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Abstract

In nature, real-world phenomena that can be formulated as signals (or in terms of time series)

are often affected by a number of factors and appear as multi-component modes. The natural

approach to understand and process such phenomena is to decompose, or even better, to separate

the multi-component signals to their basic building blocks (called sub-signals or time-series com-

ponents, or fundamental modes) for extracting the necessary features such as volatility, trends,

outliers, and the underlying dynamics. However, since such signals are mainly non-stationary,

there has been no effective rigorous methods available for decomposition of such multi-component

signals, except the popular ad hoc computational scheme, called empirical mode decomposition

(EMD). The essence of EMD is first to decompose the blind-source signal into a sum of com-

ponents, called intrinsic mode functions (IMFs) with some residue function, called the trend;

followed by extracting the instantaneous frequencies (IFs) of the IMFs. On the other hand, for

stationary signals there is the classic work of De Prony (called Prony’s method), and its improve-

ments to the well-known MUSIC and ESPRIT algorithms, based on the mathematical model

of exponential sums (in terms of constant frequencies), for first extracting the frequencies, from

which the sub-signals are recovered. We may call this a time-frequency approach for signal separa-

tion. The difference between EMD for signal decomposition and the time-frequency approach for

signal separation, is that signal decomposition is applied before frequencies are estimated, while

frequencies are first extracted before the multi-component signal is separated. Hence, for the

time-frequency approach, the wavelet synchro-squeezing transform (SST) and its variants may be

considered as an advancement of Prony’s method from separation of stationary signals to that of

nonstationary signals. More recently, a direct method of the time-frequency approach, called sig-

nal separation operation (SSO), was introduced to solving the inverse problem of multi-component

signal separation. While both SST and SSO are mathematically rigorous on IF estimation, SSO

∗This work is partially supported by the Hong Kong Research Council, under Projects ] 12300917 and ] 12303218,

and HKBU Grants ] RC-ICRS/16-17/03 and ] RC-FNRA-IG/18-19/SCI/01, and by the Simons Foundation, under

grant # 353185.

1



avoids the second step of the two-step SST method in signal separation, which depends heavily

on the accuracy of the estimated IFs. In the present paper, we solve the inverse problem by

constructing an adaptive signal separation operator (ASSO) for more effective separation of the

blind-source multi-component signal, via introducing a time-varying parameter that adapts to

local IFs. A recovery scheme is also proposed to extract the signal components one by one, and

the time-varying parameter is updated for each component. The proposed method is suitable for

engineering implementation, being capable of separating complicated signals into their sub-signals

and reconstructing the signal trend directly. Numerical experiments on synthetic and real-world

signals are presented to demonstrate our improvement over the previous attempts.

1 Introduction

For radar, communication, and other applications, a non-stationary multi-component signal x(t)

is usually represented as a superposition of Fourier-like oscillatory amplitude-frequency modulated

(AM-FM) components, called the AM-FM model [1, 2]. Motivated by the empirical mode decompo-

sition (EMD) [3], we model a non-stationary multi-component signal (or in terms of a time series)

by

x(t) =
K∑
k=1

xk(t) +A0(t) = F (t) +A0(t), (1)

F (t) =

K∑
k=1

xk(t) =

K∑
k=1

Ak(t) cos (2πφk(t)) , (2)

where A0(t), called the trend of x(t), is (at most) minimally oscillatory. The function F (t) in (2)

with 0 < µ ≤ Ak(t) ≤ M , φ′k(t) ≥ 0 and φ′k(t) > 0 almost everywhere (a. e.), φ′k(t) > φ′k−1(t), and

Ak(t), φ
′
k(t) varying more slowly than cos

(
2πφk(t)

)
(see [4], Eq.(1.3)), is called the AF-FM model,

where Ak(t) are called the instantaneous amplitudes (IAs) and φ′k(t) the instantaneous frequencies

(IFs), which can be used to describe the underlying dynamics. F (t) is also called the “adaptive

harmonic model” (AHM) in current mathematics literature (see for example [4, 5, 6]).

