PARAMETRIZATIONS OF SYMMETRIC ORTHOGONAL MULTIFILTER BANKS
WITH DIFFERENT FILTER LENGTHS

QINGTANG JIANG

ABSTRACT. This paper is devoted to a study of parametrizations of symmetric orthogonal multifilter
banks with different fileter lengths. To construct symmetric orthogonal multifilter banks {H, G} which
generate balanced multiwavelets of multiplicity 2, the fileter lengths of the rows of H, regarded as the
scalar filters, must be different. In this paper complete factorizations of symmetric orthogonal multifilter
banks with different fileter lengths are obtained. Based on these factorizations, construction of balanced

multiwavelets with good approximation and smoothness properties are discussed.

1. INTRODUCTION

A column vector of functions ¥ = (¢1,43)7 is called an orthonormal multiwavelet of multi-
plicity 2 if 41(2/z — k),42(2'z — k), j,k € Z, form an orthonormal basis of L2(R). The construction
of multiwavelets is associated with the construction of scaling functions. A column vector of functions
® = (41, ¢2)7 is called an orthonormal scaling function if the integer shifts ¢ (- — k), ¢2(-— k), k € Z,
form an orthonormal basis of their closed linear span in L?(R) and ® is refinable, i.e., ® satisfies the
refinement equation
(1.1) B(z) =2 02z — k),

keZ
for some 2 x 2 matrices hy. A necessary condition for ® to be an orthonormal scaling function is that
H(w) = Y,z hre ™ is a matrix Conjugate Quadrature Filter (CQF) (see e.g., [3]), i.e.,

(1.2) HwH (w)+Hw+nH(w+7) =1, we€][-mn),

where H* denotes the Hermitian adjoint of H and I denotes the 2 x 2 identity matrix. We use 09
to denote the 2 x 2 zero matrix. If ® is an orthonormal scaling function with matrix filter H, and

G=) gre " is a matrix filter satisfying

(1.3) Hw)G*(w) + Hw+m)G"(w+7) =02, w € [—m,7),
(1.4) GwG W +Gw+ )G (w+n) =L, we/[-mmn),
then ¥ defined by
(1.5) U(z):=2) grd(2z — k),

ke
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is an orthonormal multiwavelet (see [6]). In this case, we say H, G generate the scaling function ® and
multiwavelet U. The pair {H, G} is called a multifilter bank. For matrix filters H, G, if they satisfy
(1.2), (1.3) and (1.4), then {H, G} is said to be orthogonal. For a matrix filter H, it is called casual if
h;, =0,k <0, and is a finite impulse response (FIR) filter if there exists a positive integer N such
that hy = 0,|k| > N.

Let H,G be two FIR matrix filters. Suppose H is also casual, i.e., the coefficients h; of H satisfy
h, =0if £ <0 or k£ > N for some positive integer N. Let 7i1 be the matrix defined by

(1.6) T = (2A2i—j)1-N<ij<N—1,

where A; is the 4 x 4 matrix defined by

N
-Aj = Z hn—j ® hy,

k=0
and h,_;®h, denotes the Kronecker product of h,_;, h,. Then the solution ® of (1.1) is an orthonormal
scaling function and ¥ defined by (1.5) is an orthonormal multiwavelet if and only if {H, G} is orthogonal
and H(0) and Ty satisfy Condition E (see [9]). A matrix B is said to satisfy Condition E if the
spectral radius of B is 1, 1 is the only eigenvalue on the unit circle and 1 is simple. Therefore to
construct orthonormal multiwavelets, we need only to find orthogonal matrix filters H, G with H(0) and
Tu satisfying Condition E.

The general procedure to construct multiwavelets with good approximation and smoothness properties
is: first we construct a matrix filter H such that H is a matrix CQF with H(0) and 7Tg satisfying
Condition E and the corresponding scaling function ® having good approximation and smoothness
properties, then we construct the matrix filter G such that G satisfies (1.3) and (1.4). Then ¥ defined
by (1.5) is an orthonormal multiwavelet with good approximation and smoothness. In practice, in the
design of filter banks with some special properties, the parametrization of the FIR orthogonal systems
are of fundamental importance (see [18], [17] and references therein). Based on the lattice structures of
M x M casual FIR orthogonal systems, a parametric expression for casual FIR orthogonal multifilter
banks was obtained in [9]. In [13] and [9], the explicit expressions for a group of symmetric casual FIR
orthogonal multifilter banks were presented, and in [10] the completeness of the M—channel symmetric
orthogonal multifilter banks was discussed.

