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Abstract

Refinable compactly supported bivariate C2 quartic and quintic spline function vec-
tors on the four-directional mesh are introduced in this paper to generate matrix-valued
templates for approximation and Hermite interpolatory surface subdivision schemes, re-
spectively, for both the

√
2 and 1-to-4 split quadrilateral topological rules. These splines

have their full local polynomial preservation orders. In addition, we extend our study to
parametric approach and use the symmetric properties of our refinable quintic spline com-
ponents as a guideline to reduce the number of free parameters in constructing second order
C2 Hermite interpolatory quadrilateral subdivision schemes with precisely six components.
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1. Introduction

There are, basically, two standard approaches to introducing compactly supported bivariate
(polynomial) splines on some pre-assigned grid partition, namely: (i) convolution along cer-
tain direction sets with an initial (trivial) piecewise polynomial function, and (ii) smoothing
the polynomial pieces across the given grid partition with the zero polynomial outside the
designated supports. (See [2] for an in-depth discussion of these two approaches.)

It is clear that the convolution approach only applies to regular grid partitions with the
direction sets strictly dictated by the grid lines. For example, by adopting the direction set

Xmm := {e1, · · · , e1︸ ︷︷ ︸
m

, e2, · · · , e2︸ ︷︷ ︸
m

},

with e1 = (1, 0), e2 = (0, 1), and the characteristic function B11 of the unit square [0, 1]2

as the initial function, we obtain the Cm−2 tensor-product cardinal B-spline Bmm of degree
2(m− 1). More generally, by introducing other directions, such as e3 = e1 + e2, e4 = e1 − e2,
while keeping the same initial function B11, we have the three-directional and four-directional
box-splines Bk`m and Bk`mn, with direction sets

Xk`m := {e1, · · · , e1︸ ︷︷ ︸
k

, e2, · · · , e2︸ ︷︷ ︸
`

, e3, · · · , e3︸ ︷︷ ︸
m

},

1Research partially supported by NSF Grant #CCR-9988289 and ARO Grant #W911NF-04-1-0298. This
author is also with the Department of Statistics, Stanford University, Stanford, CA 94305
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and
Xk`mn := {e1, · · · , e1︸ ︷︷ ︸

k

, e2, · · · , e2︸ ︷︷ ︸
`

, e3, · · · , e3︸ ︷︷ ︸
m

, e4, · · · , e4︸ ︷︷ ︸
n

},

respectively. Since the convolution operation for generating box splines from the initial refin-
able characteristic function B11 of [0, 1]2 preserves the property of refinability, and since this
operation also increases the smoothness orders (while increasing the polynomial degrees), the
refinement masks of box splines constitute a fundamental tool for designing surface subdivision
schemes. The best known schemes are the Catmull-Clark scheme [1] and the Loop scheme [16],
based on B44 and B222 for the 1-to-4 split topological rule, for the quadrilateral and triangular
subdivisions, respectively.

A drawback of box splines is, however, their unnecessarily larger support sizes. Since
templates with one single ring is somewhat essential for designing weighted averages to take
care of extraordinary vertices, we follow the smoothing approach to introducing bivariate
splines with the desirable order of smoothness and “smallest” support sizes. To achieve the
refinability property, however, we usually require more than one compactly supported spline
function. That is, we must extend scalar subdivision to vector subdivision and to introduce
matrix-valued templates. In our earlier work [5, 6, 7], we considered triangular subdivisions. In
particular, in [5, 6], C1-quadratic, C2-cubic, and C2-quartic splines on the six-directional mesh
were introduced for generating matrix-valued templates for both approximation and Hermite
interpolatory triangular subdivisions for both the

√
3 and 1-to-4 topological rules.

In the present paper, we will focus on quadrilateral subdivisions. Since we will engage
both the

√
2 and 1-to-4 topological rules, we consider the four-directional mesh instead. A

refinable function vector of C2-quartic splines will be introduced for generating approximation
quadrilateral subdivisions, and that of C2-quintic splines will be constructed for generating a
second order Hermite interpolatory quadrilateral subdivision.

Figure 1: Four-directional mesh 42

To be more precise, let42 denote the four-directional mesh with a truncated portion shown
in Fig.1. For integers d and r, with 0 ≤ r < d, let Sr

d(42) be the collection of all (real-valued)
functions in Cr(IR2) whose restrictions on each triangle of the triangulation 42 are bivariate
polynomials of total degree ≤ d. Each function φ in Sr

d(42) is called a bivariate Cr-spline of
degree d on 42. In addition, if φ0, φ1, · · · , φn−1 are compactly supported functions in Sr

d(42)
such that the column vector Φ := [φ0, · · · , φn−1]T satisfies a refinement equation

Φ(x) =
∑

k

PkΦ(Ax− k), x ∈ IR2, (1.1)
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for some n×n matrices Pk with constant entries and an expansive integer matrix A, Φ is called a
refinable function vector with subdivision (refinement) mask {Pk}. For the refinable function
vector Φ to be useful for surface subdivisions, it must satisfy the condition of “generalized
partition of unity”: ∑

k∈ZZ2

wΦ(x− k) ≡ 1, x ∈ IR2, (1.2)

for some constant n-vector w = [w0, w1, · · · , wn−1]. By changing the order of the φ` and
multiplying them with some constant, if necessary, we may and will, assume that

w0 = 1. (1.3)

Analogous to (scalar-valued) refinable functions, a refinable function vector Φ with the
subdivision mask {Pk} gives the local averaging rule

vm+1
k =

∑

j

vm
j Pk−Aj, m = 0, 1, · · · , (1.4)

where
vm

k =: [vm
k , sm

k,1 · · · , sm
k,n−1] (1.5)

are “row-vectors” with n components of points vm
k , sm

k,i, i = 1, · · · , n − 1, in IR3. We will
use the first components vm

k of vm
k as the vertices of the (non-planar) quadrilateral mesh for

the mth iteration. Therefore, for sufficiently large values of m, the vertices vm
k provide an

accurate discrete approximation of the target subdivision surface. In [7], we have shown that
this subdivision surface is precisely given by the series representation:

F (x) =
∑

k

v0
kφ0(x− k) +

∑

k

(
s0
k,1φ1(x− k) + · · ·+ s0

k,n−1φn−1(x− k)
)

,

with [v0
k, s0

k,1, · · · , s0
k,n−1] as coefficients, provided that the iteration process converges. Of

course, the assumption (1.3) is essential for the first components to be used as vertices. As in
[5, 6, 7], we will call the initial row vectors v0

k, “control vectors”, their first components v0
k,

“control vertices”, and the other components s0
k,1, · · · , s0

k,n−1, “shape-control parameters”. The
first components v0

k of the control vectors v0
k are used to control the positions of the (limiting)

subdivision surface. In particular, for interpolatory subdivision schemes, vm
k ,m = 0, 1, · · · , lie

on the subdivision surface. On the other hand, as demonstrated in an independent paper [7],
variation of the other components of v0

k, namely the shape control parameters, could change
the shape of subdivision surfaces dramatically. A preliminary result concerning the choices of
shape control parameters is given in [7].

