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Abstract

Wavelet/frame shrinkage and nonlinear diffusion filtering are two popular methods for

signal and image denoising. The relationship between these two methods has been studied

recently. This relationship leads to new types of diffusion equations and helps to design

the wavelet/frame-inspired diffusivity functions, and on the other hand it helps to design the

diffusion-inspired shrinkage functions with a better performance in signal and image denoising.

Multiwavelets have important properties such as orthogonality, short support, and symme-

try, etc. that scalar orthogonal wavelets cannot possess simultaneously. There is rich literature

on the theoretical study, construction and applications of multiwavelets. In particular, it has

been shown that multiwavelets perform better than the scalar wavelets in signal and image

denoising. Recently multiwavelet denoising has been applied in different applications includ-

ing rolling bearing fault detection and study of load spectrum of computer numerical control

lathe. Therefore it is worth to further study multiwavelet denoising.

In this paper we investigate the correspondence between multiwavelet denoising and non-

linear diffusion. We show that the multiwavelet shrinkages of the commonly used CL(2) and

DGHM multiwavelets are associated with a second-order nonlinear diffusion equation. We also

derive high-order nonlinear diffusion equations associated with general multiwavelet shrink-

ages. The experimental results carried out in this paper show that the diffusion-inspired

multiwavelet shrinkage performs better than the traditional multiwavelet hard- and soft-

thresholding shrinkages.

Key words and phrases: Undecimated multiwavelet transform, nonlinear diffusion filtering,

high-order nonlinear diffusion, correspondence between nonlinear diffusion and multiwavelet shrink-

age, signal denoising and image denoising.

∗This work was supported in part by Simons Foundation (Grant No. 353185)

1



1 Introduction

Wavelets have been successfully used in signal and image processing [17, 18, 41, 52]. In particular,

the undecimated wavelet transform (also called the shift-invariant wavelet transform) denoising

[10] has been used widely for signal and image denoising. Let {p, q} and {p̃, q̃} be an undecimated

finite impulse response (FIR) wavelet filter bank satisfying

p̃(ω)p(ω) + q̃(ω)q(ω) = 1, ω ∈ R,

where for a scalar FIR filter p = {pk}k∈Z, p(ω) denotes

p(ω) =
∑
k∈Z

pke
−ikω, ω ∈ R.

Then undecimated (scalar) wavelet transform denoising of a noising one-dimensional signal {xk}k∈Z
consists of decomposition algorithm:

Ln =
∑
k∈Z

pkxk+n, Hn =
∑
k∈Z

qkxk+n, n ∈ Z,

and denoising algorithm :

uk =
∑
n∈Z

p̃nLk−n +
∑
n∈Z

q̃nSθ(Hk−n), k ∈ Z, (1.1)

where Sθ is a shrinkage function. The hard- and soft-shrinkage functions [17, 18] are commonly

used Sθ. The signal {uk}k∈Z is called the denoised signal of the original signal {xk}k∈Z.

Nonlinear diffusion filtering is a powerful method for signal and image denoising. Since the

nonlinear diffusion was introduced by Perona and Malik in 1990 [45], a variety of nonlinear

diffusion filters have been proposed, see e.g. [3, 13] and the references therein. High order

nonlinear diffusion was also proposed and studied in [14, 43, 60].

The 1-D second-order nonlinear diffusion equation is given by:

ut =
∂

∂x

{
g
(
(
∂u

∂x
)2
)∂u
∂x

}
, (1.2)

with initial condition u(x, 0) = f(x), where ut denotes the partial derivative ∂u
∂t of the unknown

function u(t, x) with respect to t, and g is the diffusivity. When f(x) is a signal with noise,

then with an appropriate choice of g(x), the solution u = u(x, t) of (1.2) (for some suitable t) is

considered as the denoised signal of f(x).

The nonlinear diffusion (1.2) is discretized in practice. The following is a simple discretization

using the first order difference. More precisely, let τ and h be the time and spatial step size

respectively. Denote u0k = f(kh), k ∈ Z. Let ujk, j ≥ 1 be approximations to the solution u(x, t)
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at (kh, jτ). Then
ujk+1−u

j
k

h and
uj+1
k −ujk
τ can be used to approximate respectively ∂

∂xu(x, t) and
∂
∂tu(x, t) at (kh, jτ):

( ∂
∂x
u
)
(kh, jτ) ≈

ujk+1 − u
j
k

h
, ut(kh, jτ) ≈

uj+1
k − ujk
τ

.

Hence, (1.2) can be discretized as

uj+1
k = ujk +

τ

h2
g
(
(
ujk+1 − u

j
k

h
)2
)
(ujk+1 − u

j
k)−

τ

h2
g
(
(
ujk − u

j
k−1

h
)2
)
(ujk − u

j
k−1), (1.3)

for j = 0, 1, · · · .
The correspondence between Haar wavelet shrinkage and second-order nonlinear diffusion has

been studied in [42], which shows that uk in (1.1) is u1k in (1.3) if shrinkage function Sθ and the

diffusivity g have the relationship:

Sθ(x) = x(1− 4τ

h2
g(

2x2

h2
)).

[47] studied a relationship between multi-level wavelet shrinkage and nonlinear diffusion. In

addition, [44] obtained the correspondence of coupled Haar wavelet shrinkage and 2-D second-

order nonlinear diffusion.

Recently affine frames (also called wavelet frames) have been successfully used in noise removal

and data recovery, see [16] and references therein. The correspondence between 1-D wavelet frame

shrinkage and high order nonlinear diffusion was obtained in [34] and the correspondence in the

multivariable case was studied in [15]. The study of the correspondence led to new types of

diffusion equations and helped to design the frame-inspired diffusivity functions. In addition,

a relationship between 1-D multi-level frame shrinkage and high order nonlinear diffusion was

obtained in [56].

Multiwavelets have been studied by many researchers, see for example [8, 11, 19, 23, 24, 29,

31, 38, 48]. About applications and theoretical study, see [1, 11, 12, 21, 22, 25, 30, 32, 33, 35, 39,

40, 46, 50, 51, 53, 55, 59, 61, 62, 63] and book [26]. A multiwavelet has two or more components.

