)

Proof. By the definitions of Y j,l(k), it is easy to get

Y j,l(k + 1) =
l∑

n=0

(
l
n

)
(k + 1)l−nyj

n =
l∑

n=0

(
l
n

) l−n∑
s=0

(
l − n
s

)
kl−n−syj

n

=
l∑

s=0

(
l
s

) s∑
n=0

(
s
n

)
ks−nyj

n =
l∑

s=0

(
l
s

)
Y j,s(k).
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Proof of Theorem 1. For |α| ≤ m, let

Fα(x) =
∑
k∈ZZ

Y α(k)Φ(x− (0, k)) +
∑
n∈Γ1

uα
nS(x− n) +

∑
m∈Γ2

ũα
mT (x− m̃).

Since for x = (x, y) ∈ IR2,
∑

n∈Γ1
uα
nS(x−n) = 0 for x ≥ 0 and

∑
m∈Γ2

ũα
mT (x−

m̃) = 0 for x ≤ 0, (3.7) and (3.9) in Lemmas 1 and 2 can be expressed as∑
k∈ZZ

Y α(k)N(x− (0, k)) +
∑
n∈Γ1

uα
nS(x− n) +

∑
m∈Γ2

ũα
mT (x− m̃)

=
1

2|α|
{
∑
n∈Γ1

uα
nS(2x− n) +

∑
m∈Γ2

ũα
mT (2x− m̃)}.

This, together with the nonhomogeneous refinement equation (2.13) and
Equation (3.10), leads to that

Fα(x) =
∑
k∈ZZ

Y α(k){
∑
k′∈ZZ

Hk′−2kΦ(2x− (0, k′)) +N(x− (0, k))}

+
∑
n∈Γ1

uα
nS(x− n) +

∑
m∈Γ2

ũα
mT (x− m̃)

=
∑
k′∈ZZ

{
∑
k∈ZZ

Y α(k)Hk′−2kΦ(2x− (0, k′))}

+
∑
k∈ZZ

Y α(k)N(x− (0, k)) +
∑
n∈Γ1

uα
nS(x− n) +

∑
m∈Γ2

ũα
mT (x− m̃)

=
∑
k′∈ZZ

1

2|α|
Y α(k′)Φ(2x− (0, k′)) +

1

2|α|
{
∑
n∈Γ1

uα
nS(2x− n) +

∑
m∈Γ2

ũα
mT (2x− m̃)}

=
1

2|α|
Fα(2x).

Since supp(Φ) ⊂ [−3, 3]× (−∞,∞), for x = (x, y) with x < −3, Fα(x) =∑
n∈Γ1

uα
nS(x− n) = xα because of (3.1). Thus for x = (x, y) with x < −3

2
,

Fα(x) =
1

2|α|
Fα(2x) =

1

2|α|
(2x)α = xα.

More general, by the relation Fα(x) =
1

2n|α|
Fα(2

nx), we have that Fα(x) = xα

for x = (x, y) with x < − 3
2n
, n ∈ ZZ+. Therefore, Fα(x) = xα for x = (x, y)

with x < 0.
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One can show similarly that Fα(x) = xα for x = (x, y) with x > 0. Next,
we show that Fα(x) = xα, |α| ≤ m holds for x = (x, y) with x = 0, namely,
F(0,α2)(0, y) = yα2 and F(α1,α2)(0, y) = 0 for α1 > 0.

For x = (x, y) with x = 0, Fα(x) is given by

Fα(0, y) =
∑
k∈ZZ

Y α(k)Φ(0, y − k).

Notice that Φ(0, y) is the solution ϕ(y) of the homogeneous equation

ϕ(y) =
∑
k∈ZZ

Hkϕ(2y − k).

Since H(ω) has sum rule of order m+1 with vectors y0
0,y

0
1, · · · ,y0

m, ϕ and its
integer-shifts ϕ(y− k) reproduce polynomials yα2 , 0 ≤ α2 ≤ m with (vector)

coefficients Y (0,α2)(k), namely,
∑
k∈ZZ

Y (0,α2)(k)ϕ(y − k) = yα2 , see [5, 14, 7, 6].