To describe the 1-to-4 split and
√

2 topological rules that govern how new vertices are
chosen and how they are connected to yield a finer quadrilateral subdivided surface in IR3,
we use a two-dimensional regular quadrilateral mesh as guideline. That is, each (non-planar)
quadrilateral of the subdivided surface in IR3 is represented by a quadrilateral cell ¤. The 1-
to-4 split (dyadic) topological rule for the quadrilateral subdivision is quite simple. See Fig. 2,
where each quadrilateral ¤ in the parametric domain is split into four sub-quadrilaterals. The
dilation matrix A in (1.1) corresponding to the 1-to-4 split topological rule is just 2I2, where
I2 is the 2× 2 identity matrix.
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Figure 2: Topological rule of 1-to-4 split quadrilateral subdivision

Figure 3: Topological rule of
√

2-subdivision

The
√

2-subdivision we consider in this paper for the quadrilateral mesh is analogous to
the

√
3-subdivision for the triangular mesh in [14, 15]. It can be viewed as the 4-8 subdivision

in [19, 20], corresponding to the quincunx dilation matrix B defined by

B =
[

1 1
1 −1

]
. (1.6)

To describe the
√

2 topological rule, the new vertices are represented by the centers of the
quadrilateral cells, while the new edges are obtained by joining the center of each quadrilateral
cell to its four adjacent (old) vertices. To complete describing this topological rule, the old
edges are to be removed (see the graphs on the left and in the middle of Fig.3). Hence, if
the regular quadrilateral mesh is the mesh of IR2 generated by grid lines x = i, y = j, where
i, j,∈ ZZ, as shown on the left of Fig.3, then before removing the old edges as dictated by the√

2 topological rule, we have the four-directional mesh 42 as shown in the middle of Fig.3.
Observe that if the topological rule is applied for a second time, then we arrive at the 2-dilated
quadrilateral mesh shown on the right of Fig.3 of the original quadrilateral mesh shown on the
left of Fig.3. That is why it is called

√
2-subdivision. Note that the quincunx dilation matrix

B has the property that 42 ⊂ B−142.
In Sections 2 and 3, we will construct a C2 quartic-spline function vector and a C2 Hermite

interpolatory quintic-spline function vector, respectively, that are refinable with both dilation
matrices B and 2I2. The polynomial preservation of these splines and the sum rule orders of
the corresponding masks will be studied. In Section 4, we will use the parametric approach to
construct second order C2 Hermite interpolatory quadrilateral 1-to-4 split and

√
2 subdivision

schemes with precisely six components. Here we remark that in our companion work [8],
an innovative concept of interpolatory vector subdivision was introduced. By modifying the
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refinable C2-quartic splines constructed in this paper, we are able to construct C2 interpolatory
vector quadrilateral 1-to-4 split and

√
2 subdivision schemes with C2-quartic splines as the basis

functions (see [8] for details). In this paper, we only consider the schemes for regular vertices
(with valence 4) for the quadrilateral mesh. The matrix-valued schemes for extraordinary
vertices could be designed so that the smoothness conditions for the vector subdivision surfaces
developed in our paper [7] are satisfied.

Before moving on to the next section, let us recall some relevant results concerning sum
rule orders of subdivision masks. For n ≥ 2, let Φ = [φ0, · · · , φn−1]T , with bounded suppφ`

and φ` ∈ L2(IRs) (φ` not necessarily piecewise polynomial functions), ` = 0, . . . , n− 1, satisfy
the refinement equation (1.1) for some finite sequence {Pk} of r × r matrices. Let

P (z) := | detA|−1
∑

k

Pkzk

be the two-scale (matrix Laurent polynomial) symbol of Φ. Then P (z) is said to possess the
property of sum rule of order m, if there exist row n-vectors yα, |α| < m with y0,0 6= 0, such
that the trigonometric polynomial vector t(ω) =

∑
β∈ZZ2

+,|β|<m tβe−iβω defined by

(−iD)αt(0) = yα, |α| < m,

satisfies
Dβ(t(AT ω)P (e−iω))|ω=2πA−T ωh

= δh,0D
βt(0), |β| < m, (1.7)

where ωh, with ω0 = 0 and 0 ≤ h ≤ |det A| − 1, are the representers of ZZ2/AT ZZ2. See [12, 10]
for the method of computation of yα. It is well-known (see, for example [12]) that if P (z)
satisfies the sum rule of order m, then Φ has the polynomial reproduction property of order m
(or total degree m − 1), and in fact, the vectors yα can be used to give the following explicit
polynomial reproduction formula:

xα =
∑

k

{ ∑

β≤α

(
α

β

)
kα−β yβ

}
Φ(x− k), x ∈ IR2, |α| < m. (1.8)

Here and throughout, we use the following standard notations: for x = (x1, x2) ∈ IR2 and
multi-indices α = (α1, α2), β = (β1, β2) ∈ ZZ2

+, xα := xα1
1 xα2

2 ; Dα stands for the differential
operator Dα1

1 Dα2
2 ; |α| = α1 + α2; β ≤ α means that β1 ≤ α1, β2 ≤ α2; and for β ≤ α,(

α
β

)
:=

(
α1

β1

)(
α2

β2

)
. For a point x = (x1, x2) in IR2 or a multi-index α = (α1, α2), and a 2 × 2

matrix M , the notations Mx and Mα should be understood as MxT and MαT .

2. Refinable C2-quartic splines

It is not difficult to construct the (unique) bivariate C2 quartic spline φ0 with minimum
support, by applying the C2-smoothing formula (see [2, Theorem 5.1]), with uniqueness being
governed by the normalization condition φ0(0) = 1, as shown in Fig.4, where Bézier coefficients
that are obviously equal to zero are not displayed. This function is, however, not refinable.
We therefore need other compactly supported basis functions to formulate refinable function
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Figure 4: Support and Bézier coefficients of φ0 ∈ S2
4(42)

vector. To do so, we introduce:

φ1 := φ0(B−1·), (2.1)

φ2 := φ0(
·
2
)− 1

8
{φ0(· − (1, 0)) + φ0(·+ (1, 0)) + φ0(· − (0, 1)) + φ0(·+ (0, 1))}

− 1
16
{φ0(· − (1, 1)) + φ0(·+ (1, 1)) + φ0(· − (1,−1)) + φ0(·+ (1,−1))}, (2.2)

where B is the quincunx matrix in (1.6). See Fig.5 and Fig.6 for the supports and Bézier coef-
ficients of φ1 and φ2, respectively, where only portions of the Bézier coefficients are displayed,
since the remaining non-zero Bézier coefficients of φ1 and φ2 follow from the symmetry.

