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Abstract— A procedure to design orthogonal multiwavelets
with good time-frequency resolution is introduced. For-
mulas to compute the time-durations and the frequency-
bandwidths of scaling functions and multiwavelets are
obtained. Parameter expressions for the matrix coef-
ficients of the multifilter banks that generate symmet-
ric/antisymmetric scaling functions and multiwavelets sup-
ported in [0,N] are presented for N = 2,---,6. Orthogo-
nal multiwavelets with optimum time-frequency resolution
are constructed and some optimal multifilter banks are pro-
vided.
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multiwavelet, Optimum time-frequency resolution.

I. INTRODUCTION

ECENTLY , the construction of multiwavelets,

wavelets generated by a finite set of scaling functions,
has been studied by many authors (see e.g., [11], [10], [9],
1301, [1], [6], [3], [21], and [22]).

A set of functions 1,---,9, € L?(R) are called or-
thogonal multiwavelets of multiplicity r if (272 —
k),---,9.(2'z — k),5,k € Z, form an orthonormal basis of
L2(R). Wavelet construction is associated with multireso-
lution analysis (MRA) developed by Mallat and Meyer (see
[23] and [3]). As in the scalar case, multiwavelet construc-
tion is associated with MRA of multiplicity » which was
first studied by Goodman, Lee and Tang ([11], [10]). More
precisely, an MRA of multiplicity r ([11]) is a nested
sequence of closed subspaces V; in L?(R) satisfying the fol-
lowing conditions:

o (1°) V; CVjt1,j € Z;

« (2°) Njez Vi = {0k

(3°) Ujez Vj is dense in L*(R);
(4°) f € Vj & f(2) € Vjsr;
e (5°) There exist r functions ¢y, ---, ¢, such that the
collection of integer translates {¢;(- — k) : 1 < j <
r,k € Z} is a Riesz basis of ;.
Such functions ¢q,---,¢, are called scaling functions,
and they are said to generate the MRA (V}). If there is a
set of compactly supported scaling functions whose integer
translates form an orthonormal basis of Vp, then (V;) is
called an orthogonal MRA. For an orthogonal MRA (V}),
let W; := Vj41 ©Vj}, the orthogonal complement of V;
in Vj41, then Conditions (1°), (2°) and (3°) imply that
Wi LWy if j # k and 3, , ®W; = L*(R). If the integer
translates of a set of functions v, - - -, ¥, form an orthonor-

The author is supported by an NSTB post-doctoral research fellow-
ship at National University of Singapore.

The author is with the Department of Mathematics, National
University of Singapore, Singapore 119260 and the Department
of Mathematics, Peking University, Beijing 100871. E-mail:
gjiang@haar.math.nus.edu.sg.

mal basis of Wy, then ,---,1, are a set of orthogonal
multiwavelets.

For a set of functions fi,---, f,, write F = (f1,---, f»)7,
where M7” denotes the transpose of matrix M. We shall
call F is stable (orthogonal) if the integer translates of
fi,-++, fr form a Riesz basis (an orthonormal basis) of their
closed linear span in L?(R), and call F a scaling function
(a multiwavelet) if fi,---, f, are a set of scaling functions
(a set of orthogonal multiwavelets).

Assume that P is a matrix filter with matrix coefficients
P, satisfying Py = 0,|k| > N, for some positive integer
N,and ® = (¢1,---,¢,)7 is a compactly supported (2, P)
refinable vector, i.e., ® is a vector-valued function satisfy-
ing

O(x) =2 Pp®(2z - k), (1)
kez

or equivalently satisfying
P(w) = P(w/2)®(w/2). (2)

Assume that ® € L*(R), i.e., ¢; € L*(R),j =1,---,7, and
define the closed subspaces V;(®) of L?(R) by

Vo(®) = span{di(z — k), 1 <i <rk € Z},

and V;(®) := {f : f(277z) € Vo(®)},j € Z. By the refin-
ability of ® and the definition of (V;(®)), it is clear that
(V;(®)) satisfies (1°) and (4°). Condition (5°) is equivalent
to the stability of ®. For compactly supported ® € L?(R),
it was shown in [15] (see also [4] and [29]) that Condition
(2°) and Condition (3°) follow from the other conditions
(1°), (4°) and (5°). Therefore, to check whether (V;(®)) is
an MRA or not we need only to check the stability of ®. If
the compactly supported (2, P) refinable vector ® is stable
(or equivalently ® generates an MRA), we say P generates
the scaling function ®. In this case, ®(w) = lim,,_, o P, (w),
where ®,, is defined by

3 n+1
Bo(w) = P(w/2) - -P(w/2“>vo%eiwﬂ"”,
(3)
and vq is the normalized right 1-eigenvector of P(0) (see
e.g., [2] and [18]).
Let G3(w) denote the Gram matrix of the (2, P) refinable
vector ® € L?(R) defined by

Go(w) ==Y B(w + 20k)B* (w + 27k).
kezZ

Throughout this paper, M* denotes the Hermitian adjoint
of matrix M. Then & is stable (or equivalently ® is a



scaling function) if and only if G (w) is positive definite for
allw € T, and @ is orthogonal if and only if Gg (w) = I and
P is a matrix Conjugate Quadrature Filter (CQF),
i.e., (see e.g., [11] and [9])

PwP(w) +Pw+mP (w+m) =1L, weTl. (4
where I, denotes the r x r identity matrix. We use 0, for
the r X r zero matrix.

Suppose the scaling function ® generated by P is orthog-
onal. Let {Qg} be another finitely supported r x r matrix

sequence, and ¥ = (¢1, - - -,%,)T be the vector-valued func-
tion defined by
V() :=2) Qid(2z—k), (5)
kez

or equivalently by
T(w) = Qw/2)B(w/2), (6)

where Q(w) := Y, Qre™ . If ¥ is a compactly sup-
ported orthogonal multiwavelet, we say that P, Q gener-
ate the multiwavelet ¥ (or P, Q generate an orthogonal
multiwavelet basis). The pair {P,Q} is called a multi-
wavelet filter bank (often abbreviated multifilter bank),
and P (Q, respectively) is called a matrix lowpass filter
(matrix highpass filter, respectively). For a multifilter
bank, the matrix filters P, Q are called finite impulse
responses (FIR) if there exists an integer N such that
P, =0,Q; = 0,|k| > N. The orthogonal conditions for ¥
defined by (5) are equivalent to

PwQ'(w)+Plw+mQ(w+m) =0, weT, (7)
and
Quw)Q*(w)+ Qw+mMQ (w+m) =1L, weT. (8)

Spline multiwavelets were first constructed in [10]. The
first example of orthogonal multiwavelet was constructed
in [9] and [6] (usually called the GHM-multiwavelet), and
more examples were provided in [30], [1] and [5]. However
as in the scalar case, in the constructions of multiwavelets,
the main emphasis is on the approximation and regularity
properties of scaling functions and multiwavelets. The ap-
proximation order and regularity of scaling functions and
wavelets are very important for some applications, but in
digital signal processing applications, the value of approxi-
mation order and regularity is still unknown. On the other
hand, in many still-image and video processing applica-
tions, the time-frequency localization property of the de-
composition technique is an important consideration and
the time-frequency localization of scaling functions and
wavelets is much more important than the approximation
order and regularity properties (see [12] and [25]).