Symmetric (linear phase) property of filters are very important in image applications. For symmetric
filters, symmetric extension transforms of the finite length signals can be carried out, which will improve
the rate—distortion performance in image compression (see e.g., [16], [19]). For a multifilter bank, since
the input are vector signals, it is also required that the corresponding multiwavelet be balanced (see
[11]). A multiwavelet ¥ is said to be balanced if the corresponding scaling function ® satisfies ®(0) =
(1,1)T /y/2. (In this case, we also say that ® is balanced.) The symmetric multifilter banks provided in
[13] and [9] will generate scaling functions ® and multiwavelets ¥ with all components of ®, ¥ having
the same symmetric center and the first components of ®, ¥ symmetric and the other components
antisymmetric. Thus ®(0) = (1,0)7 and ¥ cannot be balanced. It was shown in [10] that there is
no orthonormal scaling function ® = (41, #2)7 and orthonormal multiwavelet ¥ = (¢1,2)7 such that

¢j,%; have the same symmetric center n + % for some integer n and that both ¢; and ¢2 have the
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same symmetry. Thus to construct symmetric and balanced ® = (¢1, $#2)T, ¢1, p2 must have different
symmetry centers. The purpose of this paper is to give a parametrization of orthogonal filters for such
types of orthonormal scaling functions and multiwavelets.

In Section 2, we will discuss symmetric orthogonal multifilter banks with corresponding scaling func-
tion ® and multiwavelet ¥ such that ¢; and ¢o are symmetric at v — 1/2 and -y respectively, and 11, ¥
are symmetric/antisymmetric at -y for some v € Z;\{0}. Equivalently we discuss casual FIR orthogonal
filters ,H, , G satisfying (see e.g., [10])

(1.7)

_ 22 0
p (2v+1) [ ]7H(—w)

0 1 0 =z 0 so z

1 0] — H(w), =@ l s1 0 ]7G(_w)[; 0 ] — G(w),

where z = €, sy = £1,59 = +1. We provide in Section 2 a complete factorization of the casual FIR
orthogonal filters ,H, ., G with properties (1.7).

For a matrix filter , H, it is easily verified that ,H satisfies (1.7) if and only if the coefficients h; of
(1.8) [hg,hy,- -+ ,hoy_1,hoy, hoy ] =

~H have the form of
ag ai as as a2 ai a 0 0 0 0 O
bo by || be b3 |7 Tl bg by || bs b3 || by by || bg O]

for some a;,b; € Rand h; = 0,5 <0,j > 2y + 1. Note that when we regard the rows of [hg,--- ,hay;1]

as two scalar filters, they are symmetric and their lengths are both odd integers but not the same (4y —3
and 4v + 1, respectively). We find that when we construct the scaling functions and multiwavelets based
on these filters, we cannot get smooth scaling functions and multiwavelets with small supports. For

these reasons, we also discuss orthogonal filters ,H, ,G with the coefficients h; of ,H having the form

(]‘9) [h07h1a"' 7h2’y—17h2’77h2’y+1] —

ay a1 as a3 ai ap 0 0 0 O
bo by || be b3 |7 | bs ba || bs b || b1 by ||’

for some aj,b; € R, hj = 0,7 < 0,7 > 27+ 1, and the coefficients g; of ,G having a similar form. The

corresponding scaling functions ® and multiwavelets ¥ are not symmetric or antisymmetric. However as
scalar filters, the rows of [hg,hy,--- ,hoy_1,hoy, hoy 1] and [go, 81, - ; 82y—1, 82y, 82y+1] are symmetric
and antisymmetric (linear phase filters) respectively, which is more important than the symmetry of
®, U in image applications. This type of multifilter banks was introduced in [14] and some examples
are constructed there. Clearly the filter lengths of the rows of [hg,hy,---,hy,, ha,11] are both even
integers but not the same. In Section 3 we provide a complete factorization of these orthogonal filters.
In Section 4, we construct some scaling functions and multiwavelets based on the parametric expressions
of the multifilter banks provided in Sections 2, 3. We find we can construct smooth scaling functions

and multiwavelets with small supports using the filters provided in Section 3.
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In this paper, we use O(2) to denote the set consisting of all 2 x 2 orthogonal matrices. Any element

in O(2) can be written as ry or —ryDy for some 0 € R, where

i 1
(1.10) - [ cosf sind ] . Dy= [ 0 ] .

—sinf cos@ 0 -1

For a positive integer n, let I,, denote n x n identity matrx, and let J,, denote the n x n exchange matrix
with ones on the anti-diagonal. For s > 0, we use W*(R) to denote the Sobolev space consisting of all
functions f with (1 + |w|2)%f(w) € L?(R). In this paper all scaling functions, multiwavelets, and the

filter coeflicients of multifilter banks discussed are real.