Let Φd := [φ0, φ1, φ2]T . Then we will see that the function vector Φd is refinable with
the quincunx dilation matrix B. The nonzero matrix coefficients Lk of the corresponding
subdivision mask L := {Lk} are given by

L0,0 =
1
4




0 4 0
0 0 4
0 1 2


 , L1,0 = L0,1 = L−1,0 = L0,−1 = H,

L1,1 = L1,−1 = L−1,1 = L−1,−1 = I, (2.3)

where

H :=
1
8




0 0 0
1 0 0
0 1 2


 , I :=

1
32




0 0 0
2 0 0
1 0 0


 . (2.4)

The subdivision mask L = {Lk} immediately yields the matrix-valued templates for the
local averaging rule of the C2 approximating

√
2-subdivision scheme, as shown in Fig.7. It

is easy to verify that the so-called “transition operator” TL associated with this subdivision
mask L = {Lk} above satisfies Condition E, namely, 1 is a simple eigenvalue of TL and other
eigenvalues of TL are smaller than 1 in modulus. Therefore, this scheme is convergent in L2

norm. (The reader is referred to [18, 4] for the convergence discussion, to [12] for the matrix
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Figure 5: Support and Bézier coefficients of φ1 ∈ S2
4(42)

representation of the transition operator, and to [13] for the Matlab routines for the calculation
of the matrix representation of TL.)

Remark 1. It turns out that φ0, φ1 are the two splines (up to normalization constants)
with the minimal support and quasi-minimal support constructed in [17] and [3], respectively.
In [17], another spline with minimal support, denoted as f0

4 in [2], was constructed. See Fig.8
for the support and Bézier coefficients of f0

4 , where, again, only a portion of Bézier coefficients
are displayed due to the symmetry of f0

4 . These three splines φ0, φ1, f
0
4 , generate the space

S2
4(42) (see e.g, [2]). Since 42 ⊂ B−142 and 42 ⊂ (2I2)−142, [φ0, φ1, f

0
4 ]T is refinable with

both the quincunx matrix B and 2I2 as dilation matrices, and the corresponding subdivision
masks will provide the subdivision schemes. The reason we prefer using φ2 over f0

4 is that it
has better symmetric property around the origin 0, and therefore the mask of [φ0, φ1, φ2]T yields
more symmetric templates for subdivision than that associated with the mask of [φ0, φ1, f

0
4 ]T .

We have the following result.
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Theorem 1. For φ0 ∈ S2
4(42), with Bézier coefficients shown in Fig.4, and φ1, φ2 defined by

(2.1) and (2.2) respectively, the following statements hold.

(i) Φd = [φ0, φ1, φ2]T is refinable with the quincunx dilation matrix B, with nonzero matrix
coefficients Lk of the corresponding subdivision mask {Lk} given by (2.3);

(ii) The two-scale symbol L(z) of Φd satisfies the sum rule of order 3, with the vectors for
(1.7) given by

y0,0 =
1
12

[1, 2, 4], y1,0 = y0,1 = [0, 0, 0],

y2,0 = y0,2 =
1
18

[1,−1,−2]; y1,1 = [0, 0, 0]; (2.5)
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(iii) Φd locally reproduces all bivariate quartic polynomials, with

xα =
∑

k

{ ∑

β≤α

(
α

β

)
kα−β yβ

}
Φd(x− k), |α| ≤ 3, α = (3, 1), α = (1, 3),

x4 =
∑

k1,k2

{k4
1y0,0 + 6k2

1ỹ2 + ỹ4} Φd(x− k1, y − k2), (x, y) ∈ IR2,

y4 =
∑

k1,k2

{k4
2y0,0 + 6k2

2ỹ2 + ỹ4} Φd(x− k1, y − k2), (x, y) ∈ IR2,

x2y2 =
∑

k

{ ∑

0≤β≤(2,2)

(
(2, 2)

β

)
k(2,2)−β ỹβ

}
Φd(x− k),x = (x, y) ∈ IR2,

where yβ, |β| ≤ 2, are given by (2.5), and

y3,0 = y2,1 = y1,2 = y0,3 = [0, 0, 0], (2.6)

ỹ2 =
1

144
[1, 2,−20], ỹ4 =

1
2
[−1, 1, 0],

ỹβ = yβ, |β| ≤ 1, β = (1, 1), β = (1, 2), β = (2, 1);

ỹ2,0 = ỹ0,2 =
1
48

[5,−6,−4], ỹ2,2 =
1
24

[−1, 2, 0].

Remark 2. The vectors yα in Theorem 1 (ii) above for the sum rule order of L(z) are not
unique due to the linear dependence of φ0, φ1, φ2 governed by

∑

k

(7φ0 − 10φ1 + 4φ2)(x− k) = 0.

The reader is referred to [12, 10] for the discussion on the issue of uniqueness of yα.

Proof of Theorem 1. Statement (i) follows from direct calculations. More precisely,
we compute the Bézier representation of φ2(B−1·) by applying the C4-smoothing formula in
[2, Theorem 5.1], and then write down the linear equation of φ2(B−1·), formulated as (finite)
linear combinations of φn(· − k), k ∈ ZZ2, at the Bézier points for 0 ≤ n ≤ 2. The (unique)
solution, arranged in 1×3 vector formulation, gives the third rows of the mask {Lk} in (i). The
first and second rows of the mask {Lk} follow from the following refinement relation derived
from the definitions of φ1 and φ2, namely:

φ0(B−1·) = φ1,

φ1(B−1·) = φ0(
·
2
) = φ2 +

1
8
{φ0(· − (1, 0)) + φ0(·+ (1, 0)) + φ0(· − (0, 1)) + φ0(·+ (0, 1))}

+
1
16
{φ0(· − (1, 1)) + φ0(·+ (1, 1)) + φ0(· − (1,−1)) + φ0(·+ (1,−1))}.

We obtain (ii) by solving the equations from (1.7) for yα by using Maple.
The reproduction of xα for |α| ≤ 2 in (iii) follows from the sum rule order 3 of the L(z),

while that of xα for |α| = 3, 4 in (iii) follows from direct calculations using Maple. ¦
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Clearly, Φd = [φ0, φ1, φ2]T is also refinable with dilation matrix 2I2. In this case the
refinement symbol, denoted by R(z), is given by R(z) = L(e−iBω)L(z), where L(z) is the
refinement symbol of Φd with the quincunx dilation matrix B and

e−iBω := (e−i(ω1+ω2), e−i(ω1−ω2)).

One can easily obtain the following nonzero matrix coefficients Rk of R(z).