An orthogonal multiwavelet has important properties such as orthogonality, short support, and

symmetry, etc. that scalar orthogonal wavelets fail to possess simultaneously. Furthermore, all the

papers [2, 20, 53] showed that multiwavelets have a better performance in signal/image denoising

than scalar wavelets. In addition, multiwavelet denoising has been used recently in applications

including rolling bearing fault detection [54, 4, 5, 28] and study of load spectrum of computer

numerical control lathe [27]. Therefore it is worth to further study multiwavelet denoising. In

this paper we study the correspondence between multiwavelet denoising and nonlinear diffusion.
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The remainder of the paper is organized as follows. In Section 2, we review multiwavelet de-

noising. In Section 3, we derive the correspondence between multiwavelet shrinkage and nonlinear

diffusion. We also show that the multiwavelet shrinkages of the commonly used CL(2) and DGHM

multiwavelets are associated with a second-order nonlinear diffusion equation. We provide some

experimental results in Section 4. We draw the conclusion in Section 5.

Before moving to the next section, we provide some notations used in this paper. For a

sequence P = {Pk}k∈Z of matrices, we define

P (ω) =
∑
k

Pke
−ikω. (1.4)

For a matrix M , M∗ denotes its Hermitian, the complex conjugate and transpose of M . For Qk

of 2× 2 matrix, we use qij,k denote the (i, j)-entry of Qk:

Qk =

[
q11,k q12,k

q21,k q22,k

]
. (1.5)

2 Multiwavelet shrinkage

In this section we briefly review multiwavelet shrinkage. For simplicity of presentation, we

consider in this paper multiwavelets with multiplicity 2. Two vector-valued functions Ψ(x) =

[ψ1(x), ψ2(x)]T and Ψ̃(x) = [ψ̃1(x), ψ̃2(x)]T , x ∈ R are called a pair of biorthogonal multiwavelets

if the collections of 2
j
2ψ1(2

jx−k), 2
j
2ψ2(2

jx−k), j, k ∈ Z and 2
j
2 ψ̃1(2

jx−k), 2
j
2 ψ̃2(2

jx−k), j, k ∈ Z
form biorthogonal bases of L2(R) in the sense that they are Riesz bases of L2(R) and they are

orthogonal to each other:∫ ∞
−∞

ψi(2
jx− k)ψ̃i′(2j

′x− k′)dx = 2jδ(i− i′)δ(j − j′)δ(k − k′), i = 1, 2, j, k ∈ Z,

where δ(j) denotes the Kronecker delta sequence with δ(j) = 1 if j = 0, and δ(j) = 0 if j 6= 0. In

addition, if Ψ̃(x) = Ψ(x), then Ψ is called an orthogonal multiwavelet.

To construct compactly supported biorthogonal multiwavelets, we begin with FIR multiwavelet-

filters (called multifilters for short) P,Q and P̃ , Q̃ of 2 × 2 matrices such that they satisfy the

biorthogonality condition:

P (ω)P̃ (ω)∗ + P (ω + π)P̃ (ω + π)∗ = I2,

P (ω)Q̃(ω)∗ + P (ω + π)Q̃(ω + π)∗ = 0,

Q(ω)P̃ (ω)∗ +Q(ω + π)P̃ (ω + π)∗ = 0,

Q(ω)Q̃(ω)∗ +Q(ω + π)Q̃(ω + π)∗ = I2.

(2.1)

or equivalently,

P̃ (ω)∗P (ω) + Q̃(ω)∗Q(ω) = I2, (2.2)

P̃ (ω)∗P (ω + π) + Q̃(ω)∗Q(ω + π) = 0, (2.3)

4



where P (ω), Q(ω), P̃ (ω), Q̃(ω) are defined by (1.4). {P,Q} is called an orthogonal multifilter bank

if (2.1) holds for P̃ = P and Q̃ = Q. Let Φ(x) = [φ1(x), φ2(x)]T and Φ̃(x) = [φ̃1(x), φ̃2(x)]T be

the function vectors (called refinable vectors) satisfying the following matrix-valued refinement

equations:

Φ(x) = 2
∑
k

PkΦ(2x− k), Φ̃(x) = 2
∑
k

P̃kΦ̃(2x− k).

Under certain conditions on P and P̃ , Ψ and Ψ̃ defined by

Ψ(x) = 2
∑
k

QkΦ(2x− k), Ψ̃(x) = 2
∑
k

Q̃kΦ̃(2x− k)

form a pair of biorthogonal multiwavelets. In this paper all multifilters we consider have FIR.

For signal/image denoising, the undecimated wavelet transform has a better performance than

the conventional (decimated) wavelet transform. In the following we consider the undecimated

multiwavelet transform (UMWT).

Let P,Q and P̃ , Q̃ be FIR multifilters. UMWT with a matrix-valued lowpass and highpass

filters P and Q is defined by

Ln =

[
L1,n

L2,n

]
=
∑
k∈Z

Pkvk+n, Hn =

[
H1,n

H2,n

]
=
∑
k∈Z

Qkvk+n, (2.4)

where the input data {vk : k ∈ Z} is a sequence of column vectors vk = [v1,k, v2,k]
T . The

undecimated multiwavelet inverse transform with P̃ and Q̃ is defined by

ṽk =
∑
n∈Z

P̃ Tn Lk−n +
∑
n∈Z

Q̃Tn Hk−n. (2.5)

(2.4) is also called the undecimated multiwavelet decomposition (or analysis) algorithm and (2.5)

the undecimated multiwavelet reconstruction (or synthesis) algorithm. {P,Q} and {P̃ , Q̃} are

called the analysis filter bank and synthesis filter bank respectively, and {Ln}n∈Z and {Hn}n∈Z
are called the lowpass and highpass outputs.

For a sequence of column vectors {vk : k ∈ Z}, let v(ω) denote its symbol defined as (1.4).

Then (2.4) and (2.5) can be expressed respectively as

L(ω) = P (ω) v(ω), H(ω) = Q(ω) v(ω)

and

ṽ(ω) = P̃ (ω)T L(ω) + Q̃(ω)T H(ω).