The EMD is a popular method for decomposition of a non-stationary signal as a superposition

of IMFs that satisfy two conditions: (a) the number of its local minima and local maxima must

either be equal or differ at most by one; and (b) the value of the mean of its upper envelope and

lower envelope is close to zero. Then the instantaneous frequency (IF) of each IMF is calculated,

first by applying the Hilbert transform to compute its imaginary conjugate so as to extend the IMF

from the time-domain to an analytic signal in the upper half of the complex plane, and secondly

by re-formulating the analytic signal in its polar form, and finally by taking the real part to obtain

the instantaneous amplitude and IF of each component. EMD is an efficient data-driven approach

and no basis of functions is used. It has been widely used in many applications, see [7] and the

references therein. There are many articles studying the property of EMD or proposing variants of

EMD to improve the performance, see e.g. [8]-[16]. In particular, the separation ability of EMD is

discussed in [10], which shows that EMD cannot decompose two components when their frequencies

are close to each other. The ensemble EMD (EEMD) is proposed to suppress the noise interference

2



[11]. A weakness of EMD or EEMD is that it can easily lead to mode mixture or artifacts, namely

undesirable or false components [12]. An EMD-like sifting process is recently proposed in [16], which

extracts components in the linear time-frequency (TF) plane one by one.

It is important to point out our objective of signal separation is to solve an inverse problem

which is quit different from EMD. EMD is an ad hoc computational scheme for decomposing a non-

stationary signal into its “IMFs” and “trend”, without the concern of recovering the true IMF and

trend of the source signal. For stationary signals there is the classic work of De Prony (called Prony’s

method) [17], and its improvements to the well-known MUSIC [18] and ESPRIT [19] algorithms,

based on the mathematical model of exponential sums (in terms of constant frequencies), for first

extracting the frequencies, from which the sub-signals are recovered. We may call this a time-

frequency approach for signal separation. The difference between EMD for signal decomposition

and the time-frequency approach for signal separation, is that signal decomposition is applied before

frequencies are estimated, while frequencies are first extracted before the multi-component signal is

separated.

The linear TF analysis with a reversible transform is also a powerful tool for analyzing time-

varying non-stationary signals [20, 21]. The synchrosqueezed wavelet transform (SST), introduced

in [22] and recently developed in [5] provides mathematical theorems to guarantee the recovery of

oscillatory modes, IFMs from the source signal F (t). SST and all later developments, including [23]-

[33] and the short-time Fourier transform (STFT)-based SSTs [34]-[38], re-assign the scale variable

(for continuous wavelet transform-based SST) or the frequency variable (for STFT-based SST) to

sharpen the time-frequency representation of a signal. In addition, very recently the authors of [39, 40]

proposed the adaptive WSST and adaptive FSST with a time-varying adaptive Gaussian window.

They obtain the well-separated conditions for multicomponent signals using the linear frequency

modulation to approximate a non-stationary signal at any local time, along with a new definition of

bandwidth of Gaussian window. The SST and its variants may be considered as an advancement of

Prony’s method from separation of stationary signals to that of nonstationary signals.

To obtain IMFs, the SST method consists of two steps. IFs are estimated from the SST plane.

After recovering of IFs, the IMFs of the source signal are computed by reversible transforms along

each estimated IF curves on the SST plane.

On the other hand, [4] introduced a new method with signal separation operator (SSO) to solving

the inverse problem of multi-component signal separation. We called this method SSO method.

While both SST and SSO are mathematically rigorous on IF estimation, SSO avoids the second

step of the two-step SST method in signal separation, which depends heavily on the accuracy of

the estimated IFs. In the SSO approach, the IMFs are reconstructed simply by substituting the

time-frequency ridge to SSO.

A window function is used in SSO. The window function in [4] has the same window length

for all the components (sub-signals). In this paper we introduce and construct an adaptive signal

separation operator (ASSO) which separates the original signal by the local frequencies directly. We

adopt a time-varying window for adaptive separation of each sub-signal by the proposed ASSO.
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The main innovations of this paper are: (a) we proposed a more accurate component recovery

formula; (b) we proposed a recovery scheme to extract the signal components one by one, and the

time-varying window is updated for each component; (c) the proposed separation algorithm is capable

of separating much complicated multicomponent signals and reconstructing the signal trend directly,

and (d) the proposed method is suitable for engineering implementation with truncated Gaussian

window and fast Fourier transform (FFT).