Therefore, F(0,α2)(0, y) = yα2 , 0 ≤ α2 ≤ m, as desired.
Next, we prove that F(α1,α2)(0, y) = 0 when α1 > 0. To this regard, we

denote Sj
l (y) := F(j,l)(0, y) =

∑
k∈ZZ

Y j,l(k)Φ(0, y − k). What we need to prove

is for each j with 1 ≤ j ≤ m, Sj
l (y) = 0 for l = 0, · · · ,m− j. We will prove

this result by induction on l.
For l = 0, 2jH(ω) has sum rule of orderm+1−j with vectors yj

0, · · · ,y
j
m−j.

By the definition of Y j,l, Y j,0(k) = yj
0. Thus S

j
0(y) =

∑
k∈ZZ

yj
0Φ(0, y − k), and

hence,
Sj
0(y) = Sj

0(y + 1).

Then the Birkhoff Ergodic Theorem implies that there is a constant C such
that

1

n

n−1∑
k=0

Sj
0(2

ky) −→ C, a.e. n → ∞. (3.12)

On the other hand, (3.10) for α = (j, 0) implies

Sj
0(y) =

∑
k∈ZZ

Y j,0(k)Φ(0, y − k) =
∑
k∈ZZ

Y j,0(k)
∑
m∈ZZ

HmΦ(0, 2y − 2k −m)

=
∑
m′∈ZZ

∑
k∈ZZ

Y j,0(k)Hm′−2kΦ(0, 2y −m′) =
∑
m′∈ZZ

2−jY j,0Φ(0, 2y −m′)

= 2−jSj
0(2y).
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Therefore,

1

n

n−1∑
k=0

Sj
0(2

ky) =
2jn − 1

n(2j − 1)
Sj
0(y).

This, together with (3.12) and the fact
2jn − 1

n(2j − 1)
→ ∞ as n → ∞, leads to

that Sj
0(y) = 0.

Next, we show Sj
l (y) = 0 under the induction hypothesis that Sj

l′(y) = 0
for l′ = 0, 1, · · · , l − 1. By (3.11), we have

Sj
l (y + 1) =

∑
k∈ZZ

Y j,l(k)Φ(0, y − k + 1) =
∑
k∈ZZ

Y j,l(k + 1)Φ(0, y − k)

=
∑
k∈ZZ

l∑
n=0

(
l
n

)
Y j,n(k)Φ(0, y − k) =

l∑
n=0

(
l
n

)∑
k∈ZZ

Y j,n(k)Φ(0, y − k)

=
l∑

n=0

(
l
n

)
Sj
n(y) = Sj

l (y).

While, by (3.10), we have

Sj
l (y) =

∑
k∈ZZ

Y j,l(k)Φ(0, y − k) =
∑
k∈ZZ

Y j,l(k)
∑
s∈ZZ

Hs−2kΦ(0, 2y − s)

=
1

2j+l

∑
s∈ZZ

Y j,l(s)Φ(0, 2y − s) =
1

2j+l
Sj
l (2y).

Thus, the Birkhoff Ergodic Theorem again implies Sj
l (y) = 0, namely,

Fj,l(0, y) = 0. Therefore, Fα(x) = xα, |α| ≤ m also holds for x = (0, y). �
Next, let us look at the approximation reproduction of Stam-Loop’s and

Levin-Levin’s schemes. For these two schemes, S(x) and T (x) are resp. the
bi-cubic spline and the C2 quartic box-spline B222 along the triangle mesh
on the left of Fig.2. Each of S(x) and T (x) reproduces polynomials of total
degree up to at least 2. More precisely,∑

k∈ZZ2

uα
kS(x− k) = xα,

∑
k∈ZZ2

ũα
kT (x− k̃) = xα, x ∈ IR2, |α| ≤ 2,

where {
u0,0
k = 1, u1,0

k = k1, u
0,1
k = k2,

u2,0
k = k2

1 − 1
3
, u1,1

k = k1k2, u
0,2
k = k2

2 − 1
3
,

(3.13)
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and
ũ0,0
k = 1, ũ1,0

k = k1, ũ
0,1
2k1,k2

= k2, ũ
0,1
2k1+1,k2

= k2 − 1
2
,

ũ2,0
k = k2

1 − 1
3
, ũ1,1

2k1,k2
= 2k1k2, ũ

1,1
2k1+1,k2

= (2k1 + 1)(k2 − 1
2
),

ũ0,2
2k1,k2

= k2
2 − 1

4
, ũ0,2

2k1+1,k2
= (k2 − 1

2
)2 − 1

4
.

