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CONVERGENCE OF CASCADE ALGORITHMS ASSOCIATED
WITH NONHOMOGENEOUS REFINEMENT EQUATIONS

RONG-QING JIA, QINGTANG JIANG, AND ZUOWEI SHEN

ABSTRACT. This paper is devoted to a study of multivariate nonhomogeneous
refinement equations of the form

o) = o) + 3 g a(0)p(Mz —a),  zER?,
where ¢ = (¢1,...,¢,)T is the unknown, g = (g1,... ,9-)7 is a given vector
of functions on IR®, M is an s X s dilation matrix, and a is a finitely supported
refinement mask such that each a(a) is an r X r (complex) matrix. Let ¢o be
an initial vector in (L2(IR®))". The corresponding cascade algorithm is given
by

D=9+ Y ol (M=), k=12
In this paper we give a complete characterization for the La-convergence of
the cascade algorithm in terms of the refinement mask a, the nonhomogeneous
term g, and the initial vector of functions ¢g.

1. INTRODUCTION

A nonhomogeneous refinement equation is a functional equation of the
form

(1.1) ¢(z) = g(z) + Zaezs a(@)p(Mz —a), zelR’,

where ¢ = (¢1,...,¢,)7 is the unknown, g = (g1,...,9-)7 is a given vector of
functions on IR®, M is an s x s dilation matrix, and a is a finitely supported mask
such that each a(a) is an r X r (complex) matrix. In this paper, by a dilation
matrix we mean an integer matrix whose eigenvalues lie outside the closed unit
disk. When g =0, (1.1) becomes the homogeneous refinement equation

o(x) = Zaezs a(a)p(Mz — a), z € R°.

The readers are referred to [1] and [4] for some basic properties of homogeneous
refinement equations. For vector homogeneous refinement equations, see [9], [2],
[22], [19], and [27].

Nonhomogeneous refinement equations generalized from their homogeneous coun-
terpart are motivated by constructions of multiwavelets to obtain multi-channel
filters with good time-frequency localization in the area of signal processing and
constructions of wavelets on a finite interval to find numerical solutions of differen-
tial equations in the area of numerical analysis (see, e.g., [24] and [3]). A systematic
study of such refinement equations not only complements the existing literature of
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its homogeneous counterpart, but also provides a global view of the subject. This
further leads to a better understanding of refinement equations.

For a given equation (1.1), the first problem to consider is whether it has dis-
tributional solutions. Distributional solutions of the nonhomogeneous refinement
equation (1.1) were studied in [5], [25], [6], [15], and [26]. In [15], we provided
a characterization of the existence of distributional solutions for continuous and
discrete nonhomogeneous refinement equations.

In practice, solutions are required to be functions with certain smoothness. Since
solutions are not of any analytic form in many cases, the cascade algorithm is used
to obtain approximations of the solutions. The second problem to consider is the
Ls-convergence of the cascade algorithm, which will be the main topic of this paper
. The convergence of the cascade algorithm is fundamental to wavelet theory and
subdivision. For example, in the context of wavelet theory, the key step to the
construction is to find right refinable functions, and in the context of subdivision,
the limiting surface of the subdivision process is a linear combination of shifts of
the refinable function corresponding to the subdivision scheme.

Suppose g = (91,...,9-) is a given r x 1 vector of compactly supported func-
tions in Ly(IR®). Let Q, be the cascade operator on (Ly(IR%))" given by

— . — T S\\7
(12)  Quf=) . a@f(M-—a), f=(fi,....f)" € (L(R))"
Choose an initial vector ¢g € (L2(IR®))". Let
(1.3) or =g+ Zaezs a(@)pp_1(M-—a), k=1,2,....
If there exists an 7 x 1 vector of functions ¢ € (Ly(IR%))" such that
kll{go ||¢k - ¢||(L2(]Rs))’" = 05

then we say that the cascade algorithm associated with a,g, and ¢¢ is Lo-
convergent. If this is the case, then the limit ¢ is a solution of the nonhomogeneous
refinement equation (1.1). In the scalar case (r = 1), we say that the cascade
algorithm associated with the corresponding homogeneous equation converges if it
converges for any initial function ¢¢ that satisfies

(14) > dol—a)=1.

a€”Z’®

The Ls-convergence of cascade algorithms associated with homogeneous refine-
ment equations were investigated in many papers such as [11], [23], [8], [20], [22]
and [16]. As it has been done in many other areas of mathematics, to solve the
nonhomogeneous problem, one starts with the corresponding homogeneous prob-
lem and uses the results of this case as indicators and the methods as a starting
point. This process normally is nontrivial, since the nonhomogeneous problem can-
not be reduced to the homogeneous problem entirely. This is also the case for the
convergence of the cascade algorithm as shown in the following two examples.

