PARAMETERIZATION OF M—-CHANNEL ORTHOGONAL MULTIFILTER BANKS
QINGTANG JIANG

ABSTRACT. A complete parameterization for the m—channel FIR orthogonal multifilter banks is provided
based on the lattice structure of the paraunitary systems. Two forms of complete factorization of the
m—channel FIR orthogonal multifilter banks for symmetric/antisymmetric scaling functions and multi-
wavelets with the same symmetric center (1 + v+ —X5) for some nonnegative integer ~ are obtained.
For the case of multiplicity 2 and dilation factor m = 2, the result of the factorization shows that if the
scaling function ® and multiwavelet ¥ are symmetric/antisymmetric about the same symmetric center
v+ % for some nonnegative integer 7, then one of the component of ® (respectively ¥) is symmetric and
the other is antisymmetric. Two examples of the construction of symmetric/antisymmetric orthogonal
multiwavelets of multiplicity 3 with dilation factor 2 and multiplicity 2 with dilation factor 3 are presented

to demonstrate the use of these parameterizations of orthogonal multifilter banks.

1. INTRODUCTION

Form € Z, m > 2, ¥y is an r—dimensional column vector function satisfying

(1.1) Uo(x) =m Y ho(k)¥o(mz — k),
k€eZ

or equivalently
Wo(w) = Ho(w/m) To(w/m),

where hg(k) are r x r real matrices and Hy(w) = Y, ho(k)e **. The vector ¥y is called an (m,Hp)
refinable vector (matrix refinable function). A compactly supported refinable vector ¥o = (¢;,0)7_; is
called an orthogonal scaling function if the integer shifts 1 o(-—k),1 < j <7,k € Z, form an orthonormal
basis of their closed linear span in L?(R). A set of r—dimensional column vector functions ¥, = (¥5,0)5=1,
1 < £ < m, is called a set of multiwavelets of dilation factor m if ¥, ¢(mizr —k),1 < j <11 <L <
m,d,k € Z, constitute an orthonormal basis of L?(R). If vector-valued functions ¥,(z),1 < £ < m are
defined by

(1.2) Ty(z) =m Y hy(k)To(maz — k),
kEZ
or equivalently by
Ty(w) = He(w/m)To(w/m),
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for some matrix filters Hy, where ¥, is (m,Hy) refinable vector, then a necessary condition for ¥q to
be an orthogonal scaling function and ¥,,0 < £ < m to be a set of orthogonal multiwavelets is that (see
8., [8], [24] and [7))

2 2
(1.3) Hg(w + kﬂ-)Hz/(w +’I7L kﬂ-) =0p_pl., 04, < m.

Throughout this paper, B* and B denote respectively the Hermitian adjoint and transpose of a matrix
B, I,, denotes the n x n identity matrix, and § is the Dirac sequence such that §o = 1 and J; = 0 for
all k£ € Z\{0}. Conversely, if Hy,0 < £ < m, are FIR and satisfy (1.3), and the compactly supported
(m, Hy) refinable function ¥ is L?-stable, then ¥y is an orthogonal scaling function and ¥y, 1 < £ < m
defined by (1.2) are a set of multiwavelets (see [5], [14]). In this case, we say that Hy generates an
orthogonal scaling function ¥y and say that H,, :== {H;,0 < £ < m} generates orthogonal multiwavelets
Uy, 1 < ¢ < m. The set H,, is called an m-—channel multiwavelet filter bank (often abbreviated (m-
channel) multifilter bank). A matrix filter H is called causal if h(k) = 0,k < 0, and is a finite impulse
response (FIR) filter if there exists a positive integer N such that h(k) = 0, |k| > N. For a multifilter
bank H,,, we say it is orthogonal if it satisfies (1.3).

Assume that Hy is a causal FIR matrix filter, i.e., ho(k) = 0 if K < 0 or £ > N for some positive
integer N. For positive integers N, m > 2, let N(m) denote the largest integer smaller than N/(m — 1).
Let 7w, be the matrix defined by

(1.4) TH, == (m'Am'i—j)—N(m)Si,jSN(m)a

where A; is the 72 x 72 matrix defined by

N

Aj = ho(k — ) ® hy(k),

k=0
and hy(x — j) ® ho(k) denotes the Kronecker product of hy(x — 7),ho(x). T, is the representing matrix
of the transition operator Ty, associated to Hy. It is known that Hj generates an orthogonal scaling
function if and only if 37 Ho (2120 5 (££26m) = T, Ho(0) and Ty, satisfy Condition E (see [24],
[5], [22], [16]). A matrix B is said to satisfy Condition E if the spectral radius of B is 1, 1 is the only

eigenvalue on the unit circle and 1 is simple. Therefore to construct orthogonal multiwavelets, we need

only to find orthogonal multifilter banks #,, with Hy(0) and Tg, satisfying Condition E. In some cases,
in the construction of orthogonal multiwavelets with some desired properties, the parameterization of
the multifilter banks is required, see [17], [18]. This paper discusses such parameterizations.

This paper is organized as follows. In §2, we discuss the complete factorization of the m—channel
FIR orthogonal multifilter banks and the symmetry of the scaling function and multiwavelets. In
§3, we present complete factorizations of the m—channel FIR orthogonal multifilter banks for sym-
metric/antisymmetric scaling functions and multiwavelets with the same symmetric center for the even
m case, while in §4 we provide complete factorizations for the odd m case. The complete factoriza-
tions for the case m = 2,7 = 2 are discussed in more detail in §5. In the last part of this paper, §6,
symmetric/antisymmetric multiwavelets of multiplicity 3 with dilation factor 2 supported in [0, 3], and

symmetric/antisymmetric multiwavelets of multiplicity 2 with dilation factor 3 supported in [0, 2.5] are
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constructed in two examples based on the parameterizations of the symmetric orthogonal multifilter

banks provided in this paper.