For the scalar case, the design of optimum time-
frequency resolution (OPTFR) wavelets was first consid-
ered in [7]. In [32] and [25], further studies were carried out
and more optimal filters were designed. In this paper we
shall discuss the construction of OPTFR-multiwavelets.

This paper is organized as follows. In Section II, we
review some results on the approximation order and regu-
larity of scaling functions and multiwavelets which will be
used to design OPTFR-scaling functions and multiwavelets
with some approximation and regularity properties. In
Section III, we derive formulas to compute the areas of
the resolution cells for scaling functions and multiwavelets.
In Section IV, for 2 < N < 6, parameter expressions for
the matrix coefficients of the multifilter banks which gener-
ate symmetric/antisymmetric scaling functions and multi-
wavelets supported in [0, N] are provided, and the OPTFR-
multiwavelets are constructed. The conclusions are given
in Section V. The proofs of the propositions in Section III
are presented in the Appendix, where some optimal multi-
filter banks are also provided.

Results in Section IIT have straightforward generaliza-
tions to the case where the dilation factor 2 in (1) is re-
placed by any integer M > 2, and even to the multivariate
case where the dilation factor is a matrix. In this paper,
scaling functions, multiwavelets and the matrix coeflicients
of the multifilter banks discussed are real.

II. THEORY

Suppose P is an FIR matrix filter, and ® is a compactly
supported (2, P) refinable vector. It is useful to transform
the characterizations of the stability and orthonormality of
® in terms of P. Assume supp{P} C [0, N] for a positive
integer N, ie., P, =0if k <0 or k > N. Let Vy denote
the space of all rxr matrices with trigonometric polynomial
entries whose Fourier coefficients are real and supported in
[I—N, N—1]. The transition operator Tp corresponding
to P is defined on Vv by

TeH(w) = P(5)H(S)P*(5) + (9)

P(3 +mH(5 +mP*(5 + ), He V.
It was shown in [29] that ® is stable if and only if Tp satis-
fies Condition F and the 1-eigenvector of Tp is positive (or
negative) definite everywhere; ® is orthogonal if and only
if P is a CQF and Tp satisfies Condition E (for the case
r = 1, similar characterization was provided by Lawton
and it is called Lawton’s condition, see [20] and [3]). For a
matrix or an operator A, we say A satisfies Condition E
if the spectral radius of A is 1, 1 is the unique eigenvalue
of A on the unit circle and 1 is simple.

Since eigenvalues of a finite matrix can be computed di-
rectly, it is useful in practice to represent the operator Tp
as a finite matrix, and such representation was provided in
[16].

Let M be an r x r matrix, M(j) be the jth column of
M, i.e., M = (M(1),---,M(r)), and define 7> x 1 vector
vec(M) by

vec(M) := (M(1)*,---, M(r)")*. (10)

ForH=Y"" Hje ™ e Vy, let vec(H) be the ((2N —

j=1
1)7?) x 1 vector defined by

vec(H) := ((vec(Hy_n))T,- -, (vec(Hy_1))T)" .



For two matrices A = (a;;) and B = (b;;), let A® B :=
(a;;B) denote the Kronecker product of A,B. Then for
any matrices A, B, C (with appropriate sizes), we have (see

[14])
(11)

It was shown in [16] that the representation matrix of the
operator Tp is

vec(ABC?) = (C ® A)vec(B).

Tp := (2A2i—j)1-N<ij<N-1, (12)

and that

vec(TpH) = Tpvec(H), H € Vy,

where A; is the r? x 72 matrix defined by
N
.AJ' = ZPN,J' QR P,.
k=0

Suppose that the compactly supported (2,P) refinable
vector ® is stable. Then the property that ¢ has approx-
imation of order m is equivalent to that P satisfies the
vanishing moment conditions of order m (see e.g., [13]
and [27]). We say that P satisfies the vanishing moment
conditions of order m if there exist real 1 x r row vectors
lg with 1 # 0, 0 < 8 < m, such that

Docazp (o) (207 BDAP(0) =275,
20<a<p (5) (20)*P1g DP~*P(r) =0,

where D?~2P(w) denotes the matrix formed by the (3 —
a)th derivatives of the entries of P(w).

The regularity estimates of a refinable vector ® were
given in [2], [29], [24] and [16]. Here we shall use the esti-
mate provided in [16].

For s > 0, we say that a function f is in the Sobolev space
W*(R) if (1 + |w|?)%f(w) € L?(R), where f denotes the
Fourier transform of f. Let C7(R) denote the space defined
as follows: if y =n+y withn € Z; and 0 < ~; <1, then
f € C7(R) if and only if f € C(™)(R) and (™ is uniformly
Hoélder continuous with exponent 71, i.e.

|f" (@ +y) = fM(@)] < elyl™,

for some constant ¢ independent of z,y € R. We have the
well-known inclusion

1
for s > v+ -.

W?#(R) C C"(R) 5

Assume that the FIR matrix filter P satisfies the van-
ishing moment conditions of order m, i.e., P satisfies (13)
for some 1 x r vectors 17, 0 < 8 < m with 1§ # 0. Let
mo < m be the largest nonnegative integer such that there
exist 1 x r vectors 15, m < 8 <m+mg — 1 satisfying

> (g)(iz)ﬂ—algpﬂ—ap(())zz—ﬂlg. (14)

0<a<p

If each of the numbers of 277, m < 3 < m + mg — 1 is not
an eigenvalue of P(0) for some my € Z,, then the vectors
l’g can be chosen iteratively by

I (2771, — P(0)) = Z <§) (i2)*~ P13 DP=2P(0).

0<a<p

For k € Z, define row vectors 12 by

1{3:: Z

0<as<p

(D). 0<p<msme (9

and then define the 1 x ((2N — 1)r?) vectors L7, by

L? := (1°(1 = N),---,1°(N - 1)), (16)

with

1¥(k) :=

2

(1)« (ﬂ) 19,0157 keZ
0<a<p “
Then as shown in [16], L3, Tp = 2-PL¥,. Therefore if L7, #
0, 277 is an eigenvalue of 7p with a corresponding left
eigenvector L’?\,. These vectors play an important role in
the regularity estimate of refinable vectors.

For 1 < j < r, denote e; := (6;(k))};—;, the standard
unit vectors in R”, and let ;1%, ;% (a < m) denote the
1 x ((2N — 1)r?) vectors defined respectively by

iy = (I = N),---
ity = Gro(l = N), -

1 (N = 1)),
it (N — 1)),

where

1%(k) = e? Ly, ;r%k):=12,® ejT7 K€ Z.