2. SYMMETRIC ORTHOGONAL MULTIFILTER BANKS WITH ODD FILTER LENGTHS

In this section we discuss the parametrization of the orthogonal filters ,H, G satisfying (1.7). In
(1.7), the choice of s; = +1 (or s; = —1) means that 1; is symmetric (or antisymmetric) at (y + 1)/2.
The next proposition shows that we can only construct ¥ with one component symmetric and the other

component antisymmetric.

Proposition 2.1. Assume that the orthogonal multifilter bank {,H,,G} generates the scaling function
® and multiwavelet V. If \H, G satisfy (1.7), then s1s2 = —1, i.e., one component of ¥ is symmetric

and other component is antisymmetric.

Proof. By (1.7),

0 & 0 LG(0) —,G(m) || 0 Dy LG(0) G(r)

20 [7H<o> —7H<w)] [12 0 ]:[711(0) 7H<w>]
0 0 59

Since {yH,,G} is orthogonal, the matrix in the left side of the above equation is unitary. Hence it is

invertible. Thus we have

w0 ["YH(O) +H(m) ] [I2 0 ] lyH(O) ~H(m) ]_1

0 s1 O =
+G(0) LG(m) 0 —-Dg +G(0) G(m)
0 0 S92
This implies that the trace of diag(Is, s1,s2) equals that of diag(Is, —Dg). Therefore 2 + s1 + s9 = 2.
That is 5159 = —1. O
In the following we choose s; = 1,s9 = —1. In this case one can check directly that ,G satisfies (1.7)

if and only if the coefficients g; of ,G have the form

c2 C3 Co c1 cg O
dy ds |7 | —dy —di || =dy O ||’

for some c¢j,d; € R and g; = 0,5 < 0,5 > 2y + 1. Thus the rows of [go,81, " ,82y—1,82y,82y+1] are

Chy C
do di

(2.1) (80,81, + 827, 82y+1] = ”

symmetric and antisymmetric respectively.
As the M x M casual FIR orthogonal systems, it is expected that ,H,,G can also be factorized as

Hw) | o 2 y—1HY (w) PR
22) Le(w) ] =L -B+B7) [HGV(M) ] R



PARAMETRIZATION OF SYMMETRIC MULTIFILTER BANKS 5

where {, 1H",, 1G"} is a casual FIR orthogonal multifilter bank, and B is a 4 x 4 projection matrix,
i.e., B satisfies

B” =B, B?=B.
If ,H satisfies (1.7), or equivalently ,H has the form (1.8), then the first row of ,H is a polynomial of
—iw

e~ of degree not greater than 2r — 1. The entries of +—1HY,,_1G" are polynomials of e~ of degree

possible not smaller than 2r — 1. Thus in order that ,H have the form (1.8), B shall have the form of
B_ 00 ’
0 b

(2.3) by = v;t(v;t)T, where v;t = g(sinﬁ,cos 6,+1)T.

where b is a 3 x 3 projection matrix.

Denote

That is by defined by (2.3) is either vjj (v4)? or v, (v; ). By a direct calculation, one has the following

lemma.

Lemma 2.1. Let by and ry be the matrices defined by (2.3) and (1.10) respectively. Then
((13 — bg)z_1 + bg) diag(1,1,-1) ((13 — bg)z_1 + bg) = z_ldiag(rg, 1)dz’ag(z_1, 1, l)diag(rg, —1).

Denote

0 0 1 0 0 0
1393:[ ], Ro:=|0 rp 0|, J2z):=] 27"

0 bo 0 0 1 0 0 L
Lemma 2.2. Let Vy(z) be the matriz polynomial of z=' defined by
(2.4) Vy(z) := (I4 — By + Byz H)RypJ(2).
Then
(i) Vo(2)Vo(z)" =14;
(ii) 2z 'diag(z,1,D0)Vy(z 1) diag(z 1,1,Dg) = Vy(2).

Proof. (i) follows from the fact that By is a projection matrix and Ry is a unitary matrix; and (ii) follows

from Lemma 2.1 and a direction calculation. O

If casual FIR orthogonal filters ,H, , G can be written as

(25) [ ’YH(w) ] — VG’Y(ZQ) [ ’Y*lH(w)

_ tw
7 z_e’

1G(w) y-1G(w)
for some casual FIR orthogonal filter bank {,_1H,,_1G}, then by Lemma 2.2, ,H, ,G satisfy (1.7) if

and only if ,_1H, ,_1G satisfy (1.7) for v — 1. For casual FIR orthogonal filters 1H, G, if they satisfy
(1.7) for y = 1, then the first row of {H is a polynomial of e~™ of degree not greater than 1. Thus

1H, 1G shall not be written in the form of (2.5). Instead, we write them in the following form