2. PRELIMINARIES

Let Z, denote the set of all nonnegative integers. Denote z := e*, and for m > 2, denote W :=
e~2m/m_ By the standard abuse of notation, for an FIR matrix filter H, we let H(z) = > rezh(k)z™F
denote H(w). For an m—channel causal FIR multifilter bank H,, = {H,,0 < £ < m}, let P, denote its

modulation matriz defined by

(2.1) Po(w) = [H@(zW’“)]OSUKm.

Then H,,, being orthogonal is equivalent to that P,,(w) is paraunitary (or lossless), i.e., Pp,(w) is unitary

for all w € [—m, )
(2'2) Pm(w)P:n(w) = L.
Write

H[(Z) = ZﬁkH(Z’k)(zm), h(@,k) (’)’I,) = hg('m/n + k‘), 0< £ < m.
Then the polyphase matriz E,(z) of H,, is defined by

Ep(2) := [Hp (z):|0§£,k<m'
The relationship of the modulation and polyphase matrices of H,, is given by
Pn(w) = vVmE,(2™)Up(2), 2z=e",

where U,,,(z) is the rm by rm paraunitary matrix defined by

U () = Y™ [(sz)*fL]

m 0<lk<m

The fact that U,,(2)U},(2) = I, implies that P, (w)P}, (w) = Iy, if and only if

(VmEy(2)) (VmEp(2))" = Irm.

Thus a causal FIR multifilter bank 7, is orthogonal if and only if \/mE,(2) is paraunitary. If /mE,(z)

is paraunitary, then it can be factored as (see e.g., [27], [29] and references therein)

Jm

(2.3) Ep(2) = WV’Y(Z)V’Y—l(Z) -+ V1(2) Uy,
where z = ¢, Uy € O(mr) and
(2.4) Vi(2) := Pg + (I, — P)z™", for some projection matrix Py.

In this paper for a positive integer n, O(n) denotes the set consisting of all n x n orthogonal matrices.
If rank(P) = 1, then v is the (McMillan) degree of \/mE,(z). By definition, the orthogonal multifilter
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bank H,, is factorized as

Ho(w) IT
H -1, .
25) Ol Sy v @i | P ] e
Hypo () R

Theorem 2.1. A causal FIR multifilter bank H,, is orthogonal if and only if there exists a v € Z,
projection matrices Py, 0 < k <y, and an orthogonal matriz Uy such that H,, is given by (2.5).

It was shown in [4] (see also [19], [16]) that if the compactly supported (m,Hj) refinable vector ¢ is
L?-stable, then Hy(0) satisfies Condition E and Hjy satisfies the vanishing moment conditions of order
at least 1. In [18], for the case m = 2, a simpler parameterization of the orthogonal multifilter banks
was provided with these properties of Hy taken into account. As for the higher dimensional case, one
can get some expressions of the orthogonal filter banks similar to (2.5). However the expressions will
not be complete.

Based on the parameterization of the multifilter banks, we can construct the scaling functions and
multiwavelets with desired properties. In this paper we consider the symmetry of the scaling func-
tions and multiwavelets and discuss the parameterization of the FIR orthogonal multifilter banks which
generate symmetric/antisymmetric scaling functions and multiwavelets. To this end, we first have the

following two lemmas about the symmetry of the refinable functions and multiwavelets.

Lemma 2.1. Assume that P is an FIR matriz filter and ¢ = (@1, -+ ,¢.)7 is a compactly supported
(m, P) refinable vector with p(0) # 0. If P satisfies

(2.6) D¢(mw)P(—w)De(—w) = P(w),

for some ¢ = (c1,--- ,cr) € R, then @; is symmetric/antisymmetric about s——, i.e.,
j 2(m—1)
cj .

(2.7) ¢i(—=7 —@) = +pi(a), 1<j<n

where for a vector ¢ = (c1,--- ,¢;) €ER,

(2.8) D (w) := diag(:l:e_icl‘*’/(m_l),:*:e_ic?‘*’/(m_l), e ,:I:e_ic“"/(m_l)).

Conversely, if ¢ is L?~stable and mc; = ¢;mod(m — 1), 1 <14,j <r, then (2.7) implies (2.6).

Lemma 2.2. Assume that P is an FIR matriz filter satisfying (2.6) for some ¢ = (c1,--- ,¢) € R,
and ¢ is a compactly supported (m,P) refinable vector with $(0) # 0. Let ¥ = (¢1,--- ,4.)T be a

vector-valued function defined by
U(z) =m Y q(k)p(mz — k)
k
for some FIR matriz filter Q. If Q satisfies

(2.9) Dg(mw)Q(—w)De(-w) = Q(w)
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for some d = (dy,--- ,d,) € R, then

d.
(2.10) Yi(——=7 —z) = +(z), 1<j<r

Conversely, if ¢ is L?-stable and md; = c;mod(m — 1), 1 < i,j <r, then (2.10) implies (2.9).

In Lemmas 2.1, 2.2, the sign + (or —) in D, and D4 coincide with + (or —) in (2.7) and (2.10)
respectively. For FIR matrix filters P, Q, (2.6) and (2.9) also imply that mc; = ¢;mod(m — 1) and
md; = ¢c;mod(m — 1) respectively.

The symmetry of the scaling functions and multiwavelets was also considered in [2] and [28]. Com-
paring with their results, more conditions such as mc; = ¢;mod(m — 1) are added here. We find in some
cases such conditions cannot be dropped. In the following we give the proof of Lemma 2.1. The proof
of Lemma, 2.2 is similar, and it is omitted here.