Thus (2.2) implies that ṽk = vk, namely if (2.2) holds, then the reconstruction algorithm (2.5)

can recover the original data v from its lowpass and highpass outputs.
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Observe that the input for UMWT (2.4) is a sequence of vectors vk. When multiwavelet

transform is applied to process a signal which is a sequence of scalars ck, k ∈ Z, the common way

is to convert this signal into {vk}k∈Z with

vk =

[
c2k

c2k+1

]
, k ∈ Z, (2.6)

see for example [36, 38, 51, 53, 59]. In this paper we also use this commonly used method to

convert a scalar signal into a vector sequence.

For a given noisy signal {ck}k, UMWT denoising consists of the analysis step of (2.4) with vk

given by (2.6) and the synthesis step:

uk =

[
u1,k

u2,k

]
=
∑
n

P̃ Tn Lk−n +
∑
n

[
q̃11,nS11(H1,(k−n)) + q̃21,nS21(H2,(k−n))

q̃12,nS12(H1,(k−n)) + q̃22,nS22(H2,(k−n))

]
, (2.7)

where q̃ij,n is the (i, j)-entry of Q̃n as defined by (1.5), Sij are the shrinkage functions, 1 ≤ i, j ≤ 2.

With suitable shrinkage functions (for example, the hard- or soft-shrinkage function), {uk}k with

u2k = u1,k, u2k+1 = u2,k is the denoised signal of {ck}k. We can apply the above denoising

process to uk to get further denoised signal. In fact we can apply multiwavelet shrinkage process

repeatedly to the denoised signal to get further denoised signal. We call this process the iterated

multiwavelet denoising process.

Next we write the synthesis step (2.7) for signal denoising in a different form which will be used

later. Let {P,Q} and {P̃ , Q̃} be a pair of undecimated biorthogonal multifilter banks, namely

they satisfy (2.2). It is straightforward to show that (2.2) is equivalent to∑
n∈Z

P̃ Tn Pn+j +
∑
n∈Z

Q̃Tn Qn+j = δ(j)I2, j ∈ Z. (2.8)

Proposition 1. Suppose {P,Q} and {P̃ , Q̃} are a pair of undecimated biorthogonal filter banks,

namely they satisfy (2.2). Let uk be the resulting signal given by (2.7) after 1-step multiwavelet

shrinkage of vk with these multifilter banks. Then

uk = vk +
∑
n∈Z

[
q̃11,n

(
S11(H1,(k−n))−H1,(k−n)

)
+ q̃21,n

(
S21(H2,(k−n))−H2,(k−n)

)
q̃12,n

(
S12(H1,(k−n))−H1,(k−n)

)
+ q̃22,n

(
S22(H2,(k−n))−H2,(k−n)

)] , (2.9)

for k ∈ Z, where H1,n, H2,n are defined by (2.4).

Proof. By direct calculations, we have∑
n∈Z

P̃ Tn Lk−n +
∑
n∈Z

Q̃TnHk−n =
∑
n∈Z

P̃ Tn
∑
j∈Z

Pjvj+k−n +
∑
n∈Z

Q̃Tn
∑
j∈Z

Qjvk+j−n

=
∑
j∈Z

∑
n∈Z

(
P̃ Tn Pn+j + Q̃TnQn+j

)
vk+j =

∑
j∈Z

δ(j)I2 vk+j = vk,
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where the second last equation follows from (2.8). Thus vk can be written as

vk =
∑
n

P̃ Tn Lk−n +
∑
n

[
q̃11,nH1,(k−n) + q̃21,nH2,(k−n)

q̃12,nH1,(k−n) + q̃22,nH2,(k−n)

]
. (2.10)

Subtracting (2.10) from (2.7) leads to (2.9). �

Next we show that for a given signal {ck}k, H1,n and H2,n defined by (2.4) with vk given by

(2.6) can be written as the highpass outputs of {ck}k with some scalar highpass filters. More

precisely, for a highpass multifilter {Qk}k∈Z, let q1 = {q1,k}k and q2 = {q2,k}k denote the filters

defined by

q1,2k = q11,k, q1,2k+1 = q12,k,

q2,2k−1 = q21,k, q2,2k = q22,k, k ∈ Z.
(2.11)

Then

H1,n =
∑
k∈Z

q11,kc2k+2n + q12,kc2k+2n+1 =
∑
k∈Z

q1,2kc2k+2n + q1,2k+1c2k+1+2n.

Therefore,

H1,n =
∑
k∈Z

q1,kck+2n, n ∈ Z. (2.12)

Similarly, we have

H2,n =
∑
k∈Z

q2,kck+2n+1 n ∈ Z. (2.13)

Note that Q̃Tk , the transpose of Q̃k, is used in the reconstruction and denoising algorithms

(2.5) and (2.7). To this regard, we define two scalar filters {q̃3,k}k∈Z and {q̃4,k}k∈Z related to Q̃Tk :

q̃3,2k = q̃11,k, q̃3,2k−1 = q̃21,k,

q̃4,2k+1 = q̃12,k, q̃4,2k = q̃22,k, k ∈ Z.
(2.14)

Then one can obtain that for w = {wk}k∈Z,
∑
m
q̃3,mw2k−m∑

m
q̃4,mw2k+1−m

 =


∑
n
q̃11,nw2(k−n) + q̃21,nw2(k−n)+1∑

n
q̃12,nw2(k−n) + q̃22,nw2(k−n)+1

 =
∑
n

Q̃Tn

[
w2(k−n)

w2(k−n)+1

]
(2.15)

for k ∈ Z. Thus if the components H1,k, H2,k of Hk in (2.5) happen to be the even- and odd-

numbered terms of a scalar signal {wk} respectively, namely

H1,k = w2k, H2,k = w2k+1,

then the components of
∑

n Q̃
T
nHk−n can be written as the outputs of {wk} with scalar filters

{q̃3,k}k∈Z and {q̃4,k}k∈Z respectively. These observations will be used in the next section for the

derivation of the correspondence between multiwavelet shrinkage and nonlinear diffusion.
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3 Correspondence between multiwavelet shrinkage and nonlinear

diffusion

We consider high-order nonlinear diffusion equation

ut = (−1)1+α
∂α

∂xα

{
g
(
(
∂βu

∂xβ
)2
)∂βu
∂xβ

}
(3.1)

with initial condition: u(x, 0) = f(x), where α and β are some natural numbers. (3.1) will be

discretized. We use highpass filters to discretize the partial derivatives ∂α

∂xα and ∂β

∂xβ
.