(3.14)

For Stam-Loop’s scheme, one can verify that H(ω) =
1

2

2∑
k=−2

Hke
−ikω (see

[8] for Hk) has sum rule of order 2 with vectors

y0
0 = [1, 1, 1], y0

1 = [0, 0, −1

2
];

and that 2H(ω) has sum rule of order 2 with the vectors

y0
1 = [0, −1, 1].

With un, ũm given in (3.13) and (3.14) resp., one can verify (by tedious
calculation) that (3.6) and (3.8) hold for |α| ≤ 1. Thus Stam-Loop’s scheme
can reproduce 1, x, y.

For Levin-Levin’s scheme, one can show that H(ω) =
1

2

4∑
k=−3

Hke
−ikω (see

[8] again for Hk) has sum rule of of order 3 with the vectors

y0
0 = [1, 1, 1], y0

1 = [0, 0, −1

2
], y0

2 = [−1

3
, −1

3
, 0]; (3.15)

2H(ω) has sum rule of order 2 with the vectors

y1
0 = [0, −1, 1], y1

1 = [0, 0, −1

2
]; (3.16)

and that 4H(ω) has sum rule of order 1 with the vector

y2
0 = [−1

3
,
2

3
,
2

3
]. (3.17)

With un, ũm given in (3.13) and (3.14) resp., one can obtain that (3.6) and
(3.8) hold for |α| ≤ 2. Thus Levin-Levin’s scheme can reproduce constant,
linear and quadratic polynomials.
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Figure 7: Templates of a new scheme for “even” vertices (top-left) and “odd” ver-
tices (top-right) on the y-axis, templates for “even” vertices (bottom-left), and
“odd” vertices (bottom-middle and bottom-right) on right and near the y-axis

4. New quad/triangle schemes

In this section we show that Theorem 1 leads to new schemes.

4.1. Quad triangle scheme reproducing quadratic polynomials

In Fig.7, we provide the templates of a quad/triangle scheme for vertices
near the y-axis are shown in Fig.7, while Catmull-Clark’s scheme for the
vertices on the left of the y-axis is used, and Loop’s scheme for the vertices
on the right and little far from the y-axis is applied. For this scheme, the
associated nonzero Hk are

H0 =
1

48

 32− 96t 18 16
96t 18 0
3 0 18

 , H−1 =
1

48

 18 12 7
3 12 0
5 0 18

 ,

H1 =
1

96

 36 24 32
6 24 0
1 0 12

 , H−2 =
1

48

 48t+ 2 3 1
3− 48t 3 0

3 0 6

 ,

H2 =
1

48

 48t+ 2 3 7
3− 48t 3 0

0 0 0

 , H−3 =
1

96

 0 0 0
0 0 0
1 0 0

 , H3 =
1

48

 0 0 1
0 0 0
0 0 0


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and the corresponding nonzero aj,k, bj,k, dj,k are listed as follows:

a2,0 =
11

96
, a2,1 = a2,−1 =

1

16
, a−2,0 =

3

32
, a2,2 = a2,−2 =

1

192
,

a−2,1 = a−2,−1 =
1

16
, a−2,2 = a−2,−2 =

1

64
, b−2,0 =

9

16
,

b−2,1 = b−2,−1 =
3

8
, b−2,2 = b−2,−2 =

3

32
, b−3,0 =

3

8
, b−3,1 = b−3,−1 =

1

4
,

b−3,2 = b−3,−2 =
1

16
, b−4,0 =

3

32
, b−4,1 = b−4,−1 =

1

16
, b−4,2 = b−4,−2 =

1

64
,

d2,−1 =
59

96
, d2,0 = d2,−2 =

3

8
, d2,1 = d2,−3 =

13

192
,

d3,−1 = d3,−2 =
3

8
, d3,0 = d3,−3 =

1

8
, d4,−1 =

1

8
, d4,0 = d4,−2 =

1

16
.