Let Ly be the 72(2N — 1) by m + mo matrix defined by
Ly = (LY, -, (LFFme=HT),

where Lﬁ, are the vectors defined by (16). For 1 < j <7,
let L; and R; be the r*(2N — 1) by m matrices defined
respectively by

Lj = (I, GIn~H),

R := ((jr?V)Tu ) (jIJNn_l)T)'
Finally define the r?(2N — 1) by m +mg +2rm matrix M y:

MN = (‘CN)Lla"')LT)Rla"';RT)'

Let V9 denote the subspace of Vy defined by

Ve ={HeVy: (Mpy)Tvec(H)=0}.

Then V) is invariant under Tp. Let Tp|V18 denote the

restriction of Tp to V. It was obtained in [16] that ®
is in the Sobolev space W ~¢(R) for any € > 0, where
s0 := —logs(p(Tp|yo)), and p(Tp|yo) denotes the spec-

tral radius of Tp|yo. Hence ® € C#0~3—¢(R) for any € > 0.



It was shown in [17] that if A¢ is a nonzero eigenvalue
of 7p, then g is an eigenvalue of Tp|yo if and only if
rank((My)T (uy,---,w;)) < I, where uy,---,u; are a ba-
sis of the Ap-eigenspace of Tp. Therefore p(Tp|yo) is the
maximum of the moduli of all the eigenvalues Ag of 7p
satisfying rank((My)T (uy,---,w)) < L.

Assume that {P,Q} is an FIR multifilter bank generat-
ing the orthogonal scaling function ® and multiwavelet ¥.
It was shown in [18] that P(0) satisfies Condition E and P
satisfies the vanishing moment condition of order at least
one, i.e., there exists a nonzero 1 x r vector 1J such that

LP0) =13, 19P(r) = 0. (17)

By (4), I{P(0)" = 1§. Thus P(O)(lo) =17, ie., (1)7
is a right 1-eigenvector of P(0). By (2), ®(0) is a right
1-eigenvector of P(0). Therefore up to a constant, (13)7 =
&)(0) since 1 is a simple eigenvalue of P(0). Assume ¥ is the
corresponding multiwavelet with matrix highpass filter Q
By (7), BP(0)Q(0)" +1§P(r)Q(m)" = 0. Thus 15Q(0)"
0 and hence Q(0)®(0) = 0. By (6), we have ¥(0) = 0.

Proposition 1: Assume that {P,Q} is an FIR multifilter
bank generating the multiwavelet ¥. Then each component
of ¥ is a bandpass function, i.e. ‘II(O) 0.

For a window function f (w1th some smoothness and
decay at infinity), the time-duration Ay of f is defined
by

a3= [u-wriopays,

where % is the center in the time domain defined as

i= [ trora B=[ )

—oQ

(t)2dt.

The frequency-bandwidth of f denoted by A?is defined
in the same way with f replaced by f Then

AjA->1/2 (18)
Equation (18) is called the uncertainty principle. Equality
n (18) holds if and only if f is the Gaussian exp(—ct?),
for some constant ¢ € R ([19], [26]). The product of time-
duration and frequency-bandwidth Ay A?is called the res-
olution cell (called information cell in [8]).

By Proposition 1, each component 9; of the orthogonal
multiwavelet ¥ is a bandpass function. Therefore, as in the

scalar case, we shall also discuss the frequency-bandwidth
Aa of 1; defined by ([28], [12], [7])

X f0+00(w 5)2|$j(w)|2dw )
v T (w) [2dw
where -
5 .= Jo wlt;(w)|*dw

0 i@
One can check that for real 1;, 53\ = Af’[- - @)% If
$;(0) =0, then Ay, EJ > 1/2 holds (see [7] and [12]).

In the final part of this section, we give the procedure to
construct the OPTFR-multiwavelets. At first let us recall
the general procedure to construct multiwavelets. We first
construct FIR matrix lowpass filter P = )", Pre~%“ such
that P is a matrix CQF and the corresponding compactly
supported refinable vector & generates an orthogonal MRA
(we need only to check that matrix 7p defined by (12) satis-
fies Condition E). Then we construct the matrix highpass
filter Q = >, Qre~ % such that Q satisfies (7) and (8).
The compactly supported vector-valued function ¥ defined
by (5) is the orthogonal multiwavelet. The CQF condition
for P, and the orthogonal conditions (7), (8) for Q are
equivalent to

> PPL,; = 5,Ir, jE€Z, (20)
kez
and
D PiQiy; =0, jeZ (21)
kezZ
> Qs = 30l JEZ. (22)
keZ

In the construction of the OPTFR-multiwavelets, the pa-
rameter expressions for the matrix coefficients Py, Qp of
the multifilter bank are required. Therefore the procedure
to construct the OPTFR-multiwavelets is as follows:

1) to find parameter expressions for the matrix coeffi-
cients Py, Q) with Py, Qy satisfying (20), (21) and
(22);

2) to fix the values of the parameters for Py, Qi by
minimizing the areas of the resolution cells Ay, A@-

and AWA&\ (or Ay, A$- and Ad,jﬁ&;_), where & =

(¢1,---,0,)T is a (2,P) refinable vector and ¥ =
(i1, -,9,)T is the vector-valued function defined by
(5);

3) to check that the matrix 7p corresponding to the op-
timal matrix lowpass filter P satisfies Condition E.

In this paper two cases in (2) will be considered. In the

next section, formulas to compute Ay, A@? Ay, and A;/;j

are drawn.

III. ENERGY MOMENTS IN THE TIME-FREQUENCY

PLANE
= YN Pre~#“ is an FIR matrix
,¢.)7 € L?(R) is a compactly sup-

Assume that P(w)
filter and ® = (¢1,---

ported (2,P) refinable vector. Let ¥ = (¢1,---,9,)T €
L?(R) be the vector-valued function defined by
N
z) =2 Qyd(2x — k), (23)

k=0

for some r x r matrices Q. In this section, we provide
formulas to represent the energy moments of ® and ¥ in the
time-frequency plane in terms of Py and Qp, from which
the areas of the resolution cells A¢jA$j, Ay, Afﬁ\- can be

computed. In this section, P, Q need not have to satisfy



(4), (7) or (8). The formulas for energy moments in the
time domain and frequency domain will be carried out in
Section ITI.A and Section III.B, respectively.

A. Energy Moments in the Time Domain

For a real r x1 vector function F = (fi,---, f»)* € L?(R)
supported in [0, N], define the energy moments of F in the
time domain by

L= [ " SRR (@ - e, Be 7,

—00

and define the (2N — 1)r? x 1 vector

(vec(Tp (7))} = N-15

where for an r x r matrix B, vec(B) is the 72 x 1 vector
defined by (10).