For a (highpass) scalar filter q(ω) =
∑

k∈Z qke
−ikω or q = {qk}k∈Z with finitely many qk

nonzero, we say that it has vanishing moment order J if∑
k∈Z

kjqk = 0, ∀j with 0 ≤ j < J. (3.2)

In the following, unless it is stated otherwise, the vanishing moment order J of q means the highest

order of vanishing moments, that is q satisfies (3.2) and Cq defined below is not zero:

Cq =
1

J !

∑
k∈Z

kJqk. (3.3)

A highpass filter with vanishing moment order J can be used for the approximation of the

J-th derivative of a function (see [58, 34]). More precisely, suppose an FIR filter q(ω) has vanishing

moment order J . Then for a function F (x) smooth enough, we have

1

Cq

1

hJ

∑
n∈Z

qnF (x+ nh) =
dJF

dxJ
(x) + o(1),

1

Cq

(−1)J

hJ

∑
n∈Z

qnF (x− nh) =
dJF

dxJ
(x) + o(1),

as h→ 0, where Cq is defined by (3.3). Thus we have for k ∈ Z,

dJF

dxJ
(kh) ≈ 1

Cq

1

hJ

∑
n∈Z

qnF (kh+ nh), (3.4)

dJF

dxJ
(kh) ≈ 1

Cq

(−1)J

hJ

∑
n∈Z

qnF (kh− nh). (3.5)

Let q1, q2 and q̃3, q̃4 be the scalar filters defined by (2.11) and (2.14) respectively. In this

section we assume that q1 and q2 have vanishing moments of order β and q̃3 and q̃4 have vanishing

moments of order α.

Back to the nonlinear diffusion equation (3.1), denote u0k = f(kh), and for j ≥ 1, let ujk denote

the approximation to the value u(kh, jτ) of u(x, t) at (kh, jτ), where as above, h and τ are the

spatial step size and the time step size.
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We use q1, q2 and q̃3, q̃4 to approximate partial derivatives ∂βu
∂xβ

and ∂α

∂xαG(x, t) respectively,

where

G(x, t) = g
(
(
∂βu

∂xβ
)2
)∂βu
∂xβ

.

More specifically,
∂βu
∂xβ

(2kh, jτ) ≈ 1
Cq1

1
hβ

∑
n∈Z

q1,nu(2kh+ nh, jτ) ≈ 1
Cq1

1
hβ

∑
n∈Z

q1,nu
j
n+2k,

∂βu
∂xβ

((2k + 1)h, jτ) ≈ 1
Cq2

1
hβ

∑
n∈Z

q2,nu((2k + 1)h+ nh, jτ) ≈ 1
Cq2

1
hβ

∑
n∈Z

q2,nu
j
n+2k+1,

(3.6)

and 
∂α

∂xαG(2kh, jτ) ≈ (−1)α
Cq̃3

1
hα
∑
m∈Z

q̃3,mG(2kh−mh, jτ),

∂α

∂xαG((2k + 1)h, jτ) ≈ (−1)α
Cq̃4

1
hα
∑
m∈Z

q̃4,mG((2k + 1)h−mh, jτ),
(3.7)

where Cq1 , Cq2 , Cq̃3 and Cq̃4 are the constants defined by (3.3). Observe that (3.6) and (3.7) follow

from (3.4) and (3.5) respectively.

With (3.7), from (3.1), we have

uj+1
2k − u

j
2k

τ
≈ (−1)1+α

∂α

∂xα
G(2kh, jτ) ≈ − 1

Cq̃3h
α

∑
m∈Z

q̃3,mG(2kh−mh, jτ)

= − 1

Cq̃3h
α

∑
m∈Z

{
q̃11,mG(2kh− 2mh, jτ) + q̃21,mG(2kh− (2m− 1)h, jτ)

}
≈ − 1

Cq̃3h
α

∑
m∈Z

{
q̃11,mg

(
(

1

Cq1h
β

∑
n∈Z

q1,nu
j
n+2(k−m))

2
)
(

1

Cq1h
β

∑
n∈Z

q1,nu
j
n+2(k−m))

+q̃21,mg
(
(

1

Cq2h
β

∑
n∈Z

q2,nu
j
n+2(k−m)+1)

2
)
(

1

Cq2h
β

∑
n∈Z

q2,nu
j
n+2(k−m)+1)

}
,

where the last ≈ follows from (3.6). Similarly, we have

uj+1
2k+1 − u

j
2k+1

τ
≈ (−1)1+α

∂α

∂xα
G((2k + 1)h, jτ)

≈ − 1

Cq̃4h
α

∑
m∈Z

{
q̃12,mg

(
(

1

Cq1h
β

∑
n∈Z

q1,nu
j
n+2(k−m))

2
)
(

1

Cq1h
β

∑
n∈Z

q1,nu
j
n+2(k−m))

+q̃22,mg
(
(

1

Cq2h
β

∑
n∈Z

q2,nu
j
n+2(k−m)+1)

2
)
(

1

Cq2h
β

∑
n∈Z

q2,nu
j
n+2(k−m)+1)

}
.
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Therefore, (3.1) can be discretized as follows: for j ≥ 0 and k ∈ Z,

uj+1
2k = uj2k −

τ

Cq̃3h
α

∑
m∈Z

{
q̃11,mg

(
(

1

Cq1h
β

∑
n∈Z

q1,nu
j
n+2(k−m))

2
)
(

1

Cq1h
β

∑
n∈Z

q1,nu
j
n+2(k−m))

+q̃21,mg
(
(

1

Cq2h
β

∑
n∈Z

q2,nu
j
n+2(k−m)+1)

2
)
(

1

Cq2h
β

∑
n∈Z

q2,nu
j
n+2(k−m)+1)

}
,

uj+1
2k+1 = uj2k+1 −

τ

Cq̃4h
α

∑
m∈Z

{
q̃12,mg

(
(

1

Cq1h
β

∑
n∈Z

q1,nu
j
n+2(k−m))

2
)
(

1

Cq1h
β

∑
n∈Z

q1,nu
j
n+2(k−m))

+q̃22,mg
(
(

1

Cq2h
β

∑
n∈Z

q2,nu
j
n+2(k−m)+1)

2
)
(

1

Cq2h
β

∑
n∈Z

q2,nu
j
n+2(k−m)+1)

}
.