The first example shows that in the nonhomogeneous case, the choice of the
initial functions highly depends on the nonhomogeneous term.

Example 1.1. Let M = (2), a(0) = a(1) =1, a(a) = 0 for all o € Z\{0,1}, and
the nonhomogeneous term g = X[0,1/4) + 2X[1/4,1/2) + X[3/4,1) — X[1,2), Where x g de-
notes the characteristic function of the set E. It is clear that the cascade algorithm
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associated with the homogeneous equation converges for any initial function satis-
fies (1.4). However, since ) . 9(- — ) # 0, the cascade algorithm associated with
the nonhomogeneous equation does not converge for any initial function satisfying
(1.4) by Remark 2.7. Tt converges when ¢g = X[0,1/2)-

Assume that the cascade algorithm associated with the homogeneous case con-
verges. Corollary 2.6 provides a complete characterization of the initial functions
for which the cascade algorithm associated with the nonhomogeneous refinement
equation converges. However, the next example shows that the convergence of the
cascade algorithm associated with the homogeneous refinement equation is not a
necessary condition for the convergence of the cascade algorithm associated with
the nonhomogeneous one. Hence, it is necessary to give a complete characteri-
zation in terms of the refinement mask a, the nonhomogeneous term g and the
initial vector of functions ¢y for the convergence of the cascade algorithm in the
nonhomogeneous case. Such a characterization will be given in Theorem 2.4.

Example 1.2. Consider the nonhomogeneous refinement equation

¢ =a(d(2) +$(2--1)) +g,
where 1 < a < v/2and g = X[o,1) — X[1,2)- Clearly, the cascade algorithm associated
with the corresponding homogeneous refinement equation does not converge in Lo-
norm. On the other hand, since ),z g(-—a) = 0, the cascade algorithm associated
with the nonhomogeneous refinement equation does converge for any initial function
¢o supported in [0, 2] that satisfies ) .z ¢o(- — @) = 0 as shown in Example 3.2.

In the univariate and scalar case (s = 1 and r = 1), a characterization of Ls-
convergence was given in [25] for cascade algorithms associated with the nonho-
mogeneous refinement equation (1.1). Their argument is based on the fact estab-
lished in [12] that a compactly supported function on IR is a linear combination
of finitely many shifts of a compactly supported function whose shifts are linearly
independent. However, multivariate compactly supported functions do not have
such property (see [13] for a counterexample). Thus, a new technique has to be
introduced to deal with the multivariate case.

The purpose of this paper is to give a complete characterization for the Lo-
convergence of cascade algorithms in terms of the refinement mask a, the nonho-
mogeneous term g, and the initial vector of functions ¢g. This will be done in
Section 2. In Section 2, we also discuss some relation between the Lo-convergences
of cascade algorithms associated with the homogeneous and nonhomogeneous re-
finement equations. In Section 3, we give several examples to illustrate the general
theory.

2. CONVERGENCE OF CASCADE ALGORITHMS

In this section we give a characterization for the Lo-convergence of the cascade
algorithm associated with a nonhomogeneous refinement equation.

As usual, we use L2(IR?) to denote the space of square integrable functions on
IR®. The norm on Ly (IR?) is given by

= ([ 1s@Pds)”,  fe Lo,

Given a measurable function f on IR’, we use || f||c to denote the essential supre-
mum of |f| on IR



4 RONG-QING JIA, QINGTANG JIANG, AND ZUOWEI SHEN

For two functions f,h in La(IR?), f ® h is defined as follows:

fon@) = [ fle+yhly)dy, e’
RS
where h(y) denotes the complex conjugate of h(y). In other words, f ® h is the
convolution of f with the function y — h(—y), y € IR’. We find this notation,
which was introduced in [14], is convenient. It is easily seen that f ® h lies in
Co(IR?), the space of continuous functions on IR’? which vanish at co. In particular,

f © h is uniformly continuous. Clearly,

(2.1) 17 © hlleo < [I£]]2]lA]l2-

Moreover, (f&1)(0) = |3

Let £o(Z?) denote the linear space of all finitely supported sequences on Z°, and
let £, (Z?®) denote the linear space of all bounded sequences on Z°. The norm on
Lo (Z?) is given by ||v]|eo := sup{|v(a)| : @ € Z°},v € Lo (Z?).