The remainder of the paper is organized as follows. We review the basic theory of signal separation

by time-frequency analysis briefly in Section 2. In Section 3, we formulate and state the results on

the proposed ASSO. We obtain the relationship between the SSO and the STFT with a time-varying

parameter. In Section 4, we analyze the component recovery error when the window function is the

Gaussian window function, and we provide a component recovery formula which is more accurate

than that by the original SSO. In Section 5, we present the numerical experiments on synthetic data

and measured data. Our experimental results show that ASSO outperforms the EMD and SSTs in

estimation of IFs and signal separation. Finally, we give a brief conclusion in Section 6.

2 Signal separation by time-frequency analysis

The modified STFT of a signal x(t) ∈ L2(R) with a window function h(t) ∈ L2(R) is defined by

Vx(t, η) :=

∫
R
x(τ)h(τ − t)e−j2πη(τ−t)dτ, (3)

where t and η are the time variable and the frequency variable respectively. For a real-valued window

function h(t) with h(0) 6= 0, one can show that a real-valued signal x(t) can also be recovered back

from its STFT Vx(t, η) with integrals involving only η:

x(t) =
2

h(0)
Re
(∫ ∞
−∞

Vx(t, η)dη
)
. (4)

Here we remark that if the window function h(t) is in the Schwarz class, then STFT Vx(t, η) of a

slowly growing x(t) with h(t) is well defined. Furthermore, and the above formula still holds.

Note that to recover/separate the components xk(t) of a multicomponent signal as given in (1)

from its STFT, if Vxk−1
(t, η) and Vxk(t, η) of two components xk−1(t) and xk(t) are “mixed” (the

contrary case of “separated”, see (6) for example), then it cannot separate these two components,

and hence it cannot recover/separate them accurately.

When xk(t) are sinusoidal signals xk(t) = Ake
j2πckt for some constants Ak, ck > 0, or they are

well approximated by sinusoidal functions in a small neighborhood of a fixed t ∈ R, namely at any

local time of t,

xk(t+ τ) = Ak(t+ τ)ej2πφk(t+τ)

≈ Ak(t)ej2π
(
φk(t)+φ

′
k(t)τ

)
= xk(t)e

j2πφ′k(t)τ ,
(5)

for small τ , then the STFT Vxk(t, η) of xk(t) with a window function h(t) is

Vxk(t, η) ≈ xk(t)ĥ(η − φ′k(t)),
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where ĥ denotes the Fourier transform of h(t).

Since the support zone of Vxk(t, η) is determined by the support of ĥ, we need to define the

essential support of ĥ if h is not band-limited. More precisely, for a given threshold 0 < τ0 < 1 small

enough, if |ĥ(ξ)|/maxξ |ĥ(ξ)| ≤ τ0 for |ξ| ≥ λh, then we say ĥ(ξ) is essentially supported in [−λh, λh].

Note that λh = λh,τ0 depends on τ0. For simplicity, here and below we drop the subscript τ0.

Hence if supp(ĥ) ⊆ [−λh, λh] for some λh > 0, then Vxk(t, η) lies in the time-frequency zone given

by

Zk := {(t, η) : |η − φ′k(t)| < λh, t ∈ R}.

Therefore, if

φ′k(t)− λh > φ′k−1(t) + λh, t ∈ R, 2 ≤ k ≤ K, (6)

then Zk∩Z` = Ø, k 6= `, which means the components of x(t) are well separated in the time-frequency

plane. (6) is a required condition for the study of FSST in [35] and for the study of the second-order

FSST in [37]. This was also pointed in [42], namely if the STFTs of two components are mixed,

the corresponding FSSTs will not be able to separate these two components too. This is also true

for other linear time-frequency analysis methods, such as continuous wavelet transform (CWT) and

CWT-based SSTs (see [5, 42] ).