Proof of Lemma 2.1. If P satisfies (2.6), D.(0)P(0)D.(0)2(0) = P(0)@(0) = ©(0). Thus D.(0)%(0)
is also a right 1-eigenvector of P(0). Hence D.(0)%(0) = ¢ (0) for nonzero constant ¢y. Thus

$(w) = De(w)IL24P (~w/m?) D (0)3(0) = coDe(w)IL32,P(~w/m?)3(0) = coDe(w)B(~w).

Since the diagonal elements of D.(0) are £1, ¢g = £1. Thus ¢ has the symmetric property. Note that
if the jth component ¢; of ¢ is antisymmetric, then ;(0) = 0. Thus $(0) = cpD(0)$(0) = ¢ L, $(0) =
co®(0). That is ¢y = 1. Therefore p(w) = De(w)@(—w), or equivalently ¢ satisfies (2.7).

Conversely, if ¢ satisfies (2.7), then §(w) = De(w)P(—w). Thus

Pw)p(w) = @(mw) = De(mw)@(—mw)
= De(mw)P(—w)@(—w) = De(mw)P(—w)De(—w)@(w).
Denote
L(w) := P(w) — De(mw)P(—w)De(—w).
Then L(w)@(w) = 0. Note that if mc; = ¢gmod(m — 1), 1 < 4,5, < r, then L(w + 2k7) = L(w) for any
k € Z. Thus we have
L(w)Gy(w)L(w)* =0, w € [0,2n),

where Gy (w) 1= Yy @(w + 2km) P(w + 2k7)*. Since ¢ is L2-stable, G, (w) > 0. Thus each row of L(w)
is the zero vector. Hence L(w) = 0. O

In the rest of this section, we discuss the number of the symmetry of components of the symmetric
scaling function and multiwavelets. Assume that H,, = {H;,0 < £ < m} is an orthogonal causal FIR
multifilter bank generating scaling functions ¥y and orthogonal multiwavelets Uy, 1 < £ < m. Suppose
hy(k) = 0if k ¢ [0,(y + 1)m — 1] for some v € Z;\{0}. Then ¥,,0 < ¢ < m are supported in

[0,1 + v+ -25] (see [16]). By Lemmas 2.1, 2.2, ¥;,0 < £ < m are symmetric/antisymmetric about
%(1 + v+ —L3) if and only if H, satisfy

(2.11) z*((ﬂ'l)m*l)DgH,@(z*l)Do =Hy(z), 0<l<m,z=¢eYwe [—m,7),
or equivalently

(2.12) Dhy((y+1)m —1—k)Do=hy(k), 0<k<(y+1)m—1,0<£<m,
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where Dy,0 < £ < m are r x r diagonal matrices with diagonal elements 1 or —1. Let Ey(z) =
[H(g,k)(z)] o<t.k<m denote the polyphase matrix of Hy,. If Hy satisfies (2.11) or equivalently h, satisfies
(2.12), then

g v
Hyp(z) = Z hy(mn+k)z™" =Dy E hy((v+1)m —1— (mn+k))z "Dy

g
= Dyz7? Z hy((y—n)m+m—k—1))z2"""Dy = Dgz_'YH(g’m,k,l)(z_l)Do.
n=0

Thus Hy,0 < £ < m, satisfy (2.11) if and only if

(2.13) Ep(z) = 277 [DZH(e,m—k—n(Z)D0]05Z7k<m
= z_7diag(D0, T Dm—l)Ep(z_l)(Jm ® DO)’
where for a positive integer n, J,, denotes the n x n antidiagonal (or exchange) matrix

1
(2.14) J, =

1

As in the scalar case (see [26]), we have the following theorem about the number of symmetry of
components ;4,1 < j < 71,0 < £ < m of scaling function ¥y = (45,0)7—; and multiwavelets ¥, =
(,lpjyz);::l? 1 S g <m.

Theorem 2.2. Suppose multifilter bank Hy(w) = ,(::-l;)l)m_l hy(k)e 0 < £ < m for some vy € Z
generates symmetric/antisymmetric orthogonal scaling function and multiwavelets ¥y = (zpj,@)gzl,o <
£ < m, then Hy satisfies (2.11) for some diagonal matrices Dy with diagonal elements £1, 0 < £ < m,
and that

(¢). if rm is even, there are rm/2 symmetric and rm/2 antisymmetric components ; ¢;

(i). if rm is odd and the ("5, ZE1)—entry of Dy is 1, there are (rm+1)/2 symmetric and (rm—1)/2

antisymmetric components 1; ¢, while if rm is odd and the ( —entry of Dy is —1, there are

(rm — 1)/2 symmetric and (rm + 1)/2 antisymmetric components ;.

Proof. If {Hy, 0 < £ < m} generates symmetric/antisymmetric orthogonal scaling function and mul-
tiwavelets, then Lemmas 2.1, 2.2 imply that H, satisfies (2.11). The proof of (i), (ii) can be carried
out similarly as in [26]. Denote D := diag(Dy, - ,Dy,—1). Since Hy, 0 < £ < m satisfy (2.11), the
corresponding polyphase E,(z) satisfies (2.13). Let Tr(D) denote the trance of D. By (2.13) for z =1,

Tr(D) = Tr(Ep(1)(Jm ® Do)Ep(1)™")
= TI‘(E;D(l)_lEp(l)(Jm ® Dy)) = Tr(J ® Dy).