We use C" to denote the linear space of all » x 1 complex vectors. The norm of a
vector € = (&1,...,&)" € € is defined by [¢] := 37, [§;|. If F is a linear space,
we use F'" to denote the linear space

{(fla---;fr)T:fl;--- ,freF}.

If, in addition, F' is a Banach space equipped with the norm || - ||, then F" is also
a Banach space with the norm given by

A= D = (e S)T € P

The Kronecker product of two matrices is a useful tool in the study of vector
refinement equations (see [7], [17] and [18]). Let us recall some basic properties
of the Kronecker product from [10]. Suppose A = (aij)i<i<m,i<j<n and B =
(bij)1<i<k,<j<i are two matrices. The (right) Kronecker product of A and B,
written A ® B, is defined to be the block matrix

a1B ai2B --- ainB

a1 B a»B  --- azn B
A® B = . .

amlB am2B Tt a/mnB

For three matrices A, B, and C of the same type, we have
(A+B)®@C = (A®C)+(B®C);
A(B+C) = (A®B)+(A®C0().
If A, B,C, D are four matrices such that the products AC and BD are well defined,
then
(A® B)(C ® D) = (AC) ® (BD).
Moreover, if A1,..., A, are the eigenvalues of an r x r matrix A and p,..., g,
are the eigenvalues of an r x r matrix B, then the eigenvalues of A ® B are A;uy,
LE=1,...,r.
For amatrix A = (aij)1<i,j<r, the vector (@11, ... , 01,125+« ,Qr2yeee yQlpyeee ,Qpp)
is said to be the vec-function of A and written as vec A. Suppose A, X, and B are
three 7 x r matrices. Then we have (see [10])

(2.2) vec(AXB) = (BT ® A)vecX.
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Suppose ¢ = (¢1,...,¢:)% and ¢ = (¢1,... ,9,)T liein (L2(IR*))". Let ¢ © T
be defined as follows:

PLOY1L P1 Oy - P OYy
T G2OY1 P20y - P2 OYy
POYT = : : - :
¢r®¢1 ¢T®¢2 ¢T®w7‘
By (2.1) we have

(23) Ivec(6 © 47w < 19l
Moreover,
[vec(¢ @ ) (0)] = Z 315 0 66012 Y Iy © 6400 Z 165113-
Consequently, o ”
(24) vec($ © 67)(0)| 2 114l

Now let us discuss properties of the cascade operator defined in (1.2).

Lemma 2.1. Let a, (k = 1,2,...) be the sequences of r X r matrices defined by
ai :=a and

Zakl ala — MpB), aeZ’, k=2,3,....
Bez?
Then the following formula is valid for all k =1,2,... and all f € (L2(IR?))":

(2:5) Qif =3 . an(@)f(M" - a).

Proof. The proof proceeds by induction on k. For k = 1, (2.5) comes from the
definition of the cascade operator Q.. Suppose & > 1 and (2.5) has been verified
for k — 1. Then by the induction hypothesis we have

Qff = Q' Quf) = D a1(B)(Quf)(M*1- =)

Bez®

Y Y e (Blala)f(M* - — MB - a)

BEZ® acZ®

= > [Zﬁezs ag—1(B)ala — Mﬂ)]f(Mk_ —a)

a€c”Z?®

Z ag(a) f(M* - —a).

a€”Z’®

This completes the induction procedure. O

Lemma 2.2. The following relation is wvalid for all k = 1,2,... and aoll f €
(L2(IR?))"
vee ((Q5 )o@ )T) = Q (vec (FOfT)),

where b is given by

(2.6) b(a) = dezs a(B)®a(a + B) /| det M|, a€eZ’.
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Proof. Write m for |det M|. It is easily seen that