[4] introduced signal separation operator (SSO) for signal IF estimation and component recovery

of multicomponent signals. More precisely, let h(t) be an admissible window function which is

nonnegative and even on R, in C3(R), supp(h) ⊆ [−1, 1] and h(t) 6≡ 0. For a > 0, denote

~a :=
∑
n∈Z

h
(n
a

)
. (7)

When a is large enough, then ~a > 0. The SSO Ta,δ in (1) is defined as

(Ta,δx) (t, θ) :=
1

~a

∑
n∈Z

x(t− nδ)h
(n
a

)
ej2πnθ, (8)

where h is an admissible window function, δ, a > 0 are parameters.

[4] established that, under certain conditions on Ak(t), φk(t), when the components of x(t) are

well-separated with (Ta,δx) (t, θ), then the ridge θ̂k,t on the (Ta,δx) (t, θ) plane corresponding to the

IF of the sub-signal xk(t) gives an approximation to the IF φ′k(t). In addition, the sub-signal xk(t)

can be recovered directly by

x̂k(t) = 2<e(Ta,δx)(t, θ̂k,t).

The reader is referred to [4] for the details. In the next section, we introduce adaptive SSO and its

relationship to the STFT with a time-varying parameter, termed as the adaptive STFT, considered

in [39].

3 Adaptive signal separation operator (ASSO)

In this section, first for the purpose to recover a complicated non-stationary signal as modeled in (1),

we introduce the adaptive signal separation operator with time-varying parameter for each signal

5



component. After that we show the relationship between ASSO and the adaptive STFT considered

in [39]. Finally, we consider the well-separated conditions.

3.1 ASSO

Definition 1. (Adaptive signal separation operator, ASSO). Let x(t) be a signal given by (1). For

each sub-signal xk in (1), let ak,t > 0 be a time-varying parameter depending on φ′k(t) and its

neighboring IFs φ′k−1(t) and φ′k+1(t). The (modified) adaptive signal separation operator (ASSO)

T δak,t applied to x is defined by

(
T δak,tx

)
(t, η) :=

1

~ak,t

∑
n∈Z

x(t− nδ)h
( n

ak,t

)
ej2πδnη, (9)

where h is an admissible window function, δ > 0 and ak,t > 0 are parameters, with ak,t large enough

such that ~ak,t defined by (7) with a = ak,t is positive.

Note that compared with SSO, ASSO uses a time-varying parameter ak,t > 0 which depends on

φ′k(t) and its neighboring IFs φ′k−1(t) and φ′k+1(t). In addition, θ in (8) is replaced by δη. Thus the

restriction in [4] for θ: θ ∈ [0, π] is released. Namely, there is no restriction on the frequency variable

η.

In the following we also assume
∫
R h(t)dt = 1. In addition, we assume the signals x(t) given by

(1) satisfy the following conditions, termed as Assumption 1.

Assumption 1. For the non-stationary real signal x = x(t) in (1), we assume that A0 ∈ C0,

0 < Ak ∈ C1, φk ∈ C2, k = 1, ...,K and φ′k > φ′k−1 > 0, k = 2, ...,K, and that there exists a constant

ε > 0 such that for small u,

|φ′k(t+ u)− φ′k(t)| ≤ ε|u| φ′k(t),
|Ak(t+ u)−Ak(t)| ≤ ε|u| Ak(t), t ∈ R.

(10)

Denote

B = B(t) := max
1≤k≤K

φ′k(t), µ = µ(t) := min
1≤k≤K

Ak(t).

Then the following theorem for representation and recovery of the k-th sub-signal xk(t) in (1) can

be followed by Theorem 2.4 in [4].

Theorem 1. Let x(t) be a non-stationary signal in (1) satisfying Assumption 1. Let δ = 1
εak,t

√
4B

.

Then the following statements hold for sufficiently small ε > 0.

(a) The set
{
η : |(T δak,tx)(t, η)| > µ/2

}
is a disjoint union of some non-empty sets. There exists

a set Gk with Gk ⊂
{
η : |(T δak,tx)(t, η)| > µ/2

}
and only containing φ′k.