R0,0 =
1
16




0 0 16
0 4 8
1 2 8


 , R1,0 = R0,1 = R−1,0 = R0,−1 = J,

R1,1 = R−1,1 = R1,−1 = R−1,−1 = K, R2,0 = R0,2 = R0,−2 = R−2,0 = L,

R2,1 = R1,2 = R−1,−2 = R−2,−1 = R2,−1 = R−2,1 = R−1,2 = R1,−2 = M, (2.7)
R2,2 = R−2,−2 = R−2,2 = R2,−2 = N,

where

J :=
1
16




2 0 0
0 2 4
1 2 4


 , K :=

1
32




2 0 0
1 4 0
1 2 8


 ,

L :=
1
32




0 0 0
0 2 0
1 1 0


 , M :=

1
64




0 0 0
0 0 0
1 2 4


 , N :=

1
64




0 0 0
0 0 0
1 0 0


 .

It is easy to verify with Maple that R(z) satisfies sum rule of order 4 with the vectors yα,
|α| ≤ 3, for (1.7) given by (2.5) and (2.6). In conclusion, we have the following theorem.

Theorem 2. For φ0 ∈ S2
4(42), with Bézier coefficients shown in Fig.4, and φ1 and φ2 defined

by (2.1) and (2.2) respectively, the following statements hold.

(i) Φd = [φ0, φ1, φ2]T is refinable with dilation matrix 2I2, with nonzero matrix coefficients
Rk of the corresponding subdivision mask {Rk} given by (2.7);

(ii) The two-scale symbol R(z) of Φd with dilation matrix 2I2 satisfies the sum rule of order
4, with the vectors yα, |α| ≤ 3, for (1.7) given by (2.5) and (2.6);

(iii) Φd locally reproduces all bivariate quartic polynomials as shown in Theorem 1 (iii).

K
M

J

MNN

L

L

L

L

N N

0,0R

M

J

K

K

M

K

Figure 9: Matrix-valued templates for C2 approximating 1-to-4 split subdivision scheme

Again, the subdivision mask {Rk} immediately yields the matrix-valued templates for
the local averaging rule of a C2 approximating 1-to-4 split subdivision scheme, as shown in
Fig.9. By applying the Matlab routines in [13], it is easy to verify that the transition operator
associated with the subdivision mask {Rk} satisfies Condition E. Therefore, this scheme is
convergent in L2 norm.
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3. Refinable Hermite Interpolatory C2-quintic splines

In this section we will construct ϕ0, · · · , ϕn−1 ∈ S2
5(42) with n = 9 to be discussed later such

that Φe := [ϕ0, · · · , ϕn−1]T is refinable and satisfies the second order Hermite interpolatory
properties:
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Figure 10: Supports and Bézier coefficients of ϕ0 (left) and 5ϕ1 (right), with ϕ2(x, y) := ϕ1(y, x)

[
Φe ∂

∂x
Φe ∂

∂y
Φe ∂2

∂x2
Φe ∂2

∂x∂y
Φe ∂2

∂y2
Φe

]
(k) = δk,0

[
I6

0

]
, k ∈ ZZ2. (3.1)

Let k, l, m, n be arbitrary positive integers and set Ω := [k, k + m + 1]× [l, l + n + 1]. Let
S2

5(Ω ∩ 42) denote the restriction of S2
5(42) on Ω. Then by applying the dimension formula

in [2, Theorem 4.3], we have

dimS2
5(Ω ∩42) = 9mn + 18(m + n) + 33. (3.2)

Since the coefficient of mn is 9, we investigate the existence of 9 compactly supported basis
functions whose integer translates restricted to Ω span all of S2

5(Ω ∩ 43). In search of these
functions, we first find ϕ0, · · · , ϕ5 that have the second order Hermite interpolatory properties,
namely, Φf := [ϕ0, · · · , ϕ5]T satisfies

[
Φf ∂

∂x
Φf ∂

∂y
Φf ∂2

∂x2
Φf ∂2

∂x∂y
Φf ∂2

∂y2
Φf

]
(k) = δk,0I6, k ∈ ZZ2. (3.3)

The Bézier coefficients and supports of these six components ϕ0, · · · , ϕ5 of Φf are shown in
Fig.10 and Fig.11, where those that are obviously equal to zero are not displayed. Unfortu-
nately, Φf is not refinable with either the quincunx B or 2I2 as dilation matrix. We therefore
need three additional components, ϕ6, ϕ7, ϕ8. Their Bézier coefficients and supports are shown
in Fig.12. Consequently, we have a total of 9 spline components that constitute the refinable
function vector

Φe := [ϕ0, · · · , ϕ8]T .
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It is clear that Φe has the second Hermite interpolatory property (3.1). We will see that Φe

is refinable with the quincunx matrix B (hence, also refinable with 2I2) as dilation matrix as
shown in Theorem 3, and {ϕ`(· − k)|Ω : k ∈ ZZ2, 0 ≤ ` ≤ 8} indeed spans S2

5(Ω ∩ 42), which
will be seen in Proposition 2 below. However, we will also see that ϕ0, · · · , ϕ8, are linearly
dependent, as follows.

Proposition 1. ϕ0, · · · , ϕ8 are linearly dependent, with
∑

k

(ϕ6 − ϕ7)(x− k) = 0, x ∈ IR2. (3.4)

Furthermore, this dependency identity describes the only linearly dependency relationship among
ϕ0, · · · , ϕ8.

(−1, 0) (1, 0)

0

0

1/4

0
0

1/16

1/8 1/8

1/2

1/4 1/4

1/4

1/8

1/16

1/8

1/16

1/32

1/4

1/8

1/4

0 0

1/4

1/2

1/8

1/2

1/4

1/8

1/16

1/4

1/4

0

0 1

1/2

1/8

1/16

1/4

1/8

1/4

1/2

1/8

1/16

1/32

1/16

1/8

0

1/32

1/8

1/16

1/32

1/2

1/2

1

1/2

(−1, 0) (1, 0)0 0

0

1

1

1

1/4

1/4

1/4

−1/4

−1/4

−1/2

−1

−1

1/2

1/2

1/4

1

1

1

1

1/4

1/2

0

0

−1

−1/2

−1

−1

−1

−1

−1/4

−1

−1/2

−1/4

0

0

1

1

0

0

1/2

1/4

1/2

1/2

1

1

1−1−1/2

−1/4

−1/2

−1

−1

−1−1/2

−1/4

Figure 11: Supports and Bézier coefficients of 20ϕ3 (left) and 40ϕ4 (right), also ϕ5(x, y) := ϕ3(y, x)

Proof. Let F :=
∑

k(ϕ6 − ϕ7)(· − k). Since F (· − j) = F for any j ∈ ZZ2, it is enough
to show that F (x) = 0 for x ∈ [0, 1] × [0, 1], which is easily verified by evaluating F at each
Bézier point in [0, 1]× [0, 1].

To show that (3.4) governs the only linearly dependency relationship, we set

8∑

`=0

∑

k

c`
kϕ`(x− k) = 0.