If m is even, then clearly Tr(D) = 0. If m is odd, then Tr(D) = Tr(Dy), and Tr(Dg) = 0 if r is even,
Tr(Dg) = (252, ZL)—entry of Dy if 7 is odd. These facts lead to (i), (i). O
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For a multifilter bank H,,, we say it is symmetric if it satisfies (2.11) for some v € Z;. In the
following, we discuss the parameterization of the symmetric FIR orthogonal multifilter banks for the
case that rm is even. In this case, by Theorem 2.2, half of all components ;4,1 < j < r,0 </ <m
of scaling function and multiwavelets are symmetric, and the other half are antisymmetric. Thus half of
the diagonal elements of diag(Dyg,--- ,D,,—1) are 1, and the other half are —1. Therefore there exists

an rm X rm permutation matrix Mg such that
(2.15) Modiag(Do,- -+ , Dm—1)M§ = diag(Lm/2, ~Irm2)-

The parameterizations of the symmetric FIR orthogonal multifilter banks for the even m and odd m
cases are discussed in §3 and §4, respectively. The factorization is studied in more detail in §5 for the

case m = 2,r = 2.

3. PARAMETERIZATION OF SYMMETRIC MULTIFILTER BANKS FOR EVEN m

In this section, we assume that m is even, i.e., m = 2m; for some positive integer m;. Let J,,, denote
the exchange matrix defined by (2.14), and denote J, ;,, := Jp, ® I, the Kronecker product of J,,, and
I,. Assume that H,, = {H;, 0 < £ < m} is a causal FIR multifilter bank. Let Ey(z) = [Hyy) (z)]0<&k<m
be its polyphase matrix. Suppose Hy,0 < £ < m, satisfy (2.11) for some diagonal matrices Dy, and let

My be the rm x rm permutation matrix satisfying (2.15). Denote

EI(JI) (Z) = MoEp(Z)diag(Irml 3 Iml ® DO)’

then E,(z) satisfies (2.13) if and only if E](Jl) (z) satisfies
(3.1) E;Szl) (z) = 2z diag(Irm, , _Irm1)E;()1) (z_l)(']m ® L)

Let B be the mr x mr orthogonal matrix defined by

5. V2 [ | - ]
= .

J’I’,Tn1 _ITMJ
Then one has
B(Jy, ® I,)B = diag(Lrm, , —Lrm, )-

Denote
(3.2) £,(2) := B (2)B = MoE, (2)diag(Im,, I, ® Do)B,

or equivalently

2 I J D
53 By () = Mg ) | T IO
2 Jr,ml _Im1 X DO

7

here we have applied the mixed-product property of the Kronecker product, i.e., for matrices B1, Bs, B3, By

(with appropriate sizes), we have (see [11])

(B1 ® B2)(B3 ® By) = (B1B3) ® (B2By).
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With the relation (3.2), then one can check that Eél) (z) satisfies (3.1) or equivalently Hy,0 < £ < m,
satisfy (2.11) if and only if £,(z) satisfies

(34) 5’7(2) = z_’ydiag(Irmla _I'I'ml)g’y(z_l)dia‘g(]:'rmp _Irml)a

and M, is orthogonal if and only if £,(z) is paraunitary. For a causal FIR paraunitary matrix &,(z)

satisfying (3.4), we have the following factorization theorem.

Theorem 3.1. A causal FIR matriz £,(z) is paraunitary and satisfies (3.4) if and only if it can be

factorized as

Wo 0
(3.5) Ey(2) = V4 (2)Vy-1(2) -+ Vi(2) [ 0 ] ;
uo
where wo, vy € O(rmy),
1 Irml
(3.6) Vi(2) = Ap + (I — Ap)z™", Ap=< [ T v ] ;. Vg € O(rma).
2 vk I'I‘m1

Proof. One can check that for Vi (z) defined by (3.6) with some v; € O(rm1), Vi(2)Vi(z )T = I,
and Vi (z) satisfies (3.4). These facts imply that £,(2), defined by (3.5) for v € Z, is causal, paraunitary
and satisfies (3.4).

For the proof of the converse part, we show the above factorization by induction on the order < as in
[25]. If v = 0, the result is evident. For £,,1(z) of order v + 1, we reduce the order by 1 to complete the

proof, i.e., we show that £,1(z) can be written as

Eyt1 (2) = Vit (z)&,(z),

where V,1(z) is given by (3.6) with some v, 11 € O(rm1) and &,(2) is a causal FIR paraunitary matrix
of order 7y and satisfies (3.4).
Since V,41(2),&,+1(2) are paraunitary and satisfy (3.4), £,(z) given by

(3.7) E4(2) = Vo1 (2) "Epi1(2) = Vi (27 )Epna (), 2= €,

is also paraunitary and satisfies (3.4) as well. Thus we need only to show that £,(z) given by (3.7) is
causal. Assume that

(38 Enile) —eri0) + etz + ot ey + D5, ey 1) £0,
and
Ey(z) =ey(0) +ey(1)z 7"+ +e,(7)277, ey(7) #0.
By (3.7),
1

1|1 v
Ey(z) =5 [ TTml 7+1 ] Eyt(z) + 3

2| vy Lemy

L -V
1 v+1
T I 2Ey11(2).
V41 rm1

The second term on the right-hand side is responsible for the noncausality. In particular, the noncausal

part of the second term is given by

I —Vnrit1
7‘7;1 Y+ e’y+1(0).
—Vot1 Lo,
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Thus we shall find v,,41 € O(rm1) such that

(3.9) [Irmla _V’H—l]e’H-l(O) =0.

The fact that £,41(z) satisfies (3.4) implies

(3.10) diag(Lrm,, _Irml)e'y+1 (0)diag(Xrmy, —Lrmy ) = ev+1('7 +1),

and the paraunitariness of £,,1(z) implies that
(3.11) ey,r1(y+ 1) e,11(0) = 0.
By (3.10) and (3.11), we have
(3.12) e,+1(0)" diag(Trm,, —Irm, )ey+1(0) = 0.
Since rank(e,41(0)) =rank(diag(Lym,, —Irm,)ey+1(0)),
rank(e,41(0)) = s <rm/2 =rm;.
By (3.12), for any matrix B (with appropriate size),
(3.13) B”e,1(0)"diag(Tm,, —Trm, )ey+1(0)B = 0.