JM*-—a) o f1(Mb-— ) = —(fofY(M*-—a+6), apez’
By (2.5) it follows that

@ipe@in” = [Zaezsak(a)f(Mk'—a)]G[ZBEZSak(ﬂ)f(M'“-—ﬁ)
Y ale) (oYM~ at ) a(B)

T

a€Z® BeZ*
Therefore, with h := vec (f © fT), by (2.2) we obtain
1
vee (QeNo@eN)) = — 3 > a(B)®ar(@) h(M* —a+p)
a€Z*® BeZs
1
= WZ Zak YRay(a + B) h(M*- — a).
a€”Z® BeZ®

Let by (k=1,2,...) be the sequences of r?> x r? matrices defined by b; := b and
=Y bha(Bbla—MB), «a€Z’ k=23,....
pezs

Then one can show as in the proof of (2.5) that

Qih=Y_ . u(@h(M* —a).

To complete the proof of Lemma 2.2, it suffices to show

2.7) bi(a) = % Y, wPen(a+s)  VacZ®

This will be done by induction on k. By the definitions of a; and by, (2.7) is true
for kK = 1. Suppose k > 1 and (2.7) has been verified for ¥ — 1. By the induction
hypothesis, for a € Z° we have

>~ br—1(m)b(a — Mn)

nezs

= mF YN (a1 ()®ar-1(n+ 7)) (a(B)@ala — My + §))

BEZ* yeZ* neZ*

= m Y 3N (e 1(Ma(B— M) @ (ax-1(mala + B — Mn))

BEZ*® vEZ* nEZ®

- kZak YQar(a + B).

Bez*

This completes the induction procedure, and thereby finishes the proof of Lemma
2.2. O

Let T}, be the transition operator on ({y (Zs))r2 given by
Tyv(a Z b(Ma — B)v(B), a€eZ’ ve (EO(ZS))T2
BeZ*®

It is known that the minimal invariant subspace V of T}, generated by v is finite
dimensional (see [8] and [16]). We use p(Tp|v) to denote the spectral radius of Ty .
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Lemma 2.3. The following relation is valid for oll k = 1,2,... and all v €
(bo(Z%))" -
Tfv(a) = Y be(M*a - B)o(B), aeZ k=1,2,....
Bezs

Proof. The proof proceeds by induction on k. By the definition of T}, our claim
is true for £ = 1. Suppose it is valid for £ — 1. By the induction hypothesis, for
a € Z° we have

Tiv(a)

T (Tyw) (@)
3 by (MF " — B)(Th0) (8)

Bez®

S T b (M o= HHOLE — A)o(y)

BEZ® veZ*

Z Z D1 (B)b(MFa =y — MB) | v(y)
BeZ

YEZ®

D b(MFa—y)u(y).

YEZ*

The proof of Lemma 2.3 is complete. O

Let us investigate the cascade algorithm as given in (1.3). For k = 1,2,..., by
(1.2) and (1.3) we have ¢ = g+ Q9 +--- + Q¥ g + Q¥ ¢y. It follows that

(2.8) bri1 — bk = Qg+ QF " ¢o — QFdo = QF o,

where go := g + Qo0 — ¢o. The following theorem gives a characterization for the
Ly-convergence of the cascade algorithm associated with (1.1).

Theorem 2.4. The cascade algorithm associated with a, g, and ¢g converges in
the Ly-norm if and only if limy_,c || TFv||co = 0, where b is given by (2.6) and v
is given by v(a) = vec(go®gd )(a), go = g+ Qado — o, o € Z°, or equivalently,
p(Tv|v) < 1, where V is the minimal invariant subspace of Ty generated by v.

Proof. Let us first establish the sufficiency part of the theorem. Write hy for
vec (go®gd) and hy for vec ((Q¥g0)®(Q%g0)T), k = 1,2,.... Then v(a) = ho(a)
for all & € Z°. By Lemma 2.2 we have hy = Q’,fho, k=1,2,.... An application of
(2.4) gives

1Q590ll3 < r|vec ((Q590) © (Q590)" ) (0)] = r[hr(0)].

For @ € Z°, by Lemma 2.3 and Lemma 2.2 we have
(29) Tfv(e)= ) b(M*a—B)(B) = Y k(Bho(M e —B) = Qiho(a).
Bezs BeZ*

In particular, hi(0) = Q¥ho(0) = TFv(0). If p(Ty|y) < 1, then there exists some
n, 0 < m < 1, and a constant C' > 0 such that |Tfv(0)| < ||TFv|lc < Cnk.
Consequently,

1Q&g0ll3 < rhe(0)| = 7|Q5ho(0)] = r|Tyw(0)| < Cry*,  k=1,2,....