For an arbitrary j = (j1, j2) ∈ ZZ2, consider x in [j1, j1 + 1] × [j2, j2 + 1]. The Hermite
interpolatory properties (3.1) of Φe leads to that c`

j = 0, ` = 0, · · · , 5. By evaluating the above
equation at the Bézier points, we have c8

j = 0, and

c6
j = c6

j+(1,0) = c6
j+((0,1) = c6

j+(−1,0) = c6
j+((0,−1)

= −c7
j+((0,0) = −c7

j+((1,0) = −c7
j+((0,1) = −c7

j+((1,1).

Therefore the linearly dependency relationship among ϕ0, · · · , ϕ8 is governed by (3.4). ¦
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Figure 12: Supports and Bézier coefficients of 20ϕ6 (left), 20ϕ7 (right top), and 20ϕ8 (right bottom)

Proposition 2. Let G = [k, k + m + 1]× [l, l + n + 1]. Then span{ϕ`(· −k), 0 ≤ ` ≤ 8,k ∈
G ∩ ZZ2}=S2

5(G ∩42).

Proof. One can easily verify that for each 0 ≤ ` ≤ 5 and ` = 7, the number of φ`(· − k)
whose supports overlap with Ω is equal to (m + 2)(n + 2), while the cardinalities of φ6(· − k)
and φ8(·−k) whose supports overlap with Ω are equal to (m+3)(n+3)−4, and (m+1)(n+1),
respectively. Hence, the total number of φ`(· − k), 0 ≤ ` ≤ 8, whose supports overlap with Ω
is given by

7(m + 2)(n + 2) + {(m + 3)(n + 3)− 4}+ (m + 1)(n + 1)
= 9mn + 18(m + n) + 34,

which is exactly 1 plus dimS2
5(Ω ∩ 42) in (3.2). This fact, along with the linear dependency

property in Proposition 1, assures the validity of Proposition 2. ¦
To show that Φe is refinable with dilation matrix B, we follow the proof of Theorem 1 (i) to

compute the Bézier representations of ϕ`(B−1·), ` = 0, · · · , 8, by applying the C5-smoothing
formula in [2, Theorem 5.1], and to write down the linear equations of ϕ`(B−1·), formulated
as (finite) linear combinations of ϕn(· − k), k ∈ ZZ2, at the Bézier points for 0 ≤ n ≤ 8.
The (unique) solution for these equations, arranged in 9 × 9 matrix formulation, gives the
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subdivision mask {Pk} of Φ. The nonzero matrix coefficients of {Pk} are given by

P0,0 =
1
16




16 0 0 0 0 0 20 260 70
0 8 8 0 0 0 8 0 16
0 8 −8 0 0 0 0 0 0
0 0 0 4 4 4 1 1 2
0 0 0 8 0 −8 0 0 0
0 0 0 4 −4 4 0 1 0
0 0 0 0 0 0 −2 0 −2
0 0 0 0 0 0 0 −4 −2
0 0 0 0 0 0 0 0 0




, (3.5)

P0,1 =
1

128




0 0 0 320 0 0 0 0 0
24/5 8 −24 −32 −32 96 0 72 0

−24/5 8 24 32 −32 −96 0 −72 0
1/5 1 −1 4 −4 4 0 3 0

−4/5 0 4 16 0 −16 0 −12 0
1/5 −1 −1 4 4 4 0 3 0

−2/5 −2 2 −8 8 −8 0 −6 0
8/5 0 −8 −32 0 32 0 24 0

0 0 0 0 0 0 0 0 0




, (3.6)

P0,−1 =
1

128




0 0 0 320 0 0 160 0 560
−24/5 8 −24 32 32 −96 0 −72 0

24/5 8 24 −32 32 96 64 72 128
1/5 −1 1 4 −4 4 0 3 0

−4/5 0 −4 16 0 −16 0 −12 0
1/5 1 1 4 4 4 8 3 16

−2/5 −2 −2 −8 −8 −8 −16 −6 −16
8/5 0 8 −32 0 32 0 24 −16

0 0 0 0 0 0 0 0 0




, (3.7)

P1,0 =
1

128




0 0 0 0 0 320 0 0 0
24/5 −24 8 96 −32 −32 0 72 0
24/5 −24 −8 96 32 −32 0 72 0
1/5 −1 1 4 −4 4 0 3 0
4/5 −4 0 16 0 −16 0 12 0
1/5 −1 −1 4 4 4 0 3 0

8 0 0 32 0 32 −16 152 −16
8/5 −8 0 32 0 −32 0 24 0

32/5 0 0 −128 0 −128 0 32 0




, (3.8)
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P−1,0 =
1

128




0 0 0 0 0 320 160 0 560
−24/5 −24 8 −96 32 32 0 −72 0
−24/5 −24 −8 −96 −32 32 −64 −72 −128

1/5 1 −1 4 −4 4 0 3 0
4/5 4 0 16 0 −16 0 12 0
1/5 1 1 4 4 4 8 3 16

0 0 0 0 0 0 0 0 0
8/5 8 0 32 0 −32 0 24 −16

0 0 0 0 0 0 0 0 0




, (3.9)

P−1,−1 =
[
09×6, u1, 09×1, u2

]
, (3.10)

P1,−1 =




06×9

u3

02×9


 , P2,−1 =




06×9

u4

02×9


 , P2,1 =




06×9

u5

02×9


 (3.11)

where

u1 =
1
16

[20, −8, 0, 1, 0, 0, 0, 0, 0]T ,

u2 =
1
8
[35, −8, 0, 1, 0, 0, 0, −1, 0]T

u3 =
1
8
[0, 0, 0, 0, 0, 0, −1, 0, −1],

u4 =
1
64

[−1/5, 1, −1, −4, 4, −4, 0, −3, 0] ,

u5 =
1
64

[−1/5, 1, 1, −4, −4, −4, 0, −3, 0] .

Let us summarize the above discussions in the following theorem.

Theorem 3. For ϕ` ∈ S2
5(42), 0 ≤ ` ≤ 8, with Bézier coefficients shown in Figs.10-12, the

following statements hold.