Let 7m x s matrix B be so chosen that the s columns of e,;1(0)B, denoted by x;,1 < ¢ < s, form an
orthonormal basis for the columns of the matrix e,;1(0), i.e.,

ey 41(0)B = [x1, -+ ,x,] =: X4

with XTX; = I, and each column of e, (0) is a linear combinations of x1,--- ,x,. Denote
1 ’ v+

Y
X =: [ Zl ] ., Y1,7Z; are rmy X s matrices.
1

Then by (3.13), we have

) Y
[Y?a Z{]dlag(ITmla_ITml) [ 7 ] =0
1
and hence Yle = ZfZl. This fact and XlTX1 = I, imply
1

(3.14) YTY1:ZTZ1:§L.

Therefore \/§Y1, V/2Z; are rmq x s matrices of orthonormal columns. Let Y2, Zy be the rmq x (rmq —s)

matrices such that v/2[Y1, Y3],v/2[Z1, Zs] are two rm; Xrm; orthogonal matrices. By the orthogonality,

we have [Y2, —Z31X, = YIY; - Z1Z; = 0; and by (3.14), [Y}, -ZT1X, =YY, -ZTZ; = 0. Thus
we have

lY? _Z{]x-—O 1<j<s

Yy o—zr [T 1T

Since each column of e1(0) is a linear combinations of x;,1 < j <'s, we have

Y7 —z{]
ey+1(0) = 0.
[Yg ~Z;
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Therefore if we let 0,11 = \/§[Y1, Yy, Wy = \/§[Z1, Zs), then

YI -Z{

[0£+1a _W$+1]97+1(0) =2 [ vI _g7T
2 2

] e,+1(0) = 0.
Let vy41 = 07+1WZ;+1, then v,,; is orthogonal and satisfies (3.9). The proof of the theorem is
completed. O

In the next theorem we provide another form of the factorization for the causal FIR paraunitary
matrix £, (z) which satisfies (3.4).

Theorem 3.2. A causal FIR matriz £,(z) is paraunitary and satisfies (3.4) if and only if it can be

factorized as
(3.15) E4(2) = K A(2)Ky—1A(2) - - K1 A(2) diag(W o, Uyp),

where K = diag(Ly,,,Uj), Wy, Ug,U; € O(rmq), 1 < j <~, and

(3.16) A(z) _ 1 Irm/2 Irm/2 +1 Irm/2 _Irm/2 1

2 Irm/2 Irm/? 2 _Irm/2 Irm/2
Proof. One can check that A(2)A(z7!)" =1,,, and A(2) satisfies (3.4). These facts imply that if £,(z)
is defined by (3.15) for v € Z, then &,(z) is causal, paraunitary and satisfies (3.4). For the proof of
the converse part, as the proof of Theorem 3.1, one needs to show that for any causal FIR order v + 1
paraunitary matrix £,41(z) which satisfies (3.4), there exists U,41 € O(rm;) such that £,(z), defined
by

Ey(z) == A(z)_ldiag(lrmnU£+1)57+1(z)a

is causal. Assume that £,,1(z) is given by (3.8). Since

A T=AG Y = L [ L T,

2 IT"ITL1 ITml

T3

we need only to find U1 € O(rm,) such that

Irml _Irml . T I’"ml _Uz-i'
diag(Lrm,, Uy y1)ey41(0) = T ey+1(0) =0,
_Irml Irml _ITml Ufy—|—1

or equivalently
Lrmi s —U$+1]e7+1(0) =0,

which has been shown in the proof of Theorem 3.1. O

Remark 1. A real n X n orthogonal matriz is determined by n(n — 1)/2 parameters. Thus by Theorem
3.1 or Theorem 3.2, the degree of freedom for £,(z) is (y+ 2)rm(rm — 2)/8. A factorization similar to
(3.15) for £,(z) can be derived from the factorization of the linear phase paraunitary systems in [26], [9].
However, the number of the parameters in this factorization for £(z) is (y+1)rm(rm—2)/4. Therefore,

comparing to (3.15), the factorization got in such a way has yrm(rm — 2)/8 redundant parameters.

By (3.3) and Theorems 3.1, 3.2, we have the following theorem.
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Theorem 3.3. A causal FIR multifilter bank Hy(w) = ?;Bl)m_l hy(k)e™™*v 0 < £ < m for some

v € Z4+ and even m = 2my is orthogonal and satisfies (2.11) if and only if it is factorized as

Hy(w) 5 (Jm, ® Dy) Ir
(3.17) : = YMIV, (™) V(2 | e NOm T : :
2m VOJr,ml _VO(I’ITL1 & DO)
Hmil(w) zl—mIT

or it is factorized in another form as

Hy(w) o - Wo(dm, ® Do) I
(3.18) — —mM’(I;K-yA(Zm) KlA(Zm) 0 0\Jm 0 :
2m U-()J,«,m1 —Uy (Im1 ® D()) .

Hmfl(w)

2z ™1,
where z = €, My is a permutation matriz, K; = diag(I;m,,U;), Wo, Uj, wo, vg € O(rmy), and Vi(z)
are defined by (3.6) with v € O(rm1), while A(z) is defined by (3.16).