1 H(w) 'H(w) ]

20 l G(w) 1G(w)

] = (I4 — By, + By, 2 %)Ry, [
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for some casual FIR orthogonal filters ¢H, ¢G. One can show that ;H, G satisfy (1.7) for v = 1 if and
only if gH, (G satisfy

H(— H(w) |
(2.7) diag(1, 22,1, 1) | B9 | Giag(1,2) = | OB |
0G(~w) 0G(w) |
In this way, it is reasonable to expect that ,H, G can be factorized as
H(w) . | oH(w)
2.8 v =V (%) Vg _,(2%)--- Vg, (2*) (14 — By, + By, 2 ?)R, :
(2.8) [ G() ] 0,(2°)Vao,_,(2°) 6:(2°)(Is — By, + By, 2" ") Ry, | 0G(w)

where z = ¢, and oH, (G are casual FIR orthogonal filters satisfying (2.7).
The next lemma gives the casual FIR orthogonal filters ¢H, (G satisfying (2.7).

Lemma 2.3. A casual FIR filter bank {(H, (G} is orthogonal and satisfies (2.7) if and only if it is
given by

(2.9) oH(w) =5

1 [aocosﬁo(l-l-z_l) V25sin 6,
2

1| —agsinfy(l+271) v2cosby
-1 70G(w) = 5 -1 ’
0 a1V2z az(l—27") 0

where z = ¥, a; = +1,0 < j < 2, Oy € [-,T).

Proof. If ¢H, oG are casual and FIR, then ¢H, (G satisfy (2.7) if and only if

a(l+2z71 b d(l1+2z71) e
) = | ‘TP - [T e
0 cz fA—=2z"4 0
for some a,b,c,d,e, f € R. The orthogonality of ¢H, (G is equivalent to f = :}:%,c = :t@ and
2 2b
a V2 being a 2 x 2 orthogonal matrix, i.e.,
2d /2e
b 1| £cosby sinb 1 0
R melnn
d e 2| Fsinfy cosb 0 V2
Therefore ¢H, (G are given by (2.9). O

Clearly if ¢H, (G are casual FIR orthogonal filters given by (2.9), then ,H,,G defined by (2.8) are
casual, FIR and orthogonal, and satisfy (1.7). The next theorem shows that any such a multifilter bank
can be factorized in the form of (2.8).

Theorem 2.1. A casual FIR multifilter bank {,H,,G} is orthogonal and satisfies (1.7) with s1 =
1,89 = —1 if and only if it can be factorized into the product of (2.8) for some 0,1 < k < r with ¢H, (G
given by (2.9) for some 6y.

Proof. “<” The direct part follows from Lemmas 2.2, 2.3.

“=" For the proof of the converse part, we show the above factorization by induction on the order
7. We show that any casual FIR orthogonal multifilter bank {,H, .G} satisfying (1.7) for v > 2 can be
factorized as (2.5) for some casual FIR orthogonal filter bank {,_1H,,_1G} satisfying (1.7) for v — 1,
and also that any casual FIR orthogonal bank {1H, G} satisfying (1.7) for v = 1 can be factorized as
(2.6) for some oH, (G given by (2.9).
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For v =1, it is easily verified that
~1di — i Dy) = (I, — By, + By, z "R
z lag(za 1aDO)(I4 By, + Belz)Rﬂldlag(laza O) - ( 4 0, + Bg, 2 ) 01+

This together with the facts that By, is a projection matrix and that Ry, is a unitary matrix implies
that o H, (G defined by

oHw) | - g, )L | HO)
loG@OI_%a4 Ber +Bo, 7 )Ra) llemo]
(2.10) = (Rj, — R} By,) fGIE:; + R} By, 2* 12&3 ] , z=¢e"Y,

are orthogonal and satisfy (2.7). Thus we need only to show that ¢H, ¢G given by (2.10) are casual for
some #1. The second term on the right-hand side of the second equation is responsible for any possible

noncasuality. In particular, the noncasual part of the second term is given by

hy h;
R] By, ] ,
go 81
where h;, g; are the matrix coefficients of 1H, 1G. Note that
0 O
Rnggl =10 l;tl , l;t := (sin @, cos 0, £1),
0 =+l

where the choice of l;’ or I, depends on the choice of v; or v, in the definition of bg. Thus we need

only to show that there exists a 61 such that

[0,1;1][1‘0 hl]:o or [0,191][hO hl]:o.