In particular, with ck = u0k, and (2.12) and (2.13), the above equations for j = 0 are
u12k = c2k − τ

Cq̃3h
α

∑
m∈Z

{
q̃11,mg

(
(
H1,k−m
Cq1h

β )2
)H1,k−m
Cq1h

β + q̃21,mg
(
(
H2,k−m
Cq2h

β )2
)H2,k−m
Cq2h

β

}
,

u12k+1 = c2k+1 − τ
Cq̃4h

α

∑
m∈Z

{
q̃12,mg

(
(
H1,k−m
Cq1h

β )2
)H1,k−m
Cq1h

β + q̃22,mg
(
(
H2,k−m
Cq2h

β )2
)H2,k−m
Cq2h

β

}
.

(3.8)

Thus, by comparing (2.9) with (3.8), we obtain the following theorem.

Theorem 1. Suppose uk =

[
u1,k

u2,k

]
, k ∈ Z in (2.7) are the resulting vectors after 1-step multi-

wavelet shrinkage with vk =

[
c2k

c2k+1

]
, k ∈ Z as the input, and u12k, u

1
2k+1 in (3.8) are the data

obtained after 1-step nonlinear diffusing with initial data u0
k =

[
c2k

c2k+1

]
. If

S11(x) = x− τ x
Cq̃3Cq1h

α+β g
(

x2

(Cq1h
β)2

)
,

S21(x) = x− τ x
Cq̃3Cq2h

α+β g
(

x2

(Cq2h
β)2

)
,

(3.9)

then u1,k = u12k; and if

S12(x) = x− τ x
Cq̃4Cq1h

α+β g
(

x2

(Cq1h
β)2

)
,

S22(x) = x− τ x
Cq̃4Cq2h

α+β g
(

x2

(Cq2h
β)2

)
,

(3.10)

then u2,k = u12k+1.

Therefore, with diffusivity functions and shrinkage functions satisfying (3.9) and (3.10), it-

erated multiwavelet shrinkage and nonlinear diffusing with (3.8) result in the same (denoised)

signal. The correspondence (3.9) and (3.10) between multiwavelet shrinkage and diffusion filter-

ing is useful to design the diffusion-inspired shrinkage functions for multiwavelet signal and image

denoising.
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In the remainder of this section, we consider two commonly used orthogonal multifilter banks,

CL(2) and DGHM, and the corresponding nonlinear diffusion equations. Note that q1, q2 defined

by (2.11) have vanishing moment of order at least 1 if and only if Q(0) satisfies

Q(0)

[
1

1

]
=

[
0

0

]
. (3.11)

A multiwavelet with a lowpass multifilter P satisfying [1, 1]P (0) = [1, 1] and the highpass mul-

tifilter Q satisfying the condition (3.11) is called a balanced multiwavelet [36]. “Balance” of a

multiwavelet is a very important property for multiwavelet image compression, and the reader is

referred to [9, 37, 48] for detailed discussion and to [6, 7] for multivariable balanced multiwavelets.

Let q3, q4 be the scalar filters defined by (2.14) with Q̃ replaced by Q. Then q3 and q4 have

vanishing moment order at least 1 if and only if Q(0) satisfies

[1, 1]Q(0) = [0, 0]. (3.12)

The orthogonal multifilters in the literature usually do not satisfy both (3.11) and (3.12).

Thus they cannot be used directly to discretize the nonlinear diffusion equation. However, we

can modify those orthogonal multifilters such that the resulting multifilters satisfy both (3.11)

and (3.12) and keep the orthogonality. More precisely, suppose H,G are orthogonal multifilters.

Then for any 2× 2 orthogonal matrices B and D, the matrices P and Q defined by

Pk = BHkB
T , Qk = DGkB

T , k ∈ Z, (3.13)

are also orthogonal. In addition, suppose y0, z0 ∈ R2 are unit vectors satisfying

G(0)z0 = [0, 0]T , y0G(0) = [0, 0].

If we choose orthogonal matrices B and D such that

Bz0 =

√
2

2
[1, 1]T ,

√
2

2
[1, 1]D = y0, (3.14)

then Q defined by (3.13) satisfies both (3.11) and (3.12). Thus, the corresponding q1, q2 and q3, q4

have vanishing moments of order at least 1.

Example 1. Let H and G be the orthogonal multifilters in [8] by Chui and Lian with nonzero

Hk, Gk given by

H−1 =
1

8

[
2 2

−
√

7 −
√

7

]
, H0 =

1

4

[
2 0

0 1

]
, H1 =

1

8

[
2 −2
√

7 −
√

7

]
,

G−1 =
1

8

[
−2 −2

1 1

]
, G0 =

1

4

[
2 0

0
√

7

]
, G1 =

1

8

[
−2 2

−1 1

]
.

11



The support of this multiwavelet is on [−1, 1], and we denote this multifilter bank as the CL(2)

multifilter bank. Observe that

G(0) = G−1 +G0 +G1 =
1

4

[
0 0

0 1 +
√

7

]
.

Thus we have G(0)[1, 0]T = [0, 0]T and [1, 0]G(0) = [0, 0] . Therefore we choose

B = D =

√
2

2

[
1 −1

1 1

]
.

The nonzero Pk, Qk of P,Q defined by (3.13) are

P−1 =
1

8

[
0 2 +

√
7

0 2−
√

7

]
, P0 =

1

8

[
3 1

1 3

]
, P1 =

1

8

[
2−
√

7 0

2 +
√

7 0

]
,

Q−1 =
1

8

[
0 −3

0 −1

]
, Q0 =

1

8

[
2 +
√

7 2−
√

7

2−
√

7 2 +
√

7

]
, Q1 =

1

8

[
−1 0

−3 0

]
.

Then all q1, q2 and q3, q4 have vanishing moment order 1, and by direct calculations, we have

Cq1 =
3−
√

7

8
, Cq2 = −3−

√
7

8
, Cq3 = −7−

√
7

8
, Cq4 =

7−
√

7

8
.