Suppose P(w) = Y1 Pre~™“ is an FIR matrix filter.
In the following we assume that P satisfies the vanishing
moment conditions of order at least one. Let 1 be the left
1-eigenvector of P(0) with 1IJP(7) = 0. Let LY denote the
1 x (2N — 1)r? vector defined by (16), i.e., the vector

vec(I’g) = (24)

LO :(18®187718®18)

For B € Z,, denote

TE = (245 1-N<ij<n—1, (25)
where Af = YN kPPi_; @ Pj,. We know that 7 is the
matrix 7p defined by (12). Then we have

Proposition 2: Suppose P = Zszo Pre ¥ is an FIR
matrix filter and ® € L2(R) is a compactly supported
(2,P) refinable vector. Let vec(I3) and 75 be the vec-
tors and matrices defined by (24) and (25), respectively,
then

vec(I) =277 Z ()Tpvec (13-, BeZ,. (26)

0<a<lp

Furthermore, if ® is stable, then vec(Ig) are uniquely de-
termined by (26) and the requirement

Ly vec(I3) = [13(0) . (27)
The proof of Proposition 2 is provided in the Appendix.
Let ¥ be the vector-valued function defined by (23). For
B € Zy, define

Tg = (QBéai_j)l—Ngi,jSNfl; (28)
where Bf = Zszo k°Qy—; ® Q. Then by a similar deriva-

tion as in the proof of Proposition 2, we have
Proposition 3: Let Tg be the matrix defined by (28), and

vec(Ig), vec(Ig,) be the vectors defined by (24). Then

vecIﬁ =28 Z

0<a<p

( )TQvec 157%), BeZy. (29

We note that if every component of ® = (¢y,--+,¢,)7T is
normalized , i.e., ||¢;||l2 = 1, then the time-duration Ay, of
¢; is given by

((e; ® ;) Tvec(I5(0)))*.

Similarly the time-duration of each component of ¥ is given
in terms of vec(I4(0)) and vec(I%(0)). If @ is stable, by
Proposition 2, vec(I}) is the right 1-eigenvector of 7p sat-

isfying (27). By (26),
(g) TS vec(TS2).

A% = (ej ® ej) vec(I5(0)) —

(2°1 — ’Tp)vec(Ig) =

2

o<a<lp

Since the spectral radius of 7p is not greater than 1, vec(Ig)
for § = 1,2 are uniquely determined by vec(I$),0 < a < 3,
and vec(Ig),O < B < 2, are uniquely determined by (29).
Therefore Propositions 2, 3 provide the formulas for the
computation of the time-durations of & and V.

For the GHM-multiwavelet, by Proposition 2 and Propo-
sition 3, the time-durations Ay, , Ay, for the scaling func-
tions and Ay, , Ay, for the multiwavelets are respectively

1324, 1974, .2497, .3026.

B. Energy Moments in the Frequency Domain

To compute the frequency-bandwidths of scaling func-
tions and multiwavelets, we define the energy moments of
a vector-valued function in the frequency domain. For a
real 7 x 1 vector function F = (fy,---, f»)! € L*(R) sup-
ported in [0, N], if F is in Sobolev space W?*(R) for some
s > 0, define for 8, 0 < 8 < 2s, the energy moments of F
in the frequency domain by

1

g — +eo AT Tk iwé
DI(¢) = 2%[ B () (w)e“E duw,

and define the (2N — 1)r2 x 1 vector

vec(Dj) := (vec(Dg(5)))iZN_;- (30)
We have
Proposition 4: Suppose P = ZkN:O Pre %« is an FIR
matrix filter, and ® is a compactly supported (2,P) re-
finable vector with ® € W*(R) for some s > 0. For any
B€Zy,B<2s,let Vec(Dg) be the vectors defined by (30).
Then
Tpvec(D3) =277

vec(D4). (31)

Furthermore, if P satisfies the vanishing moment condi-
tions of order m for some vector 1013 , and satisfies (14) for
some mgy € Z,, then for any 8 € Z,, f < min(m + mg —
1,2s), and for any a € Zy, a <,

0, 0<a<p,
PRIRe0), a =48,

where L%, are the vectors defined by (16).
The proof of Proposition 4 is presented in the Appendix.

fvec(Df) = { (32)



For ¥ defined by (23), define vec(Dg) by (30). A similar
proof as that of Proposition 4 gives

Proposition 5: Suppose P = Zszo Pre % is an FIR
matrix filter, and @ is a compactly supported (2, P) refin-
able vector with ® € W*(R) for some s > 0. Let ¥ be the
vector-valued function defined by (23), and for any 8 € Z,
B8 < 2s, let vec(Dg) and vec(Dg) be the vectors defined
by (30). Then

vec(D?) = 29Tqvec(D3). (33)
In the scalar case, r = 1, the above results were obtained
in [31].
For real ® = (¢, --,¢,)% and ¥ = (¢y,---,1,)T with
llo;ll = 1,1|%;]| = 1, the frequency-bandwidths Aaj, A%
of ¢;, ¥; are respectively given by

Azj = (ej @ €)"vec(D3(0)),
Azj =(e;® ej)TVGC(D?Il (0))-

By Proposition 5, the vectors vec(D@,) are determined by
vec(Dg). Therefore in order to decide on the frequency-
bandwidths of orthogonal scaling functions and multi-
wavelets, we need to decide on vec(D%). By Proposition 4,
vec(D%) is a right 1/4-eigenvector of 7p satisfying (32). If

i) P satisfies the vanishing moment conditions of order

at least two;
ii) there exists a vector 12 satisfying (14) for m =
2,m0 = ].,

iii) ® € W1(R);

iv) 1/4 is a simple eigenvalue of 7p;
then vec(D2) is uniquely determined by (31) and the re-
quirement L2 vec(D2) = —2[198(0)2. Usually the multi-
wavelets constructed have some smoothness, and we note
that if 1/4 is not an eigenvalue of P(0) (this condition can
be easily met in practice), then P satisfies (ii). Thus in the
design of the OPTFR-multiwavelets, if we use Propositions
4, 5 to compute the frequency-bandwidths of scaling func-
tions and multiwavelets, we mainly consider conditions (i)
and (iv). When we consider the area of the resolution cell
AW&@, by 512;] = A%ﬁ} — (@)?, what we need to compute
is the center @ of ¢; in the frequency domain since Ay, and
A~ can be obtained by the above formulas. In this case,

we will use the cascade algorithm to approximate multi-
wavelets, i.e., we will compute the centers @ of the compo-
nents of ¥,,, where ¥,,(z) =23, Qx®,(22 — k) and &, is
defined by (3) for some n (e.g. n = 8). In the case that 1/4
is an eigenvalue of 7p but it is not simple, or that we do not
want to construct the scaling functions which provide ap-
proximation order 2, we also use the cascade algorithm to
compute approximately the frequency-bandwidths of scal-
ing functions and multiwavelets.

For the GHM-multiwavelet, the matrix lowpass filter P
satisfies the vanishing moment conditions of order 2, the
corresponding transition operator 7p satisfies Condition E
and 1/4 is a simple eigenvalue of 7p. The scaling func-
tion ® and multiwavelet ¥ are in W!-5=¢(R) for any € > 0.

Thus we can use Proposition 4 and Proposition 5 to com-
pute the frequency-bandwidths of ® and ¥. The frequency-
bandwidths of ¢1, ¢2, ¥1 and 1, are respectively

4.2762, 4.9281, 13.6172, 10.6100.