g 81 g 81
For the case v > 2, since V, (2) satisfies (i) and (ii) in Lemma 2.2, , 1H,, 1G defined by
-1H H ;
(211) 71W)=vuﬁl{7wq’z=w,
7-1G(w) 7 G(w)

are orthogonal and satisfy (1.7) for ¥ — 1. Thus we need only to show that ,_1H,,_1G defined by (2.11)

are casual for some 6,. Note that

0 0 0 0 0 2cosf@ —2sinf O
2 0 0 0 n 110 0 0 0
0 sind cosf F1 210 sin6 cosf £1
0 Fsinf@ Fcosf 1 0 +£sinf@ +cosf 1
Thus the terms in ,_1H, ,_1 G responsible for the noncasuality are

0 2cosf —2sinf 0
0 0 0 0
0
0

hy hy
sin 6 cosf  +1 g & |

+sinf@ Z£cosf 1
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Therefore to show that , 1H,, 1 G are casual, we need only to show that there is a 6, such that

[o,L;][hO hl]:o or [O,L@][ho hl]:o

go 81 g0 81
where
I cosf@ —sinf O
Ly = ) .
sinf cosf *1
Write
ho h1 . * * h2 h3 . * *
g0 81 A vy | g2 83 1 Ccox |’

where A, C are 3 X 3 matrices and v3 is a 3 X 1 vector. To complete the proof, it is enough to show for
the case v = 1, that there exists a 6; such that

(2.12) I,A=0, lzvi=0 or 1,A=0, Iv3=0,

and for the case v > 2, that there exists a 6, such that

(2.13) L;,:A:(), L,,,jv3 =0 or Ly A=0, Lyvy=0.
Since yH, ,G have the forms (1.8), (2.1), one has

(2.14)

I, O hgfy h27_|_1 _ 0 0 I, 0O h27_2 h27_1 _
0 Do 82y 82y+1 AJ; 0|’ 0 Dy g2y 2 B2y-1

where J3 is the 3 x 3 exchange matrix defined in the introduction. By the orthogonality,

* 0
CJ; v3 |’

T
hy,, h hy h
(2.15) 2y et © T =o.
82y 82y+1 g0 81
This equation and (2.14) imply that
(2.16) ATdiag(1,1,-1)A = 0.

Since rank(ATdiag(1,1, —1))=rank(A), (2.16) implies that rank(A) < 1. Thus A = uv’ for some
u,v € R with v # 0. By (2.16) again, u”diag(1,1,—1)u = 0. Thus u = u(sinf, cos 8, £1)7 for some
u,0 € R. Therefore we have
LIA =0,
and in particular 17 A = 0.
Finally we need to prove that 17vs = 0 (for v = 1) and L] v3 = 0 (for v > 2). We first consider the
case v = 1. In this case (2.15) is

0 J3AT I, 0 x|y
0 0 0 Dy A vy |

Thus we have J3ATdiag(1,Dg)vs = 0. Note that for the case v = 1, the third component of v3 is 0.
Therefore we have ATv3 = 0. That is u(sin, cos, +1)vs = 0. Clearly in this case u # 0. Thus we have
IFvs =1Fvs = 0.
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Finally, let us consider the case v > 2. Again by the orthogonality of the filter bank,

T T
hy Iy hyy 2 hay g . hy hj hy, hoyp _0
g0 81 g2y—2 82y—1 g2 83 827 82y+1

That is, by (2.14),

* % x J3CT * % 0 J;AT —0
A v3 * vl C x 0 0 -
Thus we have
(2.17) AJ;CT 4 vavl 4 CI3AT = 0.

Since we have proved Lj A = 0, by (2.17), we have Lj vz = 0. Thus we have (2.12) and (2.13), and the
proof of Theorem 2.1 is complete. O

3. SYMMETRIC ORTHOGONAL MULTIFILTER BANKS WITH EVEN FILTER LENGTHS

In this section we will discuss orthogonal multifilter banks {,H, ,G} with ,H having the form of (1.9)

and ,G having similar properties. One can obtain that (1.9) is equivalent to

22 0

3.1 —(27+1)
(3.1) z 0 1

] JH(-w)Jy = H(w), z=eY.
Suppose that G satisfies

20 0
(3_2) L~ (@2 +1) [ 813 ] 7G(_w)J2 = 7G(w),
52
for some integer ¢ and that s; = £1,s9 = +1. One can prove as in Proposition 2.1 that we only have

the choices s = s = —1.

Proposition 3.1. Assume that the multifilter bank {,H,,G} is orthogonal and that H,,G satisfy
(3.1), (3.2) respectively, then s; = sg = —1.

In the following we discuss factorizations of {,H,,G} with ,H and ,G satisfying (3.1) and (3.2)
respectively. Here we discuss the factorizations for the case ¢ = 1 for simplicity. In this case the

orthogonal filters satisfy

212 .
(3.3) @D [ - ] (H(-w), - G(-w))J2 = (;Hw),,G(w)), z=e.