(i) Φe = [ϕ0, · · · , ϕ8]T satisfies the second-order Hermite interpolatory condition (3.1);

(ii) Φe = [ϕ0, · · · , ϕ8]T is refinable with the quincunx dilation matrix B, with nonzero matrix
coefficients Pk of the corresponding subdivision mask {Pk} given above;

(iii) The two-scale symbol P (z) of Φe with dilation matrix B satisfies the sum rule of order
4, with the vectors for (1.7) given by

y0,0 = [1, 0, 0, 0, 0, 0, 2, 13, 5], y1,0 = [0, 1, 0, 0, 0, 0, 1, 0,
5
2
],

y0,1 = [0, 0, 1, 0, 0, 0, 1, 0,
5
2
], y2,0 = [0, 0, 0, 2, 0, 0,

1
3
,
1
6
, 1],

y1,1 = [0, 0, 0, 0, 1, 0,
1
2
, 0,

5
4
], y0,2 = [0, 0, 0, 0, 0, 2,

1
3
,
1
6
, 1], (3.12)

y3,0 = y0,3 =
1
4
[0, 0, 0, 0, 0, 0, 0, 0, 1],

y2,1 = y1,2 =
1
6
[0, 0, 0, 0, 0, 0, 1, 0, 3];
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(iv) Φe locally reproduces all bivariate quintic polynomials, with

xα =
∑

k

{ ∑

β≤α

(
α

β

)
kα−β yβ

}
Φe(x− k), |α| ≤ 4, α = (4, 1), α = (1, 4),

x5 =
∑

k1,k2

{ ∑

0≤j≤4

(
5
j

)
k5−j

1 ỹj

}
Φe(x− k1, y − k2), (x, y) ∈ IR2,

y5 =
∑

k1,k2

{ ∑

0≤j≤4

(
5
j

)
k5−j

2 ỹj

}
Φe(x− k1, y − k2), (x, y) ∈ IR2,

x3y2 =
∑

k

{ ∑

0≤β<(3,2)

(
(3, 2)

β

)
k(3,2)−β ỹβ

}
Φe(x− k), x = (x, y) ∈ IR2,

x2y3 =
∑

k

{ ∑

0≤β<(2,3)

(
(2, 3)

β

)
k(2,3)−β ỹβ

}
Φe(x− k), x = (x, y) ∈ IR2,

where yβ, |β| ≤ 3, are given by (3.12), and

y4,0 = y0,4 = 0, y3,1 = y1,3 =
1
8
[0, 0, 0, 0, 0, 0, 0, 0, 1], (3.13)

y2,2 =
1
6
[0, 0, 0, 0, 0, 0, 0, 1, 0]; (3.14)

ỹj = yj,0, 0 ≤ j ≤ 3,

ỹ4 =
1
15

[0, 0, 0, 0, 0, 0,−1, 1, 0],

ỹβ = yβ, |β| ≤ 3,

ỹ3,1 = ỹ1,3 = 0, ỹ2,2 =
1
18

[0, 0, 0, 0, 0, 0,−1, 1, 3].

We obtain (iii) in the above theorem by solving the equations from (1.7) for yα by using
Maple. The polynomial reproduction formulas of xα for |α| ≤ 3 in (iv) follow from the sum rule
order 4 of the P (z), while those of xα for |α| = 4, 5 in (iv) follow again from direct calculations
by using Maple.

2,−1P

P2,1 0,−1PP1,0

1,−1P

−1,−1

P

−1,0P0,1P

0,0
P

Figure 13: Matrix-valued templates for C2 Hermite interpolatory
√

2-subdivision scheme

The subdivision mask {Pk} immediately gives the matrix-valued templates for the local
averaging rule of a C2

√
2-subdivision scheme, as shown in Fig.13. Again, by applying the
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Matlab routines in [13], it is easy to verify that the transition operator associated with this
subdivision mask satisfies Condition E. Hence, this scheme is convergent in L2 norm.

From template in the middle of Fig.13, it might seem to the reader that this scheme is not
interpolatory. The fact that it is interpolatory is a result of the special structures of P0,0, P−1,−1,
and P1,−1. More precisely, let vm

0 = [vm
0 , sm

0,1, · · · , sm
0,8] be a specific control vector associated

with the vertex vm
0 in IR3 after mth iterations (recall that we use the first column, a row 3-

vector, of a control vector as the position of the vertex in IR3). Let vm
j = [vm

j , sm
j,1, · · · , sm

j,8],
j = 1, · · · 4, be the control vectors associated with the vertices vm

j adjacent to vm
0 . Then by

the matrix-valued template of local averaging rule in the middle of Fig.13, the control vector
vm+1

0 after (m + 1)th iterations is given by

vm+1
0 = [vm

0 ,
1
2
(sm

0,1 + sm
0,2),

1
2
(sm

0,1 − sm
0,2),

1
4
(sm

0,3 + 2sm
0,4 + sm

0,5), (3.15)

1
4
(sm

0,3 − sm
0,5),

1
4
(sm

0,3 − 2sm
0,4 + sm

0,5), ∗, ∗, ∗].

We remark that that the first column vm+1
0 of vm+1

0 is still vm
0 , i.e., the positions of old vertices

are never changed in the course of the iteration process. So indeed the templates in Fig.13 give
an interpolatory scheme. In fact from (3.15), we also find that the second to the sixth columns
of vm+1

0 , which are related to the normals and curvatures of the surfaces, are independent of
the control vectors associated with the adjacent vertices.

More generally, without the Hermite interpolatory constraint, a vector subdivision scheme
is said to be interpolatory, if the vertices in the coarse net, the net before the subdivision is
carried out, are also vertices in the finer net. In other word, vm

Ak = vm−1
k for all m = 1, 2, · · · .

This definition is perhaps the most natural extension to vector subdivision. In an independent
work [8], it is shown that if a subdivision mask {Pk} with dilation matrix A satisfies

P0,0 =




1 ∗ · · · ∗
0 ∗ · · · ∗
...

... · · · ...
0 ∗ · · · ∗


 , PAj =




0 ∗ · · · ∗
...

... · · · ...
0 ∗ · · · ∗


 , j ∈ ZZ2\{(0, 0)}, (3.16)

then this subdivision scheme is interpolatory. Observe that the particular matrices P0,0, P−1,−1, P1,−1

given by (3.5), (3.10), (3.11) satisfy (3.16) with A = B. Therefore, the scheme with the tem-
plate shown in Fig.13 is interpolatory.

Again, Φe = [ϕ0, · · · , ϕ8]T is also refinable with dilation matrix 2I2, and its refinement
symbol, denoted by G(z), is given by G(z) = P (e−iBω)P (z), where P is the refinement symbol
of Φe with the quincunx dilation matrix B. By direct calculations by using Maple, one can
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easily obtain the nonzero matrix coefficients Gk of G(z ) given by

G−1,−1 =
1

128




0 0 0 80 −80 80 120 20 260
−24/5 −8 −16 0 −32 −32 −48 −64 −104
−24/5 −16 −8 −32 −32 0 −48 −64 −104

1/5 0 1 0 0 4 2 3 4
4/5 2 2 0 8 0 8 10 16
1/5 1 0 4 0 0 2 3 4

0 0 0 0 0 0 0 0 0
8/5 4 4 0 16 0 8 20 20

0 0 0 0 0 0 0 0 0




,

G−1,0 =
1
64




32 60 0 0 0 −360 60 360 130
−10 −14 0 24 0 24 −24 −126 −52

0 0 10 0 24 0 24 0 52
1 1 0 −4 0 −6 1 12 2
0 0 −2 0 −4 0 −4 0 −8
0 0 0 0 0 2 1 0 2
0 0 0 0 0 0 0 0 −1
0 0 0 0 0 24 4 4 10
0 0 0 0 0 0 0 0 0