4. PARAMETERIZATION OF SYMMETRIC MULTIFILTER BANKS FOR ODD m

In this section we consider the case that m is odd. By our assumption, in this case the multiplicity r
is even, i.e., r = 2ry for some positive integer r1. Let H,, = {H;,0 < £ < m} be a causal FIR multifilter
bank, and E,(z) denote its polyphase matrix. If Hy,0 < £ < m, satisfy (2.11), then E,(z) satisfies (2.13)
for some diagonal matrices Dy, 0 < £ < m. Let My be the permutation matrix satisfying (2.15). Denote

Eél)(z) = MOEp(z)diag(Irl(m_l),ImTﬂ ® Dy),

and denote

By the fact
diag(lrl(mfl)aImT+1 & DO)(Jm ® DO)diag(Irl(mfl)aImT"‘l ® DO) = Co,

E,(z) satisfies (2.13) if and only if E]S,l)(z) satisfies

(4.1) Ez()l)(z) = 2z~ diag(Irm, _Imm)E;()l)(z_l)CO-
Denote
\/i IT1(m—1) 0 J,’,, m2—1
B1 = T 0 \/i[r 0

JT,T”T—l 0 _Irl(m—l)

Then BT = Bl,B% = I, and
B,CoB; = dia'g(:[hm’ _ITlm)'

Thus if we denote

57(2) = EI(JI) (z)B1 = MOEp(z)diag(Irl(m_l), ImT-H ® Do)Bl,



12 QINGTANG JIANG
or equivalently

(4.2) E,(2) = M}, (2)By
where

Irl(m—l) 0 JmT—l ® Do
(4.3) B, :=B; Lrim-y) 0 _ V2 0 V2D 0 ,
2 J m—1 O —Imi—l ®D0
2

7‘,2

then E;E,l)(z) satisfies (4.1) or equivalently Hy,0 < ¢ < m satisfies (2.11) if and only if £,(z) satisfies
(4.4) Ey(2) = 27 diag(Lrym, —Lrym)E (27 1) diag(Xrym, —Lrim)-

Furthermore, H,, is orthogonal if and only if £,(z) is paraunitary. By Theorems 3.1, 3.2, for a causal
FIR paraunitary matrix &,(z) satisfying (4.4), it can be factorized in the form as (3.5) or in another

form as (3.15). Thus we have the following.

Theorem 4.1. A causal FIR multifilter bank Hy(w) = ,(Ez)l)m_l hy(k)e ™ 0 < £ < m for some
nonnegative even integer v = 2v; and odd m is orthogonal and satisfies (2.11) if and only if it is

factorized as

HO(w) \/_ Ir

(4.5) : = WmMOTV,y(zm)...Vl(zm) [ wo Y B : ,

H,_1(w) ° AA-m,
or it is factorized in another form as

HO("‘)) Ir

\%%
(4.6) : = gMEKw(zm)---KlA(zm) l 0 o | B2 : ,
0
Hmfl(w) Zl_mI»,«

where z = €, My is a permutation matriz, K; = diag(I;,m, U;), Wo, Ug, wo,vo, U; € O(r1m), By is
defined by (4.3), and V(z) are defined by (3.6) with v € O(rim), while A(z) is defined by (3.16).

5. PARAMETERIZATION OF SYMMETRIC MULTIFILTER BANKS FOR m = 2, r=2

In this section, we consider the case that m = 2,7 = 2 in more detail. In this case, we use ®, ¥ to
denote the scaling function and multiwavelet, and let P, Q denote the corresponding multifilter bank. By
Theorem 3.3, for a causal FIR multifilter bank {P, Q}, it generates symmetric/antisymmetric orthogonal
scaling function and multiwavelet if and only if it is given by (3.17) (also by (3.18)) with mn = 2 and the
orthogonal matrices Wy, Uy, wq, vy given by Ryl.., where

R9:[0080 —sin9]’ I, = 1 0

0 +1

sinf cos@

Based on such parameterizations, we have the following proposition.
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Proposition 5.1. If a causal FIR multifilter bank P~ (w) = i(:”(;*l)‘l py(k)e v Qy(w) = z(j(fl)‘l q,(k)e~ ik
for some v € Z generates symmetric/antisymmetric orthogonal scaling function ® and multiwavelet ¥
about symmetric center v+ %, then one component of each of ®, ¥ is symmetric and the other component

of each of them is antisymmetric.

Proof. Suppose causal FIR multifilter bank {P,,Q,} generates symmetric/antisymmetric scaling func-
tion and multiwavelet ® = (41, ¢2)”, ¥ = (3b1,12)7. Then it is given by

Py(w) | 1 o oy | Wo  woDo I _iw
0] e[ ][ 5] e

for some permutation matrix My, and wg, vy € O(2),

1 12 Vi 1 12 — Vi 1
5.1 Vi(z) = + = z 5, vip€e0(2).
(5.1 4(2) 2[‘% 12] 5| 1 L€ 0(2)
If ¢1, ¢o are symmetric, then 11,12 are antisymmetric, and in this case Dg = Io,D; = —Iy, My = 14.
Thus
P,(0)

s
Q,(0) 21 vg —vo I, 0 |’

i.e., P,(0) = wy. For orthogonal matrix wg, the modulus of each eigenvalue of wg is 1, which is a
contradiction to that P, (0) satisfies Condition E. If ¢, ¢o are antisymmetric, then 5(0) = 0, and hence
® = 0, which leads to the contradiction. O

In fact, as shown in the proof of Proposition 5.1, there is no two—channel causal FIR multifilter
bank which generates orthogonal scaling function ® and multiwavelet ¥ with all components of ® or ¥
symmetric or antisymmetric about the same symmetric center.