One can check directly that if ,G satisfies (3.3), then its coefficients g; have the following form
(34) [gOa g1, ", 82y, g2’7+1] =

co c1 co 3 —c1 —Cp 0 0 0 0
do dy || dy ds |’ | —=ds —ds || =ds —dy || =di —dy ||’

for some ¢j,d; € R and g; = 0,5 < 0,5 > 2y + 1. Thus the rows of [go,81, - ,82y,82y+1] are

antisymmetric scalar filters.
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It is expected ,H,,G be factorized as in (2.2) for some casual FIR orthogonal multifilter bank

{4-1HY,,_1G"} and some 4 x 4 projection matrix B. Denote

1
(3.5) by = 5(1,0,11)T(1,0,il), By := diag(0, by).

Then one has
2*((Iy — Bg)z 2 + By)diag(z%, 1, —2%, —1) ((Is — By)z 2 + By) = diag(Iz, —Io).

Thus ,_1HY,,_1G" defined by

1 HY

(3.6) [ 7t V(w) ] = (Is =By +Bg2?) | 7 (@) ] , z=¢e",
y-1GY(w) 1G(w)

are orthogonal and satisfy

(3.7) 2 (L HY (—w), =1 GV (—w) T2 = (21 HY (w),,1GY (w)), 2 =€™.

Define

o[%

(7—1H(w)’ ’Y—lG(w)) =

(1 HY (W), 1GY(w)) [ 1 _11 ] :

Then ,_1HY, ,_1GY satisfy (3.7) if and only if ,_1H,,_1 G satisfy
(3.8) 2@ (_H(~w), —-1G(~w))Dg = (,_1H(w),, 1G(w)), z=e™.

For a casual FIR orthogonal filter bank {,_1H,,_1G} satisfying (3.8), we have the following result

about its factorization obtained in [10].

Theorem 3.1. (Jiang [10] ) A casual FIR filter bank {y_1H, ,_1G} is orthogonal and satisfies (3.8) if

and only if it can be factorized as

[HHW]:%Uv_l(z%u,_?(z%---U1<z2>IWO W°D°” " ] o=,

7,1Q(w) vop —vpDy 27112
where wo, v € O(2), and
1 12 ug 1 12 —Uug -1
. — - 2).
(3 9) Uk(Z) 2 { u%" I, ] + 9 [ _u%‘ I ] Z 7, Ug€ O( )

Therefore, by Theorem 3.1, if ,_;HY,,_1G" are casual, then ,H,,G can be factorized as

(3.10)
lvH(w; ] _ ﬁ(Ll—BO+Boz_2)U771(22)--'U1(zZ) [ wo  woDg ] [ I ] [ 1 1 ]

T vo —vpDy Z_llg -1 1
Theorem 3.2. A casual FIR multifilter bank {,H, G} is orthogonal and satisfies (3.3) if and only if it
can be factorized in the form of (3.10) with By defined by (3.5), Uy defined by (3.9) for some ug € O(2),
and wo,vg € O(2).
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Proof. The direct part follows from the above derivations. For the proof of the converse part, by Theorem
3.1 and the above derivations, we need only to show that ,_1HY,, 1G" defined by (3.6) are casual, i.e.,

to shown that

Boz2
WG(W)

+H(w) ]

is casual, or equivalently to show that

hy h hy h
(0,1,0,1)[ 0 1]:0 or (0,1,0,_1)[ 0 1]:0,

8o 81 8o 81
The sign choices in the definition of by provide the sign choices in the above equation. Here h;, g; are
hy h
the matrix coefficients of ,H, ,G. Let 7; denote the jth row of l O 71|, Then what we need to show
8 81
is that
(3.11) ne+mna=0 or m—mns=0.
We may suppose
E:=(n3,n1) #0,
for otherwise, (3.11) holds automatically. By the orthogonality,
T

hy, h hy h
(3.12) 2y et O T =o.

82y 82y+1 g 81
Note that in this case

hy, hoyyq
K ! = (0’ 7I2Ta Oa —774T)TJ4-
82y 82y+1

Thus (3.12) is equivalent to
(3.13) Ediag(1, —-1)E? = 0.