In light of (2.8), we have ¢y11 — ¢ = Q¥go. Since n < 1, (¢x)r—1,2,.. is a Cauchy
sequence in (L2 (IR?))". Therefore, the cascade algorithm converges in the Lo-norm.
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Next, we establish the necessity part of the theorem. By Lemma 2.2 and (2.3)
we obtain

|Qkho(a)| = |vec ((QFg0) © (QFgo)T) ()| < || Qkgoll; Vaez

This in connection with (2.9)) gives || Tfv||_ < HQ’ggOHZ. If the cascade algorithm
converges in the Ly-norm, then limy_, o [|@%go||2 = 0. Hence, limg— oo [|TFv||oo = 0.
Consequently, p(Tp|v) < 1. O

Remark 2.5. Let K be a compact subset of IR® containing suppb := {a € Z*® :
bla) # 0}, and let Q := (372, M "K) N Z°. Choose K properly so that
contains the support of v, where v is given by v(a) = vec(go®gd )(a), a € Z°.
Let 7y be the matrix (B(Ma = f)), scq- If p(Ts) < 1, then limy oo [|Tf 0]l = 0.
Hence, the cascade algorithm associated with a, g, and any initial choice of ¢q is
Ly-convergent. Suppose p(Tp) > 1. Let U be a non-singular matrix satisfying 7, =
U~ldiag(A;, A2)U, where A; and A, are two square matrices such that p(4;) < 1
and the eigenvalues of A, lie outside the open unit disk. Suppose Aj is an ma X My
matrix. Then limg_ . ||TFv]|oo = 0 if and only if

(2.10) Ua (v(8)) geq = 0,

where U, is the matrix consisting of the last ma rows of U. Therefore, the cascade
algorithm associated with a, g, and @g is Lo-convergent if and only if (2.10) is true.

Next we will show that for a special set of vectors of compactly supported func-
tions g € (La(IR?))" the corresponding cascade algorithm converges as long as
the cascade algorithm corresponding to the homogeneous refinement equation con-
verges.

For this purpose, consider the homogeneous refinement equation

(2.11) Y= Zaezs ala)p(M - — a).

Assume that | det M| is a simple eigenvalue of the matrix ) .5, a(a) with a left row
eigenvector y. We say that the cascade algorithm associated with the homogeneous
refinement equation with mask a converges (in the Ly-norm) whenever for any
compactly supported o € (L2(IR?))" satisfying

YD g o) =y,

the sequence oy, defined by pr =) 7. a(@)pr1(M-—a),k=1,2,..., converges
in the Ls-norm.

Corollary 2.6. Assume that |det M| is a simple eigenvalue of the matriz y . 5. a(«)
with o left row eigenvector y. Assume that the cascade algorithm associated with
the homogeneous refinement equation with mask a converges in the Lo-norm. Then
the cascade algorithm associated with a, g, and ¢g converges in the Lo-norm if and
only if g and ¢ satisfy

(2.12) y(zaezs (gOQgOT)(a))yT =0,
where go = g + Qado — do.

Proof. If the cascade algorithm associated with the homogeneous refinement equa-
tion with mask a converges in the Ls-norm, then 1 is a simple eigenvalue of T
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and the other eigenvalues of T} lie inside the open unit disc (see [20] and [22]).
Furthermore, the space V' defined by

Vi={ue (b(@))” : @ey Y, ua) =0}

is invariant under T, and p(Tp|y) < 1 (see [8] and [14]). Let v be the element in
(o(Z°))™" defined by v(a) = vec (90®98) (@), a € Z*. In light of (2.2), it follows
from (2.12) that v lies in V. Hence, limj_, ||Tfv||oc = 0. By Theorem 2.4, the
cascade algorithm associated with a, g, and ¢ converges in the Lo-norm.
Conversely, assume that the cascade algorithm associated with a, g and ¢o con-
verges. Let w(a) := vec(p@pT)(a),a € Z°, where ¢ is the solution of the ho-
mogeneous refinement equation with mask a such that y@(0) = 1. Then w is an
eigenvector of T} corresponding to eigenvalue 1 with (F®y) >_ 7. w(a) = 1.
Recall that v is the element in (£5(Z°))" defined by v(a) := vec(go®gl)(a), o €
Z’. There exist ¢ € € and u € V such that v = cw+u. We have limg o0 || T} ul|co =
0. Since the cascade algorithm associated with a, g and ¢g converges in the Lo-
norm, we also have limg_, oo ||T}v||co = 0, by Theorem 2.4. But T,w = w. Hence,

a€Z®

Tb’“v:cw-l-Tbku, k=1,2,....