By Proposition 5.1, if we construct symmetric/antisymmetric ®, ¥ with the same symmetric center,
then one component of each of them is symmetric and another component is antisymmetric. The 2 x 2
orthogonal matrices wy and W can be determined if the necessary condition that H(0) satisfies condition
E is assured. In particular, if we want to construct ®, ¥ with the first components of them are symmetric

and the second components are antisymmetric, then one can find Wy = wg = I.. In this case,
D; = Dy = diag(1, —1) =: Dy,
and the permutation matrix My is given by
M, = diag(1, J2, 1),

where J5 is the exchange matrix defined by (2.14). Denote
Po(w) 1 I. I.D I,

-~ M, .
Q()(w) 2 Vo —VOD() z 12

Theorem 5.1. A causal FIR multifilter bank P~ (w) = iggl)_l py(k)e @, Qy(w) = 2(27:1)71 q,(k)e v

for some y € Z, generates symmetric/antisymmetric orthogonal scaling function ® = (¢1, ¢2)T and mul-

(5.2)

tiwavelet U = (1p1,12)T with ¢1,11 symmetric and ¢o, 12 antisymmetric about y + % if and only if the



14 QINGTANG JIANG

matriz Tp, associated to P., satisfies Condition E, and P, Q, can be factorized as

P, (w) Po(w)

Q;(w) Qo(w) |’

where z = €, Py, Qg are defined by (5.2) for some vo € O(2), and Vi(z) are defined by (5.1) for

vi € O(2); or Py, Q, can be factorized in another form as

(5.3)

] = MOV»,(zQ) - V1(2%) Mo

P (w) b 0 I, 0 Po(w)
5.4 ! =M A(Z%) - Az )M :
(5.4) Qv(w)] 0[0 U7] (2%) [0 U1] (") Mo Qo(w)]
where z = €, U € 0(2),1 < k < v, Py, Qo are defined by (5.2) for some vy € O(2), and
L] 1L B
(5.5) A(z) = 5 [ L 1L ] +3 [ L L ] 27

Remark 2. The parametric expression (5.3) for the orthogonal multifilter banks was also given in [18].
Here it is shown that such expression is complete. Scaling functions and multiwavelets constructed
based on (5.3) or (5.4) are symmetric/antisymmetric about v + 5. In [18] parametric expression of
the orthogonal multifilter banks for symmetric/antisymmetric scaling functions and multiwavelets with

symmetric center v+ 1,7y € Z,, was also provided.

If v in (5.1) and Uy, in (5.4) are chosen to be vy, = Ry, , Uy = R, , 0k, 7 € [—7,m) forall 1 <k <7,
then P, Q, defined by (5.3) or by (5.4) have the relation as shown in the following proposition.

Proposition 5.2. Assume that P, Q, are defined by (5.3) or by (5.4) with Vi(z) defined by (5.1) and
vi = Ry, Upx = Ry,,1 < k <. Then the matriz coefficients for P, Q, satisfy one of the following
relations:

(A). ay(k) = (=1)**'p,(k)I2Do,  (B)- ay(k) = (—1)"p, (k)I2 Dy,

(). ay(k) = (=1)**'Dop,(k)I2Do, (D). ay(k) = (—1)*Dop,(k)I2Do,

depending on the choices of Po(w), Qo(w): [Po(w)T, Qo(w)T]T is respectively

1 Io + Dozt 1 Dy + Ipz?
(@) sMo| 2770 ) sMo | T
2 Rgo (12 — Doz ) 2 Rgo (Do — Igz )
1 Iy + Dozt 1 Dy + Izt
(- Mo | _ 2% 1 (@) s Mg ot E
2 Reo (DO — Iz ) 2 R90 (12 — Doz )
Proof. Relation (A) for p,,q, is equivalent to Q,(z) = —P,(—2)J2Dy, i.e.,
P I P,(—
@[ o L][Pea];
Q,(2) -I, 0 Qy(—2)
I
Notice that Mg |: 2 | Mo = —diag(J2Dy, J2Dy). Thus (A) is equivalent to
—Ip
P JoD 0 P, (—
(56) MO 'Y(z) - _ 220 MO '7( z) JQDO.
Qy(z) 0 JQDO y —Z)
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Assume that Py(w), Qo(w) are defined by (a). Then one checks that Py, Qg satisfy (5.6) by the facts
J3DoRg, 32Dy = —Ry, and JyDoRg,DoJoDy = Rg,Dy. To show that P, Q, defined by (5.3) with
vi = Ry, and Py, Qo given by (a) satisfy (5.6), we need only to prove that if P,_1,Q,_; defined by
(5.3) with vi, = Ry, and P, Qo given by (a) satisfy (5.6), then P,(z), Q,(z) defined by

P, () P, 1(2) ]
Q’y (z) ny—l (z)

also satisfy (5.6), where V,(z) defined by (5.1) with v, = Ry, ,0, € [-m, 7). In fact we have

= MoV, (z*) M,

3 e[S

<[ e g Jom

_ l 0y JQ‘;)O ] V., () [ B J;;JO ] Mo [ _WQ_qlfz()z) ]
v ] s 50 ]

where the second last equation follows from the fact that JoDoRg. JoDy = —Ryg, and hence diag(J2Do, J zDo)Vy(zQ)dia
—V,(2?). If P, Q, are defined by (5.4) with Uy = R,, and Py, Qo given by (a), then one can show
similarly that they satisfy (5.6). If Pg, Qo are defined by (b), or (c), or (d) respectively, and P,,Q,
are defined by (5.4) or by (5.3) with v;, = Ry, , Uy = Ry, , then P, Q, satisfy (B), or (C), or (D). The

proof is similar and details are omitted here. O

6. EXAMPLES

Based on the parameterizations of the orthogonal multifilter banks, we can construct multiwavelets
with various properties, e.g., multiwavelets with good smoothness and multiwavelets with optimum time-
frequency resolution, see [17], [18]. In this section, we construct in two examples the multiwavelets of
multiplicity 3 with dilation factor m = 2 and multiwavelets of multiplicity 2 with dilation factor m = 3
to demonstrate further the use of these parameterizations provided in the above sections. We hope that
the scaling functions have some approximation property and are as smooth as possible. For an (m,P)
refinable function ®, under condition that ® is L?-stable, the approximation order of ® is equivalent to
the order of the vanishing moment conditions for P (see e.g., [10], [21], [12], [6], [1], [16]). P(w) is said
to satisfy the vanishing moment conditions (sum rules) of order K € Z, if there exist 1 x r vectors 1§
with 13 #0, k € Z4,k < K, such that