With H(ω) =
1

2

∑
k∈ZZ

Hke
−ikω, one can show that H(ω), 2H(ω) and 4H(ω)

have sum rule of orders 3, 2 and 1 resp. with vectors y0
0,y

0
1,y

0
2, y

1
0,y

1
1 and

y2
0 given by (3.15), (3.16) and (3.17). We can also verify the conditions (3.6)

and (3.8) hold. Thus by Theorem 1, this new scheme reproduces polynomials
of total degree up to 2.

Compared with Levin-Levin’s scheme, this quad/triangle scheme has two
smaller sizes of templates (at bottom-left and bottom-middle of Fig.7). This
scheme has a free parameter. One may choose a suitable value for t such
that the resulting scheme is C2. For example, using the smoothness estimate
given in [10], for the choice of t = 1

24
, the resulting Φ is at least in C2.4460

after calculating the joint spectral radius ρ17.

4.2. Matrix-valued interpolatory quad/triangle scheme

In this subsection we consider matrix-valued interpolatory quad/triangle
schemes. For each scheme, we use templates in Fig.3 with R, J,K,L,M,N
given in (2.7) for the quad vertices on the left of the y-axis and use those in
Fig.4 with P,B,C,D given in (2.8) for the triangle vertices on the right of the
y-axis. The corresponding masks {Qk} and {Pk} have sum rule of (at least)
order 3, and the associated refinable function vectors S = [S0, S1]

T , T =
[T0, T1]

T reproduce polynomials of total degree up to at least 2 with

u0,0
j,k = [1, 0], u1,0

j,k = [j, 0], u0,1
j,k = [k, 0],

u2,0
j,k = [j2, 1], u1,1

j,k = [jk, 0], u0,2
j,k = [k2, 1];
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and

ũ0,0
j,k = [1, 0], ũ1,0

j,k = [j, 0], ũ0,1
2j,k = [k, 0], ũ0,1

2j+1,k = [k − 1

2
, 0], ũ2,0

j,k = [j2, 1],

ũ1,1
2j,k = [2jk, 0], ũ1,1

2j+1,k = [(2j + 1)(k − 1

2
), 0],

ũ0,2
2j,k = [k2,

3

4
], ũ0,2

2j+1,k = [(k − 1

2
)2,

3

4
].

Example 1. We use the templates in Fig.5 for vertices on the y-axis, where
G,U, V,W, W1, X, Y, Z are 2× 2 matrices. For this scheme, the nonzero Hk,
ak,bk,dk are given in (2.18) and (2.19). We can carefully choose matrices
G,U, V,W,W1, X, Y, Z such that the conditions in Theorem 1 for |α| ≤ 1
are satisfied, and hence, we have a matrix-valued scheme which reproduces
constant and linear polynomials. For example, if we choose

G =

[
1, −4t1 − 2t5 − 2t3
0, −4t1 − 2t6 − 2t3 − 4t2 − 2t4 + 1/4

]
, V =

[
0, t5
0, t6

]

U =

[
0, t1 +

1
2 t3

0, t2 +
1
2 t4

]
,W =

[
0 t1
0 t2

]
,W1 =

[
0, t3
0, t4

]

X =

[
3
8 , 0
t7, t8

]
, Y =

[
1
16 , 0

− 1
16 − 1

2 t7 −1
2 t8 +

1
16

]
, Z =

[
1
8 , 0

−1
8 − t7,

1
8 − t8

]
where tj ∈ IR, then we have an interpolatory scheme which has such a poly-
nomial reproducing property. Indeed, for G,U, V,W,W1, X, Y, Z given above,

H(ω) =
1

2

2∑
k=−2

Hke
−iωk with Hk given in (2.18) has sum rule of order 3 with

vectors

y0
0 = [1, 0, 1, 0, 1, 0], y0

1 = [0, 0, 0, 0,−1

2
, 0], y0

2 = [0, 1, 0, 1,
1

2
, 0],

2H(ω) has sum rule of order 2 with vectors

y1
0 = [0, 0,−1, 0, 1, 0], y1

1 = [0, 0, 0, 0,−1

2
, 0];

and 4H(ω) has sum rule of order 1 with vector

y2
0 = [0, 1, 1, 1, 1, 1].
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Therefore, Y α(k), |α| ≤ 2 defined by