,

G−1,1 =
1

128




0 0 0 80 80 80 0 20 20
−24/5 −8 16 0 32 −32 0 −64 0

24/5 16 −8 32 −32 0 0 64 8
1/5 0 −1 0 0 4 0 3 0

−4/5 −2 2 0 8 0 0 −10 0
1/5 1 0 4 0 0 0 3 1

−2/5 −2 0 −8 0 0 0 −6 −2
8/5 4 −4 0 −16 0 0 20 0

0 0 0 0 0 0 0 0 0




,

G0,−1 =
1
64




32 0 60 −360 0 0 60 360 130
0 10 0 0 24 0 24 0 52

−10 0 −14 24 0 24 −24 −126 −52
0 0 0 2 0 0 1 0 2
0 −2 0 0 −4 0 −4 0 −8
1 0 1 −6 0 −4 1 12 2
0 0 0 0 0 0 0 0 −1
0 0 0 24 0 0 4 4 10
0 0 0 0 0 0 0 0 0




,

G0,0 =
1
64




64 0 0 0 0 0 60 780 130
0 32 0 0 0 0 24 0 52
0 0 32 0 0 0 24 0 52
0 0 0 16 0 0 1 1 2
0 0 0 0 16 0 4 0 8
0 0 0 0 0 16 1 1 2
0 0 0 0 0 0 8 0 12
0 0 0 0 0 0 4 4 10
0 0 0 0 0 0 0 0 4




,
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G0,1 =
1

128




64 0 −120 −720 0 0 0 720 20
0 20 0 0 −48 0 0 0 0

20 0 −28 −48 0 −48 0 252 8
0 0 0 4 0 0 0 0 0
0 4 0 0 −8 0 0 0 0
2 0 −2 −12 0 −8 0 24 1
0 12 0 48 0 0 16 4 24
0 0 0 48 0 0 0 8 0
0 0 0 0 0 0 0 0 8




,

G1,−1 =
1

128




0 0 0 80 80 80 0 20 20
24/5 −8 16 0 −32 32 0 64 8

−24/5 16 −8 −32 32 0 0 −64 0
1/5 0 1 0 0 4 0 3 1

−4/5 2 −2 0 8 0 0 −10 0
1/5 −1 0 4 0 0 0 3 0

−2/5 0 −2 0 0 −8 0 −6 −2
8/5 −4 4 0 −16 0 0 20 0

0 0 0 0 0 0 0 0 0




,

G1,0 =
1

128




64 −120 0 0 0 −720 0 720 20
20 −28 0 −48 0 −48 0 252 8
0 0 20 0 −48 0 0 0 0
2 −2 0 −8 0 −12 0 24 1
0 0 4 0 −8 0 0 0 0
0 0 0 0 0 4 0 0 0
0 0 12 0 0 48 16 4 24
0 0 0 0 0 48 0 8 0
0 0 0 0 0 0 0 0 8




,

G1,1 =
1

128




0 0 0 80 −80 80 0 20 0
24/5 −8 −16 0 32 32 0 64 0
24/5 −16 −8 32 32 0 0 64 0
1/5 0 −1 0 0 4 0 3 0
4/5 −2 −2 0 8 0 0 10 0
1/5 −1 0 4 0 0 0 3 0

8 0 0 16 0 16 16 96 24
8/5 −4 −4 0 16 0 0 20 0

32/5 0 0 −64 0 −64 0 80 8




,

G−2,−1 = G−2,0 =
[
09×8, w1

]
, G−1,−2 = G0,−2 =

[
09×8, w2

]
,

G0,2 = G2,0 =
[
09×8, w3

]
,

G1,2 =




06×9

w4

02×9


 , G1,3 =




06×9

w5

02×9


 , G2,1 =




06×9

w6

02×9


 , G3,1 =




06×9

w7

02×9


 ,
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where

w1 =
1

128
[20, −8, 0, 1, 0, 0, 0, 0, 0]T ,

w2 =
1

128
[20, 0, −8, 0, 0, 1, 0, 0, 0]T ,

w3 =
1
64

[0, 0, 0, 0, 0, 0, −1, 0, 0]T ,

w4 =
1
64

[0, 0, −6, 0, 0, 24, 0, 2, −1] ,

w5 =
1
64

[−1/5, 0, 1, 0, 0, −4, 0, −3, 0] ,

w6 =
1
64

[0, −6, 0, 24, 0, 0, 0, 2, −1] ,

w7 =
1
64

[−1/5, 1, 0, −4, 0, 0, 0, −3, 0] .

It is easy to verify by using Maple that G(z) satisfies the sum rule of order 5 with the
vectors yα, |α| ≤ 4, for (1.7) given by (3.12), (3.13), and (3.14). Therefore, we have the
following theorem.

Theorem 4. For φ` ∈ S2
5(42), 0 ≤ ` ≤ 8, with Bézier coefficients shown in Figs.10-12, the

following statements hold.

(i) Φe = [ϕ0, · · · , ϕ8]T is refinable with dilation matrix 2I2, with nonzero matrix coefficients
Gk of the corresponding subdivision mask {Gk} given above;

(ii) The two-scale symbol G(z) of Φe with dilation 2I2 satisfies the sum rule of order 5, with
the vectors yα , |α| ≤ 4 for (1.7) given by (3.12), (3.13) and (3.14);

(iii) Φe locally reproduces all bivariate quintic polynomials as shown in Theorem 3 (iv).

Again, the subdivision mask {Gk} immediately yields the matrix-valued templates for
the local averaging rule of a C2 1-to-4 split subdivision scheme, as shown in Fig.14. It is
easy to verify by applying the Matlab routines in [13] that the transition operator associated
with this subdivision mask satisfies Condition E. Therefore, this scheme is convergent in L2

norm. As discussed above, this is also an interpolatory scheme due to the special structures of
G0,0, G2,0, G0,2, G−2,0 and G0,−2, namely, G2k satisfy (3.16) with A = 2I2.

Remark 3. For fixed-point computer implementation, one should use the subdivision masks
corresponding to the refinable spline vector

[ϕ0, 5ϕ1, 5ϕ2, 20ϕ3, 40ϕ4, 20ϕ5, 20ϕ6, 20ϕ7, 20ϕ8],

which are {UPkU−1} (with quincunx dilation matrix B) and {UGkU−1} (with dilation matrix
2I2), where

U := diag (1, 5, 5, 20, 40, 20, 20, 20, 20).