Thus the areas of the resolution cells for ¢1, ¢2, 11 and ¥,
are respectively

5662, 9727, 3.3999, 3.2104.

IV. CONSTRUCTIONS OF OPTFR-MULTIWAVELETS

In this section, we will construct the OPTFR-wavelets of
multiplicity 2 with support lengths from 2 to 6. Here the
symmetry property of scaling functions and multiwavelets
is considered, and we shall construct scaling functions and
multiwavelets with the first component being symmetric
and the second one antisymmetric. For 2 < N < 6,
let y®, yT denote the symmetric/antisymmetric scal-
ing functions and multiwavelets supported in [0, N] with
corresponding multifilter banks yP(w) = EQ’:O Ppe ik,
NQw) = E,ivzo Qre . We will construct yP, yQ such
that Py, Qy satisfy (see e.g., [1])

P, =UPN_+U, Qr=UQn_;U, k=0,---,N,

where U is the 2 x 2 unitary matrix defined by U :=
diag(1,-1).

In the following, we first find the parameter expressions
for the matrix coeflicients P; and Q. With these ex-
plicit expressions, we construct the OPTFR-multiwavelets
by minimizing the sum

2

NS = Zl Avo; D+ Ay, A o
J:
~ 2 ~
NS = ZAN¢jANA¢j + AN%AN/@.

Jj=1

Let y®° and y¥° (N:I;O and N‘i", respectively) denote the
OPTFR-scaling functions and multiwavelets by minimizing
NS (nS, respectively). The optimal problem for the sums
of the areas of resolution cells n.S, N§ is non-linear. We
will use the simplex search algorithm to minimize 5.5, x.S.
The minimizations are performed with different random
initial values and the best results are chosen. In the fol-
lowing, we also construct the smoothest scaling functions
N ®°® and multiwavelets y¥® based on the smoothness es-
timates provided above and the parameter expressions for
the matrix coefficients Py and Qj . y®* and y¥° can be
used as good starting values for the constructions of the
OPTFR-multiwavelets.

Example 1: In this example, we first give the explicit
expressions for the matrix coefficients P, and Qj for
symmetric/anti symmetric scaling function 2® and mul-
tiwavelet o ¥ supported in [0,2], and then construct the
OPTFR-multiwavelet. Assume Pj, = 0,Q; = 0,k <



0,k > 2. By (20) for j = 1, PPY = 0. This and
the fact that both Py, Py are not zero matrix imply that
rank(Py) =rank(P;) = 1. Thus we have

szl a1 Coaq ’ Plzl az 0 ’
2 as Coa2 2 0 a4
P, = 1 ( a1 —Coay )
2 —a2  CoQ2
for some ¢y € R. By PoPI = 0 again, c2 = 1. We choose
¢o = 1 (the choice of ¢y = —1 only reduces the sign changes

of the second component of ;). Therefore

[ ar+ %ag 0
P(O) - ( 0 az + %a4

1
_ a; — 5&3 0
P(W)_( 0 ag—%a4>'

By the symmetry of 2@, »®(0) = (1,0)7 is the unique nor-
malized 1-eigenvector of P(0). By (17), a; =1/2,a3 = 1.

One can check that the CQF condition (20) for j =0 is
equivalent to

463 + a3 = 2.
Thus
2
as = %sinﬂ, as =V2cosh, 6€ [—m,7),
and
p_1 1 1
7 4\ V2sinf 2sinb )’
1 1 0
P1—§<0 \/ECOS(Q), 06[-7(,71‘),
With P2 = UP()U
Assume Qy,0 < k < 2, are given by
1/ b b 1 /(b O
Qo_i(b2 bQ)’ Q1_§(0 b4 )

and Q2 = UQoU. Then (21) is equivalent to

467 + b2 =2, 4b3+b2 =2,
and (22) is equivalent to
2b1+b3:0, 4aby +bs\/2 —4a?2 = 0.

Thus we have

2
by =+£1/2, bs=7F1, b2::t§c050, by = FV2sin6.

The choice of positive or negative sign for b; only reduces
the sign changes of s ¥. We choose

1 1 1
QO_Z V2cos@ +/2cosb )’

1 -1 0
Ql:i( 0 —\/Esiné?)’

1 1 -1
QQ_Z —v/2cosf +/2cosf |-

For the case N = 2, the explicit expressions for Py, Qy are
provided above. For

0 = —1.20942920288819(— arccos(v/2/4)),

the corresponding transition operator Tp (i.e., matrix 7p)
satisfies condition E, 3@ provides approximation order 2
with ,® € W945(R). For such a choice of §, the multi-
wavelet constructed above is the one constructed in [1], and
in this case the areas of the resolution cells for ¢1, @2, 91
and 1, are respectively

1.1486, 2.6412, 3.8171, 3.6006.

For other choices of 8, P does not satisfy the vanishing
moment conditions of order 2, and we cannot use Propo-
sitions 4, 5 to compute the frequency-bandwidths of ,®
and o ¥. Instead, we use the cascade algorithm to compute
approximately the frequency-bandwidths of ;@ and » 7.
The minimum of the sum 2S5 is attained at 8 =
—1.10157463780242. For such choice of 4, the correspond-
ing OPTFR-scaling function 5®° and multiwavelets o¥°
are in W-9482(R) and the areas of the resolution cells for

2097, 203, 295 , 219 are respectively

1.0697, 2.1828, 3.3948, 3.3671.

For sum 2§, its minimum is attained at 6 =
—1.09579052470259, and the areas of the resolution cells
for the corresponding OPTFR-scaling function and multi-
wavelet 209, 203, and 21§, 219 are respectively

1.0788, 2.2189, 2.1916, 1.8993.

In Example 1 and the following examples, the areas of
the resolution cells for the OPTFR-multiwavelet yt7 con-

structed by minimizing the sum ~ S should be understood

as A ~0A/,}.
N"pj N'w;

Ezample 2: In this example, we shall present the explicit
expressions for the matrix coefficients of the lowpass and
highpass filters 3P,3Q for the scaling functions 3® and
multiwavelets 3 supported in [0, 3], and then construct
the OPTFR-multiwavelets.

Suppose the matrix coefficients Py, of the lowpass filter
3P for scaling function 3& are given by

).

_1 a; a _1 as Qg
Po——( ), P1_§<a7 as

2\ a3 a4
and P, =UP,U,P3 =UP,U,P, =0,k <0,k > 3. Then

_ a1 + as 0
P(O) - ( 0 a4 +asg )
. 0 a2 — Qg
P(F)_((L3—a7 0 )
By (17) with 13 = (1,0), one obtains

a5:1—a1, ag = a»s.