Therefore rank(E) = 1, and E can be written as E = nv!,n € R*\{0},v € R? with ||v||? = 2. By (3.13)
again, we have that v'diag(1,—1)v = 0. Thus v = (+1,41)T. Therefore n, = +n*,n, = £n7 and
(3.11) holds true. The proof of Theorem 3.2 is complete. O

4. MULTIWAVELETS WITH GOOD REGULARITY

In this section, we construct multiwavelets with good approximation and smoothness properties based
on the parametric expressions of the orthogonal filter banks provided above. For a given FIR matrix

filter H, if there exists a positive integer k¥ and some 1 x r vectors y;,0 < j < k with yg # 0, such that

(1) S (7 )@@y DI HEm) = 502 7y, (=01,
0<s<j

for all 0 < j < k, we say that H has the sum rules of order k& or H satisfies the vanishing moment
conditions of order k. Here D’H(w) denotes the matrix formed by the jth derivatives of the entries
of H(w). For an FIR matrix filter H, if H generates an orthonormal scaling function ®, then ® has
accuracy of order k if and only if H has the sum rules of order k (see e.g., [4], [12], [8], and [5]). For
a vector ® = (¢1, ¢2)T, we say ® has accuracy of order k provided polynomials of degree up to k — 1
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can be reproduced by the integer shifts ¢1(z — k), ¢o(z — k), k € Z. If ® is orthonormal, then y{ is
also a right 1-eigenvector of H(0) (see [9]). On the other hand, </I;(O) is also a right 1-eigenvector of
H(0). Thus y§ = &(0) (up to a nonzero constant). Therefore to construct a balanced multiwavelet, the
corresponding yo must be the vector (1,1).

Example 4.1. Let {H = (h;;),1G = (gi;) be the orthogonal filters given by (2.8) with v = 1 and
the choice + in By, . In this case h;;, g;; are given by

hi1(2) = agcosOg(1 + 271) /2,  hia(2) = V2sinby/2,
hg1(z) = —sinf (g sinfy + ag + (agsinfy — )27 + (g sinfy — )22 + (g sinby + ag)z~3) /4,
haa(z) = v/2(cos By sin @y + 2 cos Oy 2! + cos by sinf272) /4,
g11(2) = —cos 1 (ag sinfy + ao + (apsinfy — ao)z™" + (ag sinfy — a0)z™2 + (g sinfy + a)273) /4,
g12(z) = \/i(cos 0y cos 0 — 21 sin @12~ + cos 6 cos 01z_2)/4,
g21(2) = (apsinfy + ag + (g sinfy — )zt — (agsinby — ag)z=2 — (apsinfy + an)z~3) /4,
g22(2) = V2cosp(—1 + 272) /4.
For the choices of ap = a1 = 1,9 = —1, and 6 := arcsin(4/5),60; := —n/4, the corresponding &, ¥

are in W15 ¢(R) for any ¢ > 0 and ® has accuracy of order 2 (see [7]). @ is the scaling function
constructed in [2] and diag(—1,1)¥ is the multiwavelet constructed in [1]. The supports of ¢; and
¢9 are on [0,1] and [0, 2] respectively (see [15] about the discussion on the supports of vector scaling
functions). They are the most smooth scaling functions supported on [0, 1] and [0, 2] respectively. In
this case yo = (v/2,1). If yg = (1,1), then the corresponding scaling functions constructed based on the
above parametric expression are also supported on [0, 1] and [0, 2] respectively. However ® has accuracy
of order 1 and its smoothness is very poor. Thus we cannot construct balanced scaling functions ¢, ¢
which are supported on [0, 1] and [0, 2] respectively and have good regularities. O

Let ,H be the filter given by (2.8). There are v + 1 free parameters for ,H. However ,H does not
satisfy the sum rules of order 1. In order that ,H satisfy the sum rules of order 1, we need to solve
some equations and reduce some parameters. For example, for v = 2, 3, there is only one free parameter
left if sH, 3H have the sum rule of order 1 with yy = (1,1), and we cannot construct smooth balanced
multiwavelets based on oH and 3H. Suppose ,H,,G are the orthogonal filters defined by (3.10). Then
+H(0),,H(7) are determined by wq and it is easy to verify that ,H has the sum rules of order 1 if
and only if wq is r_z or ~Tsr Dy and yp = (1,1) . Thus there are y free parameters for ,H with
the sum rules of order 1. We find it is easier to construct balanced multiwavelets with high accuracy
and good smoothness if we use these filters. In the following we focus on the construction of balanced
multiwavelets based on the parametric expression given by (3.10).