(b) Let

η̃ = η̃(t) := arg max
η∈Gk

|(T δak,tx)(t, η)|. (11)

Then

|η̃(t)− φ′k(t)| < C ε
1
3 . (12)
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(c) With η̃ given by (11), we have∣∣2<e(Tak,tx)(t, η̃)− xk(t)
∣∣ ≤ D ε

1
3 , (13)

where C and D depend on the signal x(t) and the window function h(t).

3.2 ASSO and adaptive STFT

The authors of [39] introduced the adaptive STFT. In the following we show that ASSO is a dis-

cretization version of the adaptive STFT. More precisely, let g = g(t), t ∈ R be a window function

with g(0) 6= 0 and having certain smoothness and decaying order as t→∞. Denote

gσ(t) :=
1

σ
g(
t

σ
), (14)

where σ > 0 is a parameter. For a signal x(t), the STFT of x(t) with a time-varying parameter

(termed as the adaptive STFT) is defined in [39] as

(Tσx)(t, η) = (Tσ(t)x)(t, η)

:=
∫
R x(τ)gσ(t)(τ − t)e−j2πη(τ−t)dτ

=
∫
R x(t+ τ) 1

σ(t)g( τ
σ(t))e

−j2πητdτ,

(15)

where σ = σ(t) > 0 is a function of t.

Let us return back to the definition of ASSO. Observe that when ak,t is large, we have

~ak,t =
∑
n∈Z

h(
n

ak,t
) ≈ ak,t

∫
R
h(t)dt = ak,t,

where we have used the assumption
∫
R h(t)dt = 1. Thus,(

T δak,tx
)
(t, η)

≈ 1
ak,t

∑
n∈Z

x
(
t− (δak,t)

n
ak,t

)
h
(

n
ak,t

)
e
(j2πδηak,t)

n
ak,t

≈
∫
R x(t− δak,tu)h(u)ej2πδηak,tudu

=
∫
R x(t+ τ) 1

δak,t
h
(

τ
δak,t

)
e−j2πητdτ,

where the last equality follows from the substitution τ = −δak,tu and the fact that h is even.

Therefore ASSO
(
T δak,tx

)
(t, η) is a discretization of the adaptive STFT (Tσx)(t, η) with g = h and

σ = δak,t.

In the following, when we discuss the IF estimation (12) and component recovery (13), we will

deal with (Tσx)(t, η) instead of
(
T δak,tx

)
(t, η). We will consider the well-separated condition in the

next subsection and component recovery in the next section when g is the Gaussian window function.
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3.3 Separation condition analysis

Let

g(t) =
1√
2π
e−

t2

2 . (16)

Then gσ(t) defined by (14) is the Gaussian window function with standard variance σ.

To model a frequency-varying signal more accurately, we consider the local approximation of

linear chirps or linear frequency modulation (LFM) signals in this paper. We say s(t) is an LFM

signal or a linear chirp if s(t) = A cos
(
2π(ct + rt2/2)

)
In this paper we always assume c + rt > 0.

Then for η > 0, we have

(Tσs)(t, η) ≈ A

2
√

1− j2πσ2r
ej2π(ct+rt

2/2) m
(
η − (c+ rt)

)
, (17)

where

m(ξ) = e
− 2π2σ2

1+(2πrσ2)2
(1+j2πσ2r)ξ2

, (18)

and the root of an complex number
√

1− j2πσ2r denotes the value located in the same quadrant as

1− j2πσ2r.
The derivations of (17) can be followed from [40]. Indeed, [40] shows that the STFT of s̃(t) =

Aej2π(ct+rt
2/2), the complex-version of s(t), is

(Tσ s̃)(t, η) =
s̃(t)√

1− j2πσ2r
m
(
η − (c+ rt)

)
.

Therefore, the STFT of s̃(t) = Ae−j2π(ct+rt
2/2) is

(Tσ s̃)(t, η) =
s̃(t)√

1 + j2πσ2r
m
(
η + (c+ rt)

)
.

Hence we have

(Tσs)(t, η) =
1

2
(Tσ s̃)(t, η) +

1

2
(Tσ s̃)(t, η).