And one can check that (20) is equivalent to

aj = a1(1 - a1)
ad+ai+ai+ai=1

(34)
asag = asar
az(as + ag) = a1(ar — a3) + as.
By the first equation in (34), we have
1 . 1
ay = 5(1 +Sln€)7 az = 500557 5 € [—71',71'),
and by the second and third equation in (34),
(a3 —a7)?® + (ag + ag)?* = 1.
Thus .
a3 —ary = sing
a4 +ag = cosny, 1 E€[—7, ). (35)

Equation (35) and the last equation in (34) lead to

1 1
as —sinn+ §(cos§cosn+sin§sinn)

2
_ ™ & . m &
= cos(4 2)sm(4 2-l-’n),
and
1 1
a7y = —55111"7"' §cos(§—n)
oo € T £
= s1n(4 2)cos(4 2+17).
By (35) and the third equation in (34), we have
.2
_cosn,, _ sin®(n—§)
(a5 == =—4—
Thus
__cosy  sin(n — &)
ag = D) 2 .

If we hope that there exist highpass filters such that (7)
and (8) hold, we shall choose the plus sign in ag. Hence

ag = sin(% - g) sin(% - g +7)
and
ag = cos(% - g)sin(g - g + 7).
After making the changes of variables:
T m &
9—5—57 C—Z—§+7);
we have
_ 1 8 (cos? —sink
P0_§COS§< sin( cos¢ )’
1. 6( sin? —cos?
— Zgin2 2 2 -
P1_2sm2<—cosC _sin¢ ,0,( € [—m,m)

and P2 = UP1U, P3 = UP()U

Using the above derivation, one can obtain that the ma-
trix coefficients Qy, for the corresponding highpass filter 3Q
are given by (omit the details here)

1 6 sin? cos?
= Zeng 2 2 2
Qo 2C°S2<—cosg sin¢ )’

1.0 —cos? —sinf
cos( ’

Q=555 —sin¢
and Q2 =UQuU, Qs =UQoU,Qr =0,k <0,k > 3.
In this case, there are two parameters 8, to choose to
obtain the scaling functions 3® and multiwavelets 3¥. By
minimizing p(T,p|yp) we obtain the choice

(6,¢) = (3.41911388444093, —.04773984485434).

The corresponding scaling functions 3®° (providing ap-
proximation order 2) and multiwavelets 3¥% are the
smoothest and they are in C1-2663(R).

The property that the scaling function 3® has approxi-
mation order 2 is equivalent to the following condition un-
der the assumption that 3P is stable:

0 0 1
cos — cos(C + 5) —2cos(¢ — 5) + 5= 0.

We then minimize 35 under the constrained condition (36).
The sum 3.5 attains the minimum at

(0,¢) = (—2.87441379981790, 3.07512747587073).

(36)

In this case, the corresponding OPTFR-scaling function
and multiwavelet 38°, 3U° are in C*?*"°(R), and the areas
of the resolution cells for 3¢9, 3¢9, 397, 313 are respectively

6447, 1.6951, 3.1872, 3.7523.

For the sum 3§, its minimum is attained at (with 3®°
providing approximation order 1)

(4,¢) = (2.84273685649241 — 3.0690176412534),

and the areas of the resolution cells for the corresponding
OPTFR-scaling function and multiwavelet 3¢9, 3¢9, 3¢9,

31%’ are respectively

.6388, 1.6777, 1.2135, 1.07654.

In the following three examples, the explicit expressions
for the matrix coefficients of multifilter banks {yP, yQ}
can be obtained similarly as in Examples 1 and 2, and the
details are omitted here.

Ezample 3: In this example, we shall construct the
OPTFR-multiwavelets supported in [0, 4]. The explicit ex-
pressions for the matrix coefficients of the matrix lowpass
filter 4P are given by

P — L( 1—+/2sin6

7 8\ V2(sing —sin(@+ € 1))

1—+/2sin6
VE(sing — sin(6 + € — 1)) )

P, — L( 1 V2cos6 )

PTA V2eos(B+E-T) V2cosé
PA:l<1+\/§sin0 0 )

271 0 V2(siné +sin(@ +£-Z)) )’



and P3 =UP,U,Py =UPyU,P; =0,k <0,k > 4, where
0,¢ € [-m,m). The matrix coefficients for the correspond-
ing matrix highpass filter 4Q are given by

o 1—+2cosb
Q“‘_E(wﬂmw—mmw+£—®)
1—+/2cos6 )
V2(cosé —cos(f+ ¢ — %)) )7
a1 1 V2siné
Ql_Z( V2sin(@ + ¢ — %) \/ising)’
1 1++V2cosb 0
Q:=—% ( 0 V2(cos€ + cos(f + & — %)) )

and Q3 =UQU, Qs =UQoU, Qi =0,k <0,k > 4.
There are also two variables 8 and £ to choose to obtain
the scaling functions and multiwavelets. For

(6,¢) = (1.01075860019276, 2.43693014166954),

we obtain the smoothest scaling function 4®° and multi-
wavelet 4 ¥°® with 4®° providing approximation order 2,
and 4®%, 4,¥* € C13161(R). Here again we shall construct
OPTFR-scaling function 4®° and multiwavelet 4®° with
19° providing approximation order 2. In this case, under
the condition that 4@ is stable, the property that the scal-
ing function 4® has approximation order 2 is equivalent
to

1+ 4sin(8 + €) — 2v/2cos € — 2sin(8 + %) =0. (37
Thus we minimize the sum 45 under (37). 45 attains its
minimum at

(0,&) = (.96630781393588, 2.51067760935378).

The corresponding 4®°, 4 ¥° are in C'263%(R), and the ar-
eas of the resolution cells for 4¢9, 109, 4%, 499 are respec-
tively

7234, 1.7606, 2.9741, 3.1591.

The sum 45 attains its minimum at (with 130 providing
approximation order 1)

(6,¢) = (1.03184046099418, 2.45611030970033),

and the areas of the resolution cells for 451’, 4253, 4qu , 4@
are respectively

6728, 1.7273, 1.1111, .80642.

FEzample 4: In this example, we construct the OPTFR-
multiwavelets supported in [0,5]. In this case, the explicit
expression for the matrix coefficients of the multifilter bank
for scaling functions 5® and multiwavelets ;U are given by

L. ' cosé siné
P0_2sm(9+77)51n(9+§+77)< cosn siny >,
' sin cos
Pl:%cos(9+77)sm(0+§+n)< sinf} 005767 )’
Py =1 cos(6 + & +1)-
cos(f +&+n) sin(d+£+1n)
cosf —sinf ’

P]':UP5_jU,3SjS5, P,=0,k<0,k>5,

and
' . —si cos
QO:%SID(9+n)sm(9+§+W)( _S;;lg c0s7£7 )’
L . cosé —siné
Q1_2cos(0+n)s1n(9+§+77)( cosn —sing )’
Q> = L cos(8 + & +n)-
cos(@ + & +n)

cosf ’

Qr, =0,k <0,k > 5,

sin
Qj = UQ5—jU53 SJ S 57

( —sin(6 + £ +1n)

,where 6,&,nm € [—m, ). There are now three variables 6, £

and 7 to choose to obtain the scaling functions and multi-
wavelets. For

(6,€,m) = —(2.97243117364381, 3.02526503395165,
.07926225995205),

the corresponding scaling function 5® provides approxima-
tion order 4 with ;& € C*5556(R); and for

(6,¢,m) = (.18237114886620, —3.02211022204529,
3.05559127520425),

we find the smoothest scaling function 5®° with 5®°* pro-
viding approximation order 3, and 5®* is in C*-87"7(R).