Example 4.2. Let oH, 2G be the orthogonal filters defined by (3.10) with -y = 2. Then the matrix
coefficients hy,--- ,hs,gg, -+ , 85 of sH, 2 G have the forms of (1.9) and (3.4). Here we choose wy to be
r_=, Vo and u; to be rg and ry, respectively, and + in B¢ to be +. In this case a;, bj,c;,d; in (1.9) and



PARAMETRIZATION OF SYMMETRIC MULTIFILTER BANKS 13

(3.4) are given by

V2(V2 = cos(B + 61) +sin(B + 61))/8, a1 = —v2(sin(B + 61) + cos(B + 61))/8,
V2(sin(B + 61) + cos(B + 61))/8, a3z = v2(cos(8 + 6;) —sin(B + 61) + V2)/8,

V2(cos(B + 601) + cos 8 + sin 8 + sin(8 + 1) + V/25sin 0, /16,

V2(—cos B+ sin B+ V2 + sin(B + 0;) + V2 cos ) — cos(8 + 61))/16,
V2(V2cos0; —sin(B + 0;) + V2 — sin 3 + cos B + cos(B + 6,)) /16,

bs = V2(—sin(B + 61) + V2sin#; — cos B — sin § — cos(B + 01))/16,

by = —sinfy /4, bs = (1 —cosby)/4,

co = V2(V2 — cos(B + 61) +sin(B +61))/8, ¢1 = V2(sin(8 + 61) + cos(B + 61))/8,
c2 = V2(sin(B + 01) + cos(B + 61))/8, c3 = —V2(cos(B + 61) —sin(B + 61) + v/2)/8,
dy = —V/2(cos(B + 61) + cos B + sin 8 + sin(8 + 61) + V/2sin6;)/16,

di = V2(cos B —sinf — V2 —sin(B + 01) — V2 cos 6y + cos(B + 61))/16,

d2 = —V2(V2cos 01 — sin(B + 0;1) + V2 — sin B + cos 8 + cos(B + 61))/16,

d3 = V2(sin(B + 61) — v2sin6; + cos B + sin B + cos(B + 61)) /16,

dy = V2(sin(B8 + 61) + cos(B + 61) — sin 8 — cos 8)/8,

ds = V2(sin(8 + 61) — cos(B8 + 1) + cos 8 — sin 8)/8.

ag
a2
bo
b1
bo

For the choices of

5 arctan( 6 -+ /151 ) W arctan(—19+\/151)
=7 — arctan(——————), = -7 — —_—),
—3+ 2151 ! 19 + /151

the corresponding ®, ¥ € W%377(R) and ® has accuracy of order 2 with yo = (1,1),y1 = 1(7,9). Here
and in the following we use the smoothness estimate for scaling functions provided in [7]. O

Example 4.3. Let 3H, 3G be the orthogonal filters defined by (3.10) with v = 3. Here we choose
wq to be —rszDg, vg,ur,us to be rg, —rg Do, ry, respectively, and £ in By to be +. We refrain from
providing the4parameter expressions of the matrix coefficients hg,--- ,h7,gg, - ,g7 of sH, 3G here. For

the choices of
B = \/5(502 +3£)/1000, 61 =217 —"7f/1600, 6, =217+ 7f/1600,

where f := /4111, the resulting ®, ¥ are in W299532(R) and ® has accuracy of order 3 with y, =
(1,1),y1 = $(11,13),y2 = £(121,169). (See ®, ¥ in Figure 1.) The corresponding matrix coefficients
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FIGURE 1. Scaling function ® (on the left) and the balanced multiwavelet ¥ (on the
right) with ®, U € W209532(R).

are given by (1.9) and (3.4) with
[ag, a1, a9, a3,a4,a5] = 2741073 (=59 — f, 247 + 3f, —87 — 3f,—1061 + f, 1120, 7840),
[co, €1, €2, €3, Ca,5) = 2791073 (f2 + 59f, —3f2 — 247f,3f2 + 87f,1061f — f?,
—72478 — 1302f, 217434 — 434f),
[bo, b1, by, b3, by, bs, bg, by] = 27101073 (413 + 7, —1729 — 211,609 + 21 f, 7427 — 7f,
6473 4+ 107f, —81309 — 321f,82429 + 321f, 497687 — 107f),
[do,d1,do,ds,dy,ds,ds,d7] = 27101073 (=413 — 7f,1729 + 21, —609 — 21f,7f — 7427,
45565 + T75f, —136545 — 2325f,2325f — 5695,438115 — 775f). O

Example 4.4. Let 4H, 4G be the orthogonal filters defined by (3.10) with v = 4. For the choices
of + in By, wg = r_z,Vo=TIg, U =Tj,Uy = —rp,Dy, uz = —rg, Do with

B = —n/b,01 = .344651483483599, 6, = .811516467802877,03 = —.115691736305177,

the resulting ®, ¥ are in W?3%34(R) and ® has accuracy of order 3 withyo = (1,1),y1 = 1(15,17),y2 =
£(225,289). (See ®, ¥ in Figure 2.) We can also construct other balanced multiwavelets with high
accuracy and good smoothness if we use other choices of & in Bg or in v, u;. Here we do not give the
details. O
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