Observe that |m(ξ)| is a Gaussian function and it approaches to 0 very fast at ξ →∞. In addition,

η > 0 and c+ rt > 0, thus the second term on the right-hand side of the above equation is small and

could be negligible, and hence, (17) holds.

Observe that |m(ξ)| gains maximum at ξ = 0. Thus the ridge of (Tσs)(t, η) concentrates around

η = c+ rt in the time-frequency plane. Hence if |m(ξ)| is essentially supported in [−λm, λm] for some

λm > 0, then (Tσs)(t, η) lies in the time-frequency zone given by

{(t, η) : |η − (c+ rt)| < λm, t ∈ R}.

Recall that we say |m(ξ)| is essentially supported in [−λm, λm] if

|m(ξ)|/max
ξ
|m(ξ)| ≤ τ0, (19)
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for all |ξ| ≥ λm, where τ0 is a given threshold with 0 < τ0 < 1. For m given by (18), we have

λm =
√

2| ln τ0|

√
1

(2πσ)2
+ (rσ)2. (20)

When xk(t) = Ak(t) cos(2πφk(t)) with Ak(t) > 0, φ′k(t) > 0 in (2) is well approximated by LFM

functions during any local time of t ∈ R, that is,

xk(t+ u) ≈ Ak(t) cos
(
2π(φk(t) + φ′k(t)u+ φ′′k(t)u

2/2)
)
, (21)

for small u, then analogously, for η > 0, we have

(Tσxk)(t, η) ≈ Ak(t)

2
√

1− j2πσ2φ′′k(t)
ej2πφk(t) mk

(
η − φ′k(t)

)
, (22)

where in this case,

m(ξ) = e
− 2π2σ2

1+(2πφ′′
k
(t)σ2)2

(1+j2πσ2φ′′k(t))ξ
2

. (23)

Thus (Tσxk)(t, η) lies in the time-frequency zone given by

Zk := {(t, η) : |η − φ′k(t)| < λk,t, t ∈ R},

where

λk,t :=
√

2| ln τ0|

√
1

(2πσ)2
+
(
φ′′k(t)σ

)2
. (24)

If

φ′k(t)− φ′k−1(t) > λk,t + λk−1,t, t ∈ R, (25)

for all 2 ≤ k ≤ K, then the components of x(t) are well separated in the time-frequency plane of

STFT, namely, Zk, 1 ≤ k ≤ K, do not overlap. Based on (25), xk(t) can be recovered by STFT or

the FSSTs-based methods introduced in Section 1.

On the other hand, when using SSO to extract sub-signal xk(t), we care more about the ridges

on the the time-frequency plane. Hence there exists some wk,t satisfying

max{λk,t, λk−1,t} ≤ wk,t < λk,t + λk−1,t, (26)

so that when

φ′k(t)− φ′k−1(t) > wk,t, t ∈ R, 2 ≤ k ≤ K, (27)

there are K separated ridges on the time-frequency plane corresponding to the IFs φ′k(t), k =

1, 2, ...,K, respectively. Then the components of x(t) can be recovered by SSO.

Note that the threshold τ0 to define the essential support λk,t is small enough, which guarantees

wk,t satisfying (26) exist. On the one hand, in (26), wk,t < λk,t + λk−1,t means we allow the mixture

of xk−1(t) and xk(t) on the STFT plane. On the other hand, wk,t ≥ max{λk,t, λk−1,t} means wk,t

should be great enough to make sure the values on the ridge (extrema) of (Tσxk)(t, η) cannot be
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disturbed by other components and it should not result in new ridges (artifact components) on the

STFT plane.

Here we call (25) and (27) the LFM signal model-based well-separated conditions for x(t). Since

for k = 1, 2, ...,K and t ∈ R, we have

λk,t ≥ λgσ ,

where supp(ĝσ) ⊆ [−λgσ , λgσ ], the equality only holds for stationary signals. The proposed LFM

signal model-based well-separated condition is stricter than the sinusoidal signal model-based well-

separated condition in (6). Meanwhile, (26) shows SSO is more efficient to separate components with

close IFs than STFT and SSTs.