Hence the corresponding nonlinear diffusion equation is (1.2). In addition, by Theorem 1, we know

the iterated multiwavelet shrinkage and the nonlinear diffusion produce the same result provided

that the shrinkage functions and diffusivity g(x) satisfyS11(x) = S22(x) = x[1 + 32τ
(14−5

√
7)h2

g
(

32x2

(8−3
√
7)h2

)
],

S12(x) = S21(x) = x[1− 32τ
(14−5

√
7)h2

g
(

32x2

(8−3
√
7)h2

)
].

(3.15)

�

Example 2. Let H and G be the orthogonal multifilters in [19] by Donovan, Geronimo, Hardin

and Massopust with nonzero matrices given by

H0 =
1

40

[
12 16

√
2

−
√

2 −6

]
, H1 =

1

40

[
12 0

9
√

2 20

]
,

H2 =
1

40

[
0 0

9
√

2 −6

]
, H3 =

1

40

[
0 0

−
√

2 0

]
,

G0 =
1

40

[
−
√

2 −6

2 6
√

2

]
, G1 =

1

40

[
9
√

2 −20

−18 0

]
,

G2 =
1

40

[
9
√

2 −6

18 −6
√

2

]
, G3 =

1

40

[
−
√

2 0

−2 0

]
.
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This orthogonal multifilter bank is usually called the DGHM multifilter bank. Observe that

G(0) = G0 +G1 +G2 +G3 =
1

5

[
2
√

2 −4

0 0

]
.

Thus

z0 =

√
3

3

[√
2

1

]
, y0 =

[
0

1

]
are the unit vectors satisfying G(0)z0 = [0, 0]T and yT0G(0) = [0, 0]. Let B and D be the orthogonal

matrices given by

B =
1√
6

[
1 +
√

2 1−
√

2

−1 +
√

2 1 +
√

2

]
, D =

1√
2

[
1 1

−1 1

]
.

Then B and D satisfy (3.14). The nonzero Pk, Qk of P,Q defined by (3.13) are

P0 =
1

240

[
18 + 21

√
2 78 + 51

√
2

78− 51
√

2 18− 21
√

2

]
, P1 =

1

240

[
96− 25

√
2 28− 27

√
2

28 + 27
√

2 96 + 25
√

2

]
,

P2 =
1

240

[
−18 + 3

√
2 42− 27

√
2

42 + 27
√

2 −18− 3
√

2

]
, P3 =

1

240

[ √
2 −4 + 3

√
2

−4− 3
√

2 −
√

2

]
,

Q0 =
1

80
√

3

[
13
√

2− 18 3
√

2 + 2

3
√

2− 2 13
√

2 + 18

]
, Q1 =

1

80
√

3

[
11
√

2− 20 −47
√

2 + 16

−47
√

2− 16 11
√

2 + 20

]
,

Q2 =
1

80
√

3

[
27
√

2 + 42 −3
√

2− 18

−3
√

2 + 18 27
√

2− 42

]
Q3 =

1

80
√

3

[
−3
√

2− 4 −
√

2

−
√

2 −3
√

2 + 4

]
.

One can verify that all q1, q2 and q3, q4 have vanishing moment order 1 and

Cq1 =
4
√

3− 3
√

6

15
, Cq2 =

3
√

6− 4
√

3

15
, Cq3 =

3
√

3 +
√

6

15
, Cq4 = −3

√
3 +
√

6

15
.

Thus the corresponding nonlinear diffusion equation is (1.2). Again, by Theorem 1, we know the

iterated multiwavelet shrinkage and the nonlinear diffusion produce the same result provided that

the shrinkage functions and diffusivity g(x) satisfyS11(x) = S22(x) = x[1− 25τ
(5
√
2−6)h2 g

(
75x2

(34−24
√
2)h2

)
],

S12(x) = S21(x) = x[1 + 25τ
(5
√
2−6)h2 g

(
75x2

(34−24
√
2)h2

)
].

(3.16)

�

4 Signals and image denoising using diffusion-inspired multiwavelet

shrinkages

In this section we provide some experimental results on signal and image denoising using the

diffusion-inspired multiwavelet shrinkages. We will focus on CL(2) multifilter bank with different

13



shrinkage functions. In the following we give the corresponding shrinkage functions Sij when

diffusivity functions g are the Perona-Malik diffusivity and Weickert diffusivity functions. We

assume the spatial step size h = 1.

Let

g(x2) =
c

1 + (x/λ)2
,

be the Perona-Malik diffusivity [45], where c is a constant and λ > 0 is a parameter. Then

shrinkage functions Sij(x) in (3.15) corresponding to the Perona-Malik diffusivity are
S11(x) = S22(x) = x

(
1 + 32τ

14−5
√
7

c

1+ 32x2

(8−3
√
7)λ2

)
,

S12(x) = S21(x) = x
(

1− 32τ
14−5

√
7

c

1+ 32x2

(8−3
√
7)λ2

)
.

(4.1)

If g is the Weickert diffusivity [57] given by

g(x2) =

{
1, if x = 0,

1− exp(−3.31488λ8/x8), if x 6= 0,

then the corresponding shrinkage functions Sij are

S11(x) = S22(x) =

 1, if x = 0,

x
(

1 + 32τ
14−5

√
7

[
1− exp(−3.31488λ8

(
32x2

8−3
√
7

)4
)
])
, if x 6= 0,

S12(x) = S21(x) =

 1, if x = 0,

x
(

1− 32τ
14−5

√
7

[
1− exp(−3.31488λ8

(
32x2

8−3
√
7

)4
)
])
, if x 6= 0.

(4.2)

For shrinkage functions Sij , if we choose Sij to be the diffusion-inspired shrinkage functions

given by (4.1) or (4.2), then we denote Sij=PM or Sij=Weick respectively. We will also compare

the performance of the diffusion-inspired multiwavelet shrinkage with those of the conventional

multiwavelet hard- and soft-thresholding shrinkages. The hard- and soft-shrinkage functions are

given respectively by (see [17, 18, 41])

Shard(x) =

{
0, if |x| ≤ λ,
x, if |x| > λ,

and

Ssoft(x) =

{
0, if |x| ≤ λ,
x− λsgn(x), if |x| > λ.