Y 0,0(k) = y0
0 = [1, 0, 1, 0, 1, 0], Y 0,1(k) = ky0

0 + y0
1 = [k, 0, k, 0, k − 1

2
, 0],

Y 0,2(k) = k2y0
0 + 2ky0

1 + y0
2 = [k2, 1, k2, 1, k2 − k +

1

2
, 1],

Y 1,0(k) = y1
0 = [0, 0,−1, 0, 1, 0], Y 1,1(k) = ky1

0 + y1
1 = [0, 0,−k, 0, k − 1

2
, 0],

Y 2,0(k) = y2
0 = [0, 1, 1, 1, 1, 1],

satisfy (3.10). We can verify that the condition (3.6) holds for |α| ≤ 2, and
(3.8) holds for α = (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), but it does not hold for
α = (0, 2). Thus this scheme reproduces linear polynomials.

In [8], where the smoothness of matrix-valued quad/triangle schemes is
studied, we choose some particular tj such that the resulting scheme is C1.

C

y
Y

Y X

Z

X

G

W

W

V

V

U

U

W1

P1

D1

D1

D

D

D

D
C1

C3

B1

B

C

C 2

B 2

B 2

Figure 8: Templates of a new scheme for “even” vertices (top-left) and “odd” ver-
tices (top-right) on the y-axis, templates for “even” vertices (bottom-left), and
“odd” vertices (bottom-middle and bottom-right) on right and near the y-axis

Example 2. We use the templates in Fig.8 for vertices near the y-axis, where

W =

[
0 t1
0 t2

]
,W1 =

[
0, t3
0, t4

]
, V =

[
0, t5
0, t6

]
, U =

[
0, t1 +

1
2 t3

0, −3t1 + 4t5 − 7
2 t3

]

G =

[
1, −4t1 − 2t5 − 2t3
0, 2t1 − 8t5 + 5t3 − 2t2 − t4 − 2t6 + 1/4

]
, X =

[
3
8 , −2t9
t7, t8

]
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Y =

[
1
16 , t9

− 1
16 − t7 7t9 − t8 +

1
8

]
, Z =

[
1
8 , 2t9
−1

8 , −18t9

]
, B1 =

[
11
32 ,

1
32

t10, t11

]

C1 =

[
9
64 , − 1

64
t12, t13

]
, C2 =

[
1
8 , 0
0, 0

]
, C3 =

[
1
64 , − 1

64
−1

8 − t10 − t12,
1
8 − t11 − t13

]

B2 =

[
3
8 , 0

− 111
1024 ,

133
1024

]
, D1 =

[
0, 625

2048
0, t14

]
, P1 =

[
1, −1785

1024
0, −17

32 − 2t14

]
for tj ∈ IR. For this scheme, the corresponding nonzero Hk are

H−2 =

 V, M, C3

W, M, 0
U, 0, C

 ,H−1 =

 X, K, C1

Y, K, 0
Z, 0, B

 ,H0 =

 G, J, B1

W1, J, 0
U, 0, B


H1 =

 X, K, B1

Y, K, 0
0, 0, C

 , H2 =

 V, M, C1

W, M, 0
0, 0, 0

 ,H3 =

 0, 0, C3

0, 0, 0
0, 0, 0


and the corresponding nonzero aj,k,bj,k,dj,k are the same as those in Example
1 except that

a2,0 = C2, d2,0 = d2,−2 = B2, d2,−1 = P1, d2,1 = d2,−3 = D1.

For this scheme, H(ω) =
1

2

3∑
k=−2

Hke
−iωk has sum rule of orders 3 with vectors

y0
0 = [1, 0, 1, 0, 1, 0], y0

1 = [0, 0, 0, 0,−1

2
, 0], y0

2 = [0, 1, 0, 1,
1

4
,
3

4
], (4.1)

2H(ω) has sum rule of order 2 with vectors

y1
0 = [0, 0,−1, 0, 1, 0], y1

1 = [0, 0, 0, 0,−1

2
, 0]; (4.2)

and 4H(ω) has sum rule of order 1 with vector

y2
0 = [0, 1, 1, 1, 1, 1]. (4.3)