Under the assumption that the scaling function ;& is
stable, the property that 5® has approximation order 2 is
equivalent to

sin(@ + £ + n)(cos(f + 2n) + % sin(d + & — 7))

1 1
= Join(E+m) - ¢ (39)
By minimizing 5.5 under the constrained condition (38),

we obtain the optimal multifilter banks with

(0,&,m) = (.48385785530695, 2.99910363068828,
—.45541559556097).

The corresponding OPTFR-scaling function and multi-
wavelet 5®°, s¥° are in C*2918(R), and the areas of the
resolution cells for 5¢9, 509, 597, 513 are respectively

5960, 1.7747, 3.1169, 3.4689.

The sum 5§ attains the minimum at (with 55" providing
approximation order 1)

(6,&,m) = (.35152175378550, —.09720137580057,
—.37822377697579),

and the areas of the resolution cells for 55‘1’, 555 5izf, 5{55

are respectively
.6037, .9190.

1.7209, 1.0884,

FEzxample 5: In the last example of this paper, we con-
struct the OPTFR-multiwavelets supported in [0,6]. The



explicit expression for the matrix coeflicients Py, Qy, of the
multifilter bank {sP,sQ} are given by

2
Py = \/T_sinﬂcosf-

( —cos(0+£&+ )

—cos(0+&+ %)
cosn ’

cosm

V2 sin(@ +T) —sin(f + 26+ )
po= P (DETH TRES )
P2:@ @+cos§sin0¢os(6+§+%)

4 \ cosOsin({+n)+sinfsinésiny

sin(26 + §) —sinfcos&cos(0 + £+ §)
cosfsin(¢ +n) —sinfsinsiny ’

V2 cos(6 + %) 0
P3_76059< 0 —cos(& + 1) )’

Pj:UP6_jU,4Sj56, PkIO,k<0,k>6,

and

Qo = @sinOcosf-
sin(0+&+ %) sin(0+£+ %)
—sinp
V2 cos(f + %) cos(0+26+ %)
Q=Y sm0< ~ cos(é —m) cos(E 4 7) :
Q, = Y2 g—cosésinﬂsin(0+§+§)
4\ cosfcos(€ +n) + sinfsin & cosn
cos(20 + %) +sinfcosEsin(f + &£ + )
cosf cos(§ +m) —sinfsiné cosn ’
) —sin(6 + §) 0
Qs = 3 0050( 0 sine 1) )

Q] = UQG—jU74 S .7 S 67

—siny ’

Qr=0,k<0,k > 6,

where 6,¢,n € [—7, 7).
For

(0,¢,m) = (—.09478663741893, 1.97467895132030,
2.11772714811323),

the corresponding scaling function ¢® provides approxima-
tion order 4 with ¢® € C'52°(R), and for

(0,¢,m) = (—.08786114688669, —1.11213061730812,
—1.05315350967819),

the corresponding scaling function ¢®° is smoothest with
¢®* providing approximation order 3. The smoothest scal-
ing function ¢®° and the corresponding multiwavelet ¢¥*
arein C1-8634(R). One can check that if the scaling function
¢®P is stable, then the property that ¢® has approximation
order 2 is equivalent to

L_ 0
1= 0

(39)
Again by minimizing ¢S under (39), we obtain the opti-

mal multifilter bank with

? cos(8+£&+n)+sin 6(sin(+2€)—2 sin(n—&+ %))4-

(0,¢,m) = (—.10137179232227, —1.6319164656 7871,
— 46550166911210).

In this case the corresponding OPTFR-scaling function and
multiwavelet ¢®°,¥° € C13542(R). The areas of the res-
olution cells for ¢¢¢, 699, ¥y, 6¥5 are respectively

7033, 1.7666, 2.9726, 3.1532.

The sum 6§ attains its minimum at (with 650 providing
approximation order 1)

(0,€,m) = (—.09644181482851, —1.17135241959765,
—1.00341129573443).

The areas of the resolution cells for 65{, 653, GQZf, 6@5 are
respectively

7117, 1.6884, 1.0805, .7969.

From the values of 8, &, 7 provided in the above examples
and the explicit expressions for Py, Qj, we have the cor-
responding optimal multifilter banks. Here we would like
to_provide the optimal multifilter banks for y®°, y¥° and
~N®°, yU° with N = 4,6 in the Appendix. The functions
499, 4U° and 4®°, g¥° are shown in Figure 1 and Figure
2, respectively; and 3®%, 3¥° and 59°, 5¥° are shown in
Figure 3 and Figure 4, respectively.

For the s/galing functions y ® constructed in the above ex-
amples, y®(0) = (1,0)7 by the symmetric/antisymmetric
property of y®. However in image processing applications,
the balanced multiwavelets are required (see [22]). As in
[22], a multiwavelet ¥ is called balanced if its correspond-
ing scaling function ® satisfies ®(0) = (1,1)7/v/2, and in
this case we also call & balanced. By a rotation of angle
/4, we can get the balanced orthogonal scaling functions
and multiwavelets, denoted by xy®° and n¥?, respectively,
from the symmetric/antisymmetric y® and y¥:

N'1>b = R()N@, N‘I'b = R'ON‘I’> (40)

where Ry is the rotation by angle 7/4 in the (z3, z1)-plane,

i.e. Y
2(1 -1
R""T(l 1)'

In this case the multifilter bank corresponding to n®°, y ¥®
is

NP (w) = RonyP(w)RT, nQ°(w) = RonQ(w)RE . (41)

For y® = (v¢},n¢3)" and nO* = (v9), N¥3)", they
lost the symmetry, but they possess another property: the
first components are the reflections of the second compo-
nents about their center point N/2, i.e.

NG (N —z) = ngi(z), NY3(N —2) = noi(2).

By (40), for the OPTFR-scaling functions y®° and mul-
tiwavelets yU° ( N&w and lel", respectively) constructed
above, we have the corresponding balanced scaling func-
tions and multiwavelets, denoted by x®%° and y¥% (by
~®% and y T, respectively). In Table 1, we list the areas
of the resolution cells for such balanced scaling functions
and multiwavelets. Figure 5 and Figure 6 show the graphs
of 4®%, ,®% and ®%°, B, respectively.



V. CONCLUSIONS

A procedure to design orthogonal multiwavelets with
good time-frequency resolution has been introduced. The
formulas to compute the time-durations and the frequency-
bandwidths of scaling functions and multiwavelets are de-
rived. For 2 < N < 6, parameter expressions for the matrix
coefficients of the multifilter banks which generate symmet-
ric/antisymmetric scaling functions and multiwavelets sup-
ported in [0, N] are presented. Orthogonal multiwavelets
with optimum time-frequency resolution are constructed
and some optimal multifilter banks are provided. Future
research problems are: (i) to design more optimal multifil-
ter banks; (ii) to use the optimal multifilter banks in image
processing applications.