In this regard, all the entries of 27UPkU−1 and 27UGkU−1 are integers.
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0,1

G

G2,1

G−2,−1

G

0,−2

G
1,0 −1,0

G

G1,2

G−1,−2

0,2

G

0,0
G

−2,0

0,−1

2,0G

G

GG
1,−1

G

G

−1,−1

−1,1
1,1

G

G

3,1

G1,3

Figure 14: Matrix-valued templates for C2 Hermite interpolatory 1-to-4-subdivision scheme

4. Two/four-point matrix-valued templates

The matrix-valued templates in Fig.13 or Fig.14 for C2 surface display are not 4-point tem-
plates. In the following, we give a second-order Hermite interpolatory

√
2-subdivision scheme

with the 4-point template as shown in Fig.15, and give a second-order Hermite interpolatory
1-to-4 split subdivision scheme with the 4-point template for the new vertices in the faces and
2-point templates for the new vertices in the edges as shown in Fig.16. The square matrices
P#

k and G#
k in Fig.15 and Fig.16, respectively, have dimension 6.

P
#

0,0

P0,−1

−1,0
#

P
#

0,1 P

P
#

1,0
#

Figure 15: Matrix-valued templates for C2 Hermite interpolatory
√

2-subdivision scheme

For the
√

2-subdivision, to compute the (possibly nonzero) matrices P#
0,0, P

#
1,0, P

#
0,−1, P#

−1,0, P
#
1,0,

we impose the sum rule (1.7) of order 4 to the two-scale symbol (denoted by P#(z) =
1
2

∑
k P#

k zk) along with
[
yT

0,0 yT
1,0 yT

0,1

1
2
yT

2,0 yT
1,1

1
2
yT

0,2

]
= I6 (4.1)

(which is a necessary condition for second-order Hermite interpolation). Hence, by following
the symmetric properties of the C2-quintic basis functions ϕ`, ` = 0, · · · , 5, namely, those of
the Bézier coefficients of ϕ0, ϕ1 (in Fig.10) and ϕ4, ϕ5 (in Fig.11), as well as the properties
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G

G
#

0,0

G
#

1,0
G

#

−1,0

#

G
#
0,1

G
#

0,−1 −1,−1

G
#
−1,1

#
1,−1

G

G
#

1,1

Figure 16: Matrix-valued templates for C2 Hermite interpolatory 1-to-4 split subdivision scheme

of ϕ2(x, y) = ϕ1(y, x) and ϕ5(x, y) = ϕ3(y, x), the mask {P#
k } is reduced to a 13-parameter

family (refer also to [9] for the discussion on the symmetry of the refinable function vectors).
By enforcing the symbol to satisfy the sum rule of order 6, or equivalently (1.7) for m = 6, the
mask is further reduced to the following 2-parameter family. We carried out this computation
by using Maple.

P#
0,0 =

1
4
diag (4,

[
2 2
2 −2

]
,




1 1 1
2 0 −2
1 −1 1


),

P#
1,0 =




1
4 −15

16 0 −4(6t1 + t2) 0 4(6t1 + t2)
5
64 − 7

32 0 −(6t1 + 2t2 + 3
8) − 3

16 6t1 + 2t2
5
64 − 7

32 0 −(6t1 + 2t2 + 3
8) 3

16 6t1 + 2t2
1

128 − 1
64 0 −(t1 + 1

16) − 1
32 t1

1
64 − 1

32 0 −(t2 + 1
8) 0 t2

1
128 − 1

64 0 −(t1 + 1
16) 1

32 t1




,

P#
−1,0 = M1P

#
1,0M1, P#

0,1 = M2P
#
1,0M3, P#

0,−1 = M1M2P
#
1,0M1M3,

where

M1 = diag (1, −1, −1, 1, 1, 1), M2 = diag (1, 1, −1, 1, −1, 1), (4.2)

M3 = diag (1,
[

0 1
1 0

]
,




0 0 1
0 1 0
1 0 0


). (4.3)

By applying the Matlab routines in [13] for the Sobolev exponent formula for Φ# derived
in [11], free parameters t1, t2 can be adjusted to achieve certain desirable smoothness. For
example, by selecting

t1 = −0.04991030661181, t2 = −0.10095791152136,

the corresponding refinable function vector Φ# is assured to be in the Sobolev space W 3.61979(IR2).
For fixed-point computer implementation, one may even choose

t1 = −1/8, t2 = −1/16,

for which Φ# is in W 3.60875(IR2). In either case, the corresponding refinable function vector
Φ# is in C2 and it has the second order Hermite interpolatory property (3.3).
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For the 1-to-4 split, to compute the (possibly nonzero) matrices G#
0,0, G

#
1,0, G

#
−1,0, G

#
0,1, G

#
0,−1,

G#
1,1, G

#
−1,1, G

#
−1,−1, G

#
1,−1, we impose the sum rule (1.7) of order 4 to the two-scale symbol (de-

noted by G#(z) = 1
4

∑
k G#

k zk) along with yα, |α| < 3 given by (4.1) and

y3,0 = y2,1 = y1,2 = y0,3 = [0, · · · , 0].

With the symmetric properties discussed above, the mask {G#
k } is reduced to a 16-parameter

family, given by

G#
0,0 = diag (1, 1

2 , 1
2 , 1

4 , 1
4 , 1

4),

G#
1,0 =




1
2 12s2 − 3

4 0 0 0 0
2s1 + 1

8 6s2 − 1
8 0 2s3 − 1

4 0 2s4

0 0 1
4 0 2s5 − 1

4 0
s1 s2 0 s3 0 s4

0 0 1
16 0 s5 0

0 0 0 0 0 1
8




,

G#
1,1 =




1
4 12s7 − 3

8 12s7 − 3
8 0 4(s16 − s15) + 1

4 0
2s6 + 1

16 6s7 − 1
16 2(s8 + s13)− 1

16 2s9 − 1
8 s16 2s11

2s6 + 1
16 2(s8 + s13)− 1

16 6s7 − 1
16 2s11 s16 2s9 − 1

8
s6 s7 s8 s9 s10 s11

s12 s13 s13 s14 s15 s14

s6 s8 s7 s11 s10 s9




,

G#
−1,0 = M1G

#
1,0M1, G#

0,1 = M3G
#
1,0M3, G#

0,−1 = M1M3G
#
1,0M1M3,

G#
−1,−1 = M1G

#
1,1M1, G#

1,−1 = M2G
#
1,0M2, G#

−1,1 = M1M2G
#
1,0M1M2,

where M1,M2,M3 are the matrices in (4.2).
Again, the free parameters sj can be adjusted to achieve certain desirable properties. For

example, one may choose

[s1, s2, · · · , s16] = − 1
256

[−4, 4, 16, 4, 16, −2, 2, 4, 8, −1, 2, −4, 4, 8, 4, −8],

to assure that the corresponding refinable function vector is in the Sobolev space W 3.5−ε(IR2)
for any ε > 0. Hence, the corresponding refinable function vector is C2 and satisfies the second
order Hermite interpolatory property (3.3). Again, we used the Matlab routines in [13] to find
the Sobolev smoothness exponent.
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