> ( k ) (md)**15(D*P) (215 /m) = ;m &, 0<j<m—1.
0<s<k \ °

The regularity estimate of the refinable vectors ® was studied in [3], [24], [20], [15], [16], [13] and [23].
Here we use the regularity estimate provided in [16]. It was shown in [16] that each component of the
(m, P) refinable vector ® is the Sobolev space W*(R) for any s < sy := — logy,,, po(Tp|y0), where Tp is
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the transition operator related to P, V0 is an invariant subspace under Tp, and p(Tp|y0) is the spectral
radius of the restricted operator Tp|yo. Based on the parameterization for P, we can construct smooth
scaling function by minimizing p(Tp|yo).

Example 4.1. In this example, we construct scaling function ® and multiwavelet ¥ of multiplicity
r = 3 with dilation factor m = 2, supp(®), supp(¥) C [0, 3], and ¢1,12,13 are symmetric, while
@2, ¢3,11 are antisymmetric. In this case,

D() = diag(l, —1, —1), D1 = —D().

By (3.17), the multifilter bank P, Q is given by

p 1 D I

(w) _ _M%“VI(ZQ) wo  WoblJo _13

Q((U) 2 Vo —V()D() z I3

1 E EF E -EF| . [1I I, _
= -M7 2 + Doz '),
MU gpr @ —¢r’ ¢ |° )([I?,] [—13] 02"

where z = e . E = wo,F = wlvivy,Gog = vo € O(3). Orthogonal matrices can be given by Eu-
ler angles or Givens rotations, see e.g. [29], [30]. A 3 x 3 orthogonal matrix can be expressed as
U(91, 02, 93)diag(1, :|:1, :|:1), where

(6.1) U(64,602,03) :=
cos 0 cos O3 cos 05 sin O3 sin 6o
—cosfisinf3 —sinfysinfs cosf3  cos i cosfs —sinfy sinfysinfs  sin by cos Oo

sinf; sinf3 — cos f sinfy cos 3  —sinf; cosf3 — cos By sinfy sinfl3  cos B cos by

Here we choose
(6.2) E =U(b1,02,03), F=TU(ai,az,a3), G=U(B,L,MHs).

By the symmetry of ®, 13 = $(O)T: (1,0,0) is a left 1-eigenvector of H(0). By 1JH(0) = 13, 1JH (=) = 0,
we get 8o = 03 = 0. H is independent of ;. Here we choose 8; = 0. Thus E = I3. There are six free

parameters for H. For the choices of

a1 = 2.63203213185982, ap = —.27741087230381, a3 = 3.09917642215873,
B = 2.96875069023522, S, = 1.13820946588261, fB5 = —1.32902204611443,

the corresponding ® provides approximation order 2, and ®, ¥ € WX (R), or &, ¥ € C1407"(R). &, ¥
are shown in Fig. 1.
In [7], scaling function ® and multiwavelet ¥ of multiplicity 3 were constructed by fractal interpolation.
The supports of ®, ¥ are in [0, 2], ®,¥ € C'~¢(R) for any € > 0, but they do not possess symmetry.
Example 4.2. In this example, we construct scaling function ¥y and multiwavelets ¥y, Us of
multiplicity » = 2 with dilation factor m = 3, the supports of ¥o, ¥;, ¥y are on [0, 2.5], and the

first components of them are symmetric, while the second components are antisymmetric. In this case
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1.5 2 2
1 1 1
0.5 (0] o
(0] -1 -1
-0.5 -2 -2
(0] 1 2 3 (0] 1 2 3 (0] 1 2 3
2 2 1
0.5
1 1
o
(0] (0]
—-0.5
-1 -1
-1
-2 -2 -1.5
o 1 2 3 [0} 1 2 3 [0} 1 2 3

FIGURE 1. Scaling function @ (the first row) and multiwavelet ¥ (the second row) with
®, ¥ e CH(R).

Dy = D; = Dy = Dy, recalling Dy = diag(1, —1). By (3.17), the multifilter bank is given by

H

o) _ Vo[ B OEF E -EF|
Hiw) | = pMol] gpr g am @ |7
Hg(w)

T .
'([127 Oa I2]T + [07 \/§D0a 0] zil + [IZa Oa IQ]T D()ZiQ), z = ezwa

where E,F, G € O(3). Here again E,F, G are chosen as in (6.2). To assure that Hy(0) and Hy satisfy

Condition E and the vanishing moment conditions of order one respectively, E satisfies

V6
6
Thus E = U(64, arcsin \/Tg, 0). Hy is independent of §; and (31, and we choose 6; = 0,51 = 0. Therefore

there are five free parameters for Hy. For the choices of

E[2, 0, vV2]" =1, 0, 0]".

a1 = —1.30360937891366, s = —.10783832558925, a3 = —1.78266196529869,
B2 = .88677581545706, B3 = —.43432057665091,

®( provides approximation order 2, and ¥, € W "(R), or ¥, € C'?8(R), 0 < £ < 2. U, are shown
in Fig. 2. By choosing another group of a;, 3;, we can construct ¥, with ¥, € C'151(R), 0 < £ < 2,

and V¥, providing approximation order 3.
Acknowledgement. The author would like to thank two referees for their helpful suggestions to this
paper.
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