APPENDIX
A. Proof of Proposition 2
Proof: By definition, we have

I5(y)
4+ oo

g,
Qﬂ T ZPk /-i—oo(ar:%—k)/‘:f

<I>($) *(z +k — 2y —n)dzPT

_ 1 P B a e B—a
T 961 Z k Z a k o
k,n 0<a<lps >
®(x)®*(z — (2y +n — k))dzPL

= 2;_1 > (ﬁ) > kP IS *(2y +n — k)PL.

(¢}
0<a<lpg k,n

P ®(2x — k)®* (2 — 2y — n)dzPL

Thus by (11)

vec(Ig(y)) =

1 8 o
e ¥ (D) S re@.or.
0<a<lp k,n
vec(T5~*(2y + n — k).
For j € [1 — N, N — 1], we have

vec(Tg (7))
1
0<a<ﬁ
vec(lﬂ “(2J +n—k))

:2; 3 ( ZZk (Pi_(2jom) ® P) -

0<a<p
vec(Io~*(n))

( ) i Qika(Pk—(za‘—n)@Pk)-

n=1-N k=0

Therefore, we have

which is (26).
We now show that vec(I$) satisfies (27). By the refin-
ability of ®, 1J®(2kw) = 0, k € Z\{0} (see [18]). Thus

N-1

= > (1) ®19)vec(T§(5))

j=1—-N

LY vec(I$)

N-1
= 1vec(I5 (5)

)1)”"

I
p—
oo

[ 8@ - a0
=15 3(2km)B(2km)* (19)" = 153(0) .
k

By (26) for 8 = 0, vec(I}) = Tpvec(I). Thus if @
is stable, then 7p satisfies Condition E and vec(I%) is
the unique right 1-eigenvector of 7p with the requirement
L vec(I3) = [198(0)|2 # 0. To find vec(I2) for 8 > 1, (26)
can rewritten as

(2°1 — Tp)vec(I3) = Z (g) T vec(I5™%).
0<a<lp

Since the spectral radius of 7p is not greater than 1, vec(Ig)
is uniquely determined by vec(I§) , a < 8. [ |

B. Proof of Proposition 3
Proof: By definition, we have

Dg(¢)

= L a8 (P (e

DY . 27742 2

_ ﬁ oo el F* * 2w

= WP(w)®(w)®* (w)P*(w) dw
™ — 00

= ﬁZ:Z:P,/-I_oo W B(w)B* (w)e Pkt g, PT
& n k * -

28 oo E EN iw(2 T
== YN P / WP B (w)®* (w)e - dwP]
n k -
=203 "N " PyDS (26 — )P},
n k

By (11),

N N

vec(Dj (¢)) = 20+ Z Z(Pkfn ® Py)vec(D3 (26 —n)).

n=—N k=0
Forje[l-N,N —-1],

vec(Dg (7))



N N

=207 3" 3 (Pioy @ Pi)vec(Dg (2) —n))
v

=27 3" 23 (Pi_(3j-n) ® Pr)vec(Dj(n))

n=1-N k=0
= 2(Tpvec(D5))(j)-

Thus we have proved (31).
The proof of (32) is the same as in [16].
details here.

C. Multifilter banks in Example 3 and Example 5
4P,4Q for 4@0 and 4\:[’0:

.02738509680987

p. _ [ —02045061057401
0= .02738509680987

—.02045061057401 )

.20093899455952
- 31835529662014 —.28549014734181
. 54090122114802 0
- .36234070660108
[ —.02453050272024 —.02453050272024
T\ —.01643257463917 —.01643257463917
.29090122114802
15378525649067 .20855545011040

Qs = —.45093899455952 0
2= 0 .60384544396195

and PJ’ = UP4_]'U, Q]' = UQ4_]'U, J = 3,4
4P,4Q for 4@0 and 4\1’03

( —.02671772204867
Py =

.03676526136168

—.02671772204867
.03676526136168

.18145779472221
—-32002243244560 —.27369055553292
_ 55343544409734 0

- .37410093198947
[ —.03427110263889 —.03427110263889
~ | —.02316593845634 —.02316593845634

.30343544409734

15028520463305 .22381572735642

Qs = —.43145779472221 0
2= 0 .59371298797852

and Pj = UP4_J'U, Qj = UQ4_]'U, ] = 3,4.
GP;GQ for GQO and 6\1’02

P = ( —.00127499039395 —.00127499039395 )
0=

.00195291533336  .00195291533336
—.02260941238924 —.01905941799280
.03289326667537  .03093129087626
_ .25127499039395  .19326509672541
T\ —.32011146096034 —.28805112655501
54521882477849 0
.35357845394700

We omit the
[ ] andPJ—UPG JUQJ—UQa ;U,j=4,5,6.

_ [ —.00177499719822 —.00177499719822

~ | .00098098789956  .00098098789956

[ —.02772995644032 —.03027993722822

~ \ .01407725186930  .01798308253603
.25177499719822  .29344382758027
—.14487694819769 —.20870150574932

Qs = —.44454008711936

3= 0 ——60816258751535

6P;6Q for G(I)O and 6\1’0

-

.01172922944199
—.00711561604177

—.02164317453772
.00569063308134

.23827077055801
—.31610352864132

all
r= (
< 54328634907545
=
@=(
%=

.01172922944199 )

—.00711561604177
—.03392743452984

.02802165119852 )
-20917065732884 )

—.26320370755727

0
.39970866211417 )

.00614212999606  .00614212999606
—.01116550905859 —.01116550905859
—.02627928605658 —.00282082717259

.03356552658380  .01933429450025

.24385787000394  .29942847907150
—.18299818891716 —.21671047319701

Qs — —.44744142788684
3= 0 —W%W%m%w

and PJ = UPG—jU7 Q] = UQG—]'Ua .7 = 47576'
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Fig. 1. OPTFR-scaling function 4®° (the left) and multiwavelet 4 ¥°
(the right).

) B = © © B = ©

Fig. 2. OPTFR-scaling function ¢®° (the left) and multiwavelet ¢ U°
(the right).

Fig. 3. Symmetric/antisymmetric scaling function 3®° (the left) and
multiwavelet 3¥° (the right) with 3®%,30¥% € C1-2668(R).

Fig. 4. Symmetric/antisymmetric scaling function 5®° (the left) and
multiwavelet 5¥° (the right) with 5®%, 50 € C1-6777(R).



Fig.

Fig.

5. Balanced scaling function 4®% (the left) and multiwavelet

4% (the right).

6. Balanced scaling function ¢®%° (the left) and multiwavelet

6% (the right).

TABLE 1. The areas of the resolution cells for the

balanced scaling functions and multiwavelets.

NTAuged o [ Al o [ A o= TA 5.8 =
2 77950 2.1968 77931 1.2793
3 6520 2.0160 6628 7283
4 6533 1.9802 6658 7156
5 7127 2.2472 6884 7130
6 6628 2.0065 6840 6860