Letting k¥ — oo in the above equation, we obtain ¢ = 0. Consequently, v = u lies
in V. In other words, (2.12) holds true. O

Remark 2.7. In Corollary 2.6, condition (2.12) is equivalent to y ) .7+ go(- —a) =
0. Assume that y ) .z ¢o(- — a) = y. Then, the cascade algorithm associated
with nonhomogeneous equation converges if and only if y 3 7. (- — a) = 0.

3. EXAMPLES
In this section we give several examples to illustrate our theory.

Example 3.1. Consider the nonhomogeneous refinement equation
(3.1) ¢(z) =1¢(2z) +g(x), z€R,

where t is a nonzero complex number and ¢ is a compactly supported function in
Ly(IR). Let ¢¢ be a compactly supported function in Ls(IR). The corresponding
cascade algorithm is given by ¢y, = tdr—1(2-)+9g,k =1,2,... . We have a(0) = t and
a(a) =0 for a € Z\ {0}. Let b be the sequence given by (2.6). Then b(0) = |t|?/2
and b(a) =0 for a € Z \ {0}. Let go := g +to(2-) — ¢o and v(a) := (go®go) ()
for a € Z. Then for sufficiently large k we have

TFv(0) = (|t|?/2)*v(0) and TFv(a) =0 VaeZ\{0}.

Note that v(0) = ||go||3. Hence, v(0) = 0 if and only if go = 0. If || < /2, then
Theorem 2.4 tells us that the cascade algorithm associated with a, g, and any ¢ is
Ly-convergent. If || > v/2, then the cascade algorithm converges in the Ly-norm if
and only if ¢ is the solution of the equation (3.1).

This example was also considered in [21] and [25].

Example 3.2. Consider the nonhomogeneous refinement equation

(3.2) o(z) = app(2z) + a16(2z — 1) + g(x), z €RR,
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where ag,a; are two nonzero complex numbers and g is a function in Ly(IR) sup-
ported in [0, 2]. Let ¢ be a function in Ls(IR) supported in [0,2]. The correspond-
ing cascade algorithm is given by

Sk = aopr-1(2°) + a1¢r-1(2- — 1) + g, k=1,2,....

We have a(0) = ag,a(1l) = a1 and a(a) = 0 for « € Z\ {0,1}. Let b be the sequence
given by (2.6). Then b(—1) = aoa1/2,b(0) = (Jao|® + |a1|?)/2,b(1) = @pa1/2 and
b(a) =0 for o € Z\ {—1,0,1}. Let go := g+ aopo(2-) + a1¢o(2- — 1) — ¢ and
v(a) := (go®go)(a) for @ € Z. Then gy is supported in [0,2] and v(a) = 0 for
a€Z\{-1,0,1}.

Let 75 be the matrix (b(2i — j))—1<4,j<1, that is,

b(-1) 0 0
(3.3) To=| b1) b0) b(-1)
00 b

The eigenvalues of T, are aga1/2,apa;/2 and (Jag|? + |a1]?)/2. If |ao)® + |a1]? < 2,
then p(7s) < 1. Hence the cascade algorithm associated with {ag,a1},9 and ¢
is Lo-convergent. If |agai| > 2, then each eigenvalue of 7 lies outside the open
unit disk. Therefore the cascade algorithm associated with {ag,a1},g and ¢o is
Ls-convergent if and only if ¢g is the La-solution of (3.2).

Finally, we consider the case |aga1| < 2 < |ao|? + |a1|?. Let

1 0 0
U=(0 0 1],
p 1D

where p := b(1)/(b(0) — b(—1)) = @oa1/(Jao|* + |a1|* — ap@1). Then
Ty, = U~ 'diag(b(—1),b(1), b(0))U.
By Theorem 2.4 and Remark 2.5, we conclude that the cascade algorithm associated
with {ag,a1}, g and ¢g is La-convergent if and only if g and ¢g satisfy
(3.4) P(90090)(—1) + B(90©g0) (1) + l|goll3 = 0.