If we choose Sij to be the hard- or soft-shrinkage function, then we denote Sij=Hard or Sij=Soft,

respectively.
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Figure 1: Top-left panel: Original signal c1; Top-right panel: Noisy signal c1 with SNR=6; Bottom-left

panel: Original signal c2; Bottom-right panel: Noisy signal c2 with SNR=16.

4.1 Signal denoising

Let c1 be the signal shown in the top-left panel of Fig.1. We generate five noisy signals with signal

to noise ratio SNR=6 by adding additive white Gaussian noise five times to c1. For a signal s,

the signal to noise ratio (SNR) is defined by

SNR = 20(log10 ‖s− s̄‖2 − log10 ‖n‖2)

where s̄ is the mean of the signal s, and the noise is n. One of these five noisy signal was shown

in the top-right panel of Fig.1.

The second signal we consider is a chirp signal c2 shown in the bottom-left panel in Fig.1,

which is defined as the signal that sweeps linearly from a low to a high frequency:

x(t) = cos(f0t+
k

2
t2),

where f0 is the starting frequency and k = f1−f0
T is the rate of the frequency. Here we choose

f0 = 0.05 and k = (0.2− 0.05)/512, c2(n) = x(n), n = 0, 1, · · · , 511. Also, we generate five noisy

signals with SNR=16 by adding additive white Gaussian noise five times to the original signal c2.

One of these five noisy signal was shown in the bottom-right panel of Fig.1.
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Figure 2: Parameter vs SNRs by CL(2) multiwavelet hard thresholding, soft thresholding, and diffusion-

inspired CL(2) multiwavelet shrinkages for noisy c1 (left panel) and noisy c2 (right panel), all with # of

iterations = 20.

When we apply a hard thresholding, soft thresholding or the diffusion-inspired shrinkage, we

need to choose the parameter λ. How to select a good λ is a challenging problem. Our main

goal in this section is to compare the performance of the diffusion-inspired multiwavelet shrinkage

with those of the traditional multiwavelet hard and soft thresholding. To this regard, we provide

the denoising results with different values of the parameter λ. Fig.2 shows the graphs of λ vs

SNRs with different multiwavelet shrinkage methods. Here we set iteration number to be 20,

and we set τ = 1
32 , and c = 1 when we apply Perona-Malik (PM) diffusivity-based and Weickert

(Weick) diffusivity-based shrinkages to the highpass outputs. Observe that for signal c1, all these

four methods attain the almost best denoising results when λ is around 0.22, and this happens

for signal c2 when λ is around 0.19. For either c1 or c2, the diffusivity-based denoising methods

perform better than hard and soft thresholding for λ in a quite large range [0.14, 0.27]. When λ

is outside [0.14, 0.27], all four methods perform poorly and hence, it will be little meaningful to

compare their performances for those λ.

Another issue with the iterated denoising is when to stop the iteration process. In Fig.3, we

provide the graphs of iteration numbers vs SNRs with the above four multiwavelet shrinkages

for signal c1 (left panel) and signal c2 (right panel). Here we set λ = 0.2 for all four methods.

The iteration numbers in Fig.3 are 5, 10, 15, · · · , 70. Notice that running the denoising process

iteratively 10 times reaches quite nice results. Also notice from Fig.3 that with different iterations,

the diffusivity-based multiwavelet denoising methods always perform better than the traditional

multiwavelet hard thresholding and soft thresholding for both c1 and c2.

Next, to provide more precise denoising performance of each multiwavelet shrinkage, we look

at the largest SNR of each method with the parameter λ ranging over [0.14, 0.27] but with a fixed

iteration number. From now on, we set iteration number =20 in all our remaining experiments.

In addition, to decrease noise interference, we apply each multiwavelet denoising method to five
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Figure 3: Iteration numbers vs SNRs by CL(2) multiwavelet hard thresholding, soft thresholding, and

diffusion-inspired CL(2) multiwavelet shrinkages for noisy c1 (left-panel) and noisy c2 (right-panel).

Shrinkage Sij=Hard Sij=Soft Sij=PM Sij=Weick

Method 1 ≤ i, j ≤ 2 1 ≤ i, j ≤ 2 1 ≤ i, j ≤ 2 1 ≤ i, j ≤ 2

SNR (for c1) 22.7503 22.88061 23.84021 23.3992

SNR (for c2) 21.9001 21.9456 22.4137 22.3065

Table 1: Signal denoising results using CL(2) multiwavelet hard thresholding, soft thresholding and diffusion-

inspired CL(2) multiwavelet shrinkages.

noisy c1 (6 dB) and five noisy c2 (16 dB). Then we obtain the average of the SNRs of the five

denoised signal. Table 1 presents the averaged SNRs by CL(2) multiwavelet hard thresholding,

soft thresholding and the diffusion-inspired CL(2) multiwavelet shrinkages. From Table 1, we know

the diffusivity-inspired multiwavelet shrinkages perform better than the traditional multiwavelet

hard thresholding and soft thresholding for both signals c1 and c2.

For the DGHM multiwavelet, from (3.16), we can obtain Perona-Malik diffusivity-based and

Weickert diffusivity-based shrinkage functions Sij(x). Then we carry out similar experiments

with the DGHM multiwavelet. Table 2 presents the averaged SNRs by DGHM multiwavelet

hard thresholding, soft thresholding and the diffusion-inspired shrinkages. Again, the diffusivity-

Shrinkage Sij=Hard Sij=Soft Sij=PM Sij=Weick

Method 1 ≤ i, j ≤ 2 1 ≤ i, j ≤ 2 1 ≤ i, j ≤ 2 1 ≤ i, j ≤ 2

SNR (for c1) 19.3257 19.9925 20.5681 20.8793

SNR (for c2) 19.9833 20.4589 21.9276 21.7843

Table 2: Signal denoising results using DGHM multiwavelet hard thresholding, soft thresholding and diffusion-

inspired DGHM multiwavelet shrinkages.
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inspired DGHM-shrinkages perform better than the traditional multiwavelet hard thresholding

and soft thresholding for both signals c1 and c2.

Next we compare the performance of multiwavelet shrinkage with scalar wavelet shrinkage.