Therefore, Y α(k), |α| ≤ 2 defined by

Y 0,0(k) = y0
0 = [1, 0, 1, 0, 1, 0], Y 0,1(k) = ky0

0 + y0
1 = [k, 0, k, 0, k − 1

2
, 0],

Y 0,2(k) = k2y0
0 + 2ky0

1 + y0
2 = [k2, 1, k2, 1, k2 − k +

1

4
,
3

4
],

Y 1,0(k) = y1
0 = [0, 0,−1, 0, 1, 0], Y 1,1(k) = ky1

0 + y1
1 = [0, 0,−k, 0, k − 1

2
, 0],

Y 2,0(k) = y2
0 = [0, 1, 1, 1, 1, 1],
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satisfy (3.10). We can verify that the condition (3.6) and (3.8) holds for
|α| ≤ 2. Thus, this scheme reproduces quadratic polynomials.

Based on this scheme, we construct C2 interpolatory schemes and present
some figures showing the effectiveness of the new schemes in [8].
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Figure 9: Templates of a new scheme for “even” vertices (top-left) and “odd” ver-
tices (top-right) on the y-axis, templates for “even” vertices (bottom-left), and
“odd” vertices (bottom-middle and bottom-right) on right and near the y-axis

Example 3. We use the templates in Fig.9 for vertices near the y-axis, where

W =

[
0 t1
0 t2

]
,W1 =

[
0, t3
0, t4

]
, V =

[
0, 3

4 t1 +
1
8 t4 +

1
4 t2 +

7
8 t3

0, t6

]

U =

[
0, t1 +

1
2 t3

0, t2 +
1
2 t4

]
, G =

[
1, −11

2 t1 −
15
4 t3 −

1
4 t4 −

1
2 t2

0, −4t1 − 2t6 − 2t3 − 4t2 − 2t4 +
1
4

]

X =

[
3
8 , −2t5
0, 16t5 +

1
8

]
, Y =

[
1
16 , t5
− 1

16 −9t5

]
, Z =

[
1
8 , 2t5
−1

8 , −18t5

]

B1 =

[
11
32 ,

1
32

t7, t8

]
, C1 =

[
9
64 , − 1

64
−1

2 t7 −
307
4096 , −1

2 t8 +
241
4096

]

C2 =

[
239
2048 , − 5

2048
−2t9 − 17

512 , −2t10 − 5
512

]
, C3 =

[
1
64 , − 1

64
−1

2 t7 −
205
4096 ,

271
4096 − 1

2 t8

]

C4 =

[
17

4096 ,
5

4096
t9, t10

]
, D1 =

[
0, 625

2048
0, t11

]
, P1 =

[
1, −1785

1024
0, −2t11 − 17

32

]
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for tj ∈ IR. For this interpolatory scheme, the corresponding nonzero Hk are

H−2 =

 V, M, C3

W, M, 0
U, 0, C

 ,H−1 =

 X, K, C1

Y, K, 0
Z, 0, B

 ,H0 =

 G, J, B1

W1, J, 0
U, 0, B


H1 =

 X, K, B1

Y, K, 0
0, 0, C

 , H2 =

 V, M, C1

W, M, 0
0, 0, 0

 ,H3 =

 0, 0, C3

0, 0, 0
0, 0, 0


and the corresponding nonzero aj,k,bj,k,dj,k are the same as those for the
Example 1 except that

a2,0 = C2, a2,2 = a2,−2 = C4, d2,−1 = P1, d2,1 = d2,−3 = D1.

For this scheme, with H(ω) =
1

2

3∑
k=−2

Hke
−iωk, H(ω), 2H(ω) and 4H(ω) have

sum rule of orders 3, 2 and 1 resp. with vectors y0
0,y

0
1,y

0
2, y1

0,y
1
1 and y2

0

given by (4.1), (4.2) and (4.3). We can verify that the condition (3.6) holds
for |α| ≤ 3, and (3.8) holds for α = (0, 0), (1, 0), (0, 1), (2, 0), (0, 2),
(1, 1), (3, 0), (0, 3), but it does not hold for α = (1, 2), (2, 1). Thus, this
scheme reproduces quadratic polynomials.
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