Assume ag = a; = a with 1 < |a| < v/2, then p and 7 in (3.2) become 1. Thus
(3.2) is equivalent to ) .7 go(- — a) = 0. In particular, if ) . g9(- —a) = 0 and
Y acz o(- — @) = 0 hold, then (3.2) is valid. Hence, the corresponding cascade
algorithm converges.

Example 3.3. Consider the nonhomogeneous vector refinement equation
’ ) o(2 j R
ba) =g@)+ Y _ al)o@r—j), aeR,

where g = (g1,92)7 is a 2 x 1 vector of compactly supported functions in Lo (IR),

and
o[z 2] a=[3 %] [ 2 2]

Let ¢o = (¢po,1, ¢0,2)T be a 2 x 1 vector of compactly supported functions in L (IR).
Then the cascade algorithm associated with a, g, and ¢¢ is La-convergent, provided

(3.5) Do —a)=0 and Y oa(-—a)=1.
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In order to justify our claim, we first compute the sequence b as given in (2.6).
We have b(a) =0 for @ € Z \ [-2,2], and

b(-2) = [a(2) ® a(0)]/2, b(-1) = [a(1) ® a(0) + a(2) ® a(1)]/2,
b(0) = [a(0) ® a(0) + a(1) ® a(1) + a(2) ® a(2)]/2,
b(1) = [a(0) ® a(1) + a(1) ® a(2)]/2, b(2) = [a(0) ® a(2)]/2.
Let B be the block matrix (b(2a.— )) —2<a,s<2. By a straightforward computation
we find that 1 is a simple eigenvalue of the matrix B and the other eigenvalues of

B are less than 1 in modulus. Note that 2 is a simple eigenvalue of the matrix
Y acze a(@) with (1,0) being a left eigenvector. Further, one can check

(1,0) ijo a(2j +i) = (1,0), i=0,1.

Thus the cascade algorithm associated with the homogeneous refinement equation
with mask a converges in the Lo-norm (see [22] and [16]). Hence, by Corollary
2.6 and Remark 2.7, the cascade algorithm associated with a, g, and ¢¢ converges
provided the conditions in (3.5) are satisfied.

Example 3.4. Consider the nonhomogeneous vector refinement equation
(3.6) $(z) = Ap(22) + g(2), =€ RR?

where A is a nonzero 2 x 2 matrix and g = (g1,92)% is a 2 x 1 vector of com-
pactly supported functions in La(IR?). Let ¢g = (¢o,1,¢0,2)" be a 2 x 1 vector of
compactly supported functions in Ly(IR?). The corresponding cascade algorithm
is given by ¢r = Adr_1(2) + 9, k = 1,2,.... Let go := g + Qagpo — ¢o and
v(a) := vec (go®gd ) (a), a € Z*. We observe that v(0) = 0 if and only if go = 0.

In this case, a(0) = A and a(a) = 0 for @ € Z*\ {0}. Let b be the sequence
given in (2.6). Then

b(0)=A®A/4 and bla) =0 VaeZ\{0}.
Note that p(A ® A) = p(A)2. For sufficiently large k, we have
THv(0) = (A® A/4)v(0) and Tfv(a) =0 VYaeZ®\{0}.

Thus, if p(A) < 2, then p(T}) < 1 and the cascade algorithm associated with A, g,
and any ¢g is La-convergent, by Theorem 2.4.

Let A1, A2 be the two eigenvalues of A. Then the eigenvalues of the matrix A® A
are |A1|%, A2, AaAr, and |Aa|?. If |[A1]| > 2 and |X2| > 2, then the cascade algorithm
associated with A, g, and ¢g is La-convergent only if go = 0, i.e., ¢ is the solution
of the refinement equation (3.6).

It remains to deal with the case |A2] < 2 < |A\;]. After a suitable coordinate
change we may assume that A has the following form A = diag(A1, A2). Then the
cascade algorithm associated with A, g, and ¢g is Lo-convergent if and only if ¢g 1
is the La-solution of the equation ¢ = A1p(2-) + g1.
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