The relation between 1-D wavelet shrinkage function and diffusivity was discussed in [42]. Here

we provide in Table 3 the denoising results with scalar orthogonal wavelet filters p, q of D4

(Daubechies’ orthogonal wavelet with 4 nonzero coefficients), where the nonzero pk, qk are given

by

p = [p0 p1 p2 p3] =
1

4
[1 +
√

3 3 +
√

3 3−
√

3 1−
√

3],

q = [q0 q1 q2 q3] =
1

4
[1−
√

3 − 3 +
√

3 3 +
√

3 − 1−
√

3].

Shrinkage Method Sθ=Hard Sθ=Soft Sθ=PM Sθ=Weick

SNR (for c1) 14.1001 14.8216 15.5290 15.1012

SNR (for c2) 18.7342 18.8174 19.6210 19.7993

Table 3: Signal denoising results using scalar wavelet D4 hard thresholding, soft thresholding and diffusion-inspired

D4 shrinkages.

In Table 3 we provide the averaged SNRs of five denoised signals for each of c1 and c2 by D4

hard thresholding, soft thresholding and the diffusion-inspired D4 shrinkages. Here we set τ = 1
8 ,

and c = 1 when we apply the Perona-Malik (PM) diffusivity-based and Weickert diffusivity-based

shrinkages to the highpass outputs of (undecimated) discrete scalar wavelet transform with D4.

Again the parameter λ for each denoising method is selected such that the SNR is as large as

possible, and the iteration number is 20.

From Tables 1, 2 and 3, we find that multiwavelet shrinkage performs much better than the

scalar wavelet. In Fig.4 and Fig.5, we provide the denoised signals using the diffusivity-inspired

multiwavelet shrinkage and those with the diffusivity-inspired D4 wavelet shrinkage.

4.2 Images denoising

In this subsection, we provide denoising results with Lena and Barbara images. By the method

of tensor product, the shrinkage methods for 1-D signals can be used to image denoising.

The performance of the image denoising based on CL(2) multifilter bank was tested on Lena

and Barbara images with various shrinkage functions. For Lena image, we add additive white

Gaussian noise to the original image. Then we apply CL(2) multiwavelet shrinkage and D4 scalar

wavelet shrinkage 20 times to the noisy image with the peak signal to noise ratios (PSNR)=17.

For Barbara image, we applied CL(2) multiwavelet shrinkage and D4 scalar wavelet shrinkage
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Figure 4: Top: Denoised signal c1 using CL(2) multiwavelet with PM shrinkage (left panel) and Weickert

shrinkage (right panel); Middle: Denoised signal c1 using DGHM multiwavelet with PM shrinkage (left

panel) and Weickert shrinkage (right panel); Bottom: Denoised signal c1 using D4 wavelet with PM

shrinkage (left panel) and Weickert shrinkage (right panel).
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Figure 5: Top: Denoised signal c2 using CL(2) multiwavelet with PM shrinkage (left panel) and Weickert

shrinkage (right panel); Middle: Denoised signal c2 using DHGM multiwavelet with PM shrinkage (left

panel) and Weickert shrinkage (right panel); Bottom: Denoised signal c2 using D4 wavelet with PM

shrinkage (left panel) and Weickert shrinkage (right panel).
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Shrinkage Method Hard Soft PM Weick

PSNR for Lena image 24.9732 25.0069 25.9872 25.7331

PSNR for Barbara 24.0231 24.9987 25.9843 25.5321

Table 4: Image denoising results by CL(2) multiwavelet hard thresholding, soft thresholding and diffusion-inspired

CL(2) multiwavelet shrinkages.

Shrinkage Method Hard Soft PM Weick

PSNR for Lena 22.8843 22.9012 23.6542 23.4532

PSNR for Barbara 22.0034 21.8764 22.9654 22.3432

Table 5: Image denoising results by scalar wavelet D4 hard thresholding, soft thresholding and diffusion-inspired

D4 shrinkages.

20 times to the noisy image with PSNR=20. The PSNR is define by

PSNR = 10 log10(
MAX2

I

MSE
),

where MAXI and MSE are the maximum possible pixel value of the image and the mean squared

error, respectively:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2,

with I and K being the ideal and denoised images.

Tables 4 and 5 present PSNRs of the denoised images with different shrinkage functions. We

provide the denoised images in Figs.6 and 7, where we also present the denoised images using scalar

wavelet D4 with Perona-Malik and Weickert shrinkages. In all these experiments, the parameter

λ is selected such that the PSNR of the denoised image is as big as possible. In addition,

we set τ = 1
32 and c = 1 when we apply Perona-Malik (PM) diffusivity-based and Weickert

(Weick) diffusivity-based shrinkages to the highpass outputs. From these tables and figures, we

see multiwavelet performs better than the scalar wavelet in image denoising. Furthermore, for

multiwavelet image denoising, the diffusivity-inspired shrinkage provides a better result than the

hard- and soft-thresholding shrinkages.

5 Conclusion and future work

In this paper, we present the correspondence between the diffusivity functions of high-order non-

linear diffusion equations and multiwavelet shrinkage functions. We show that the multiwavelet

shrinkages of the commonly used CL(2) and DGHM multiwavelets are associated with a second-

order nonlinear diffusion equation. CL(2) and DGHM multiwavelet signal/image denoising results
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Figure 6: Top: Denoised Lena using CL(2) multiwavelet with PM shrinkage (left panel) and Weickert

shrinkage (right panel); Bottom: Denoised Lena using D4 wavelet with PM shrinkage (left panel) and

Weickert shrinkage (right panel).

with different shrinkage functions are also presented. Furthermore, we compare the denoising re-

sults of multiwavelets to a scalar wavelet.

Presenting diffusivity in term of shrinkage functions with advance achievement is one among

many advantages of the correspondence between multiwavelet shrinkage and diffusion filtering.

Also, the study of the relationship between both approaches helps to design the diffusion-inspired

shrinkage functions that mixes benefits from both approaches.

In this paper we consider the correspondence between one-dimensional multiwavelet shrinkage

and diffusion filtering. In the future we will consider the two-dimensional case. In addition, we

will investigate the relationship between multiple frame shrinkage and diffusion filtering in one

and two-dimensional cases.
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Figure 7: Top: Denoised Barbara using CL(2) multiwavelet with PM shrinkage (left panel) and Weickert

shrinkage (right panel); Bottom: Denoised Barbara using D4 wavelet with PM shrinkage (left panel) and

Weickert shrinkage (right panel).
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