4 Signal separation with ASSO

4.1 Component recovery formula with ASSO

As discussed in Section 3.1, if the non-stationary signal x(t) in (1) satisfies (26), then the components

of x(t) can be recovered or reconstructed. Theorem 1 also provides the error bound of ASSO-based

component recovery. In this section, we discuss this error bound when g is the Gaussian window

function given by (16).

Suppose x(t) = f(t) +A0(t), where f(t) = A(t) cos (2πφ(t)) is monocomponent. Let

θr(t) := arg max
θ∈Gf
|(Tσx) (t, θ)| , (28)

where Gf is defined similarly as Gk in Theorem 1. We will provide an algorithm to find θr(t) in

Section 4. By Theorem 1, we know f(t) can be recovered by

f r(t) = 2<e
{

(Tσx)(t, θr(t))
}
. (29)

In addition, Theorem 1 provides the frequency estimation error |θr(t) − φ′(t)| and the function

recovery error |f r(t)− f(t)|.
In this paper, we use the following formula to recover the trend A0(t):

Ar
0(t) = <e

{
(Tσx)(t, 0)

}
. (30)

Note that in the above formulas (28)-(30), we assume f(t) and A0(t) are well-separated on the STFT

plane. Actually, by (15), we have

Ar
0(t) = <e

{
(Tσx)(t, 0)

}
≈ (TσA0)(t, 0)

=
∫
RA0(τ)gσ(τ − t)dτ.

(31)
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Observe that Ar
0(t) is the filtered result of A0(t) with filter gσ(t). The recovery error is

|Ar
0(t)−A0(t)| = |

∫
RA0(τ)gσ(τ − t)dτ −A0(t)|

= |
∫
RA0(t+ τ)gσ(τ)dτ −A0(t)|

= |
∫
R(A0(t+ τ)−A0(t))gσ(τ)dτ |

≤
∫
R |(A0(t+ τ)−A0(t))|gσ(τ)dτ

≤
∫
R ε|τA0(t)|gσ(τ)dτ

=
√

2
π |A0(t)|εσ.

Note that we assume
∣∣(A0(t+ τ)−A0(t)

)∣∣ ≤ ε|τA0(t)|, which is consistent with (10) when k = 0.

So that we should choose a small σ to recover the trend to obtain a small recovery error.

The objective of this paper is to deal with signals with fast-varying IFs. We assume the compo-

nents of a multicomponent non-stationary signal can be well approximated by LFMs. More precisely,

suppose f(t) can be well-approximated by LFMs as in (21). When g is the Gaussian window function

given by (16), by (22), we have θr(t) ≈ φ′(t). Hence, by (22) again,

(Tσf)(t, θr(t)) ≈ A(t)

2
√

1−j2πσ2φ′′(t)
ej2πφ(t)m(0)

= A(t)ej2πφ(t)

2
√

1−j2πσ2φ′′(t)
.

Thus the component recovery error is

ef = |f r(t)− f(t)|
=
∣∣2<e{(Tσf)(t, θr(t))

}
−A(t) cos (2πφ(t))

∣∣
≤
∣∣2(Tσf)(t, θr(t))−A(t)ej2πφ(t)

∣∣
≈
∣∣ A(t)ej2πφ(t)√

1−j2πσ2φ′′(t)
−A(t)ej2πφ(t)

∣∣
= A(t)

∣∣ 1√
1−j2πσ2φ′′(t)

− 1
∣∣

= A(t)
∣∣ j2πσ2φ′′(t)√

1−j2πσ2φ′′(t)(
√

1−j2πσ2φ′′(t)+1)

∣∣
≤ 2πσ2|φ′′(t)|A(t)(

1+4π2σ4φ′′2(t)
) 1

4
(
1+
√

1+4π2σ4φ′′2(t)
) 1

2
,

(32)

where the last inequality follows from

|
√

1− j2πσ2φ′′(t) + 1| ≥
(
1 +

√
1 + 4π2σ4φ′′2(t)

) 1
2 .

Thus ef is essentially bounded by 2πσ2|φ′′(t)|A(t). Note that ef → 0 for harmonic components

with φ′′(t) = 0.

To decrease the reconstruction error in (32), we consider to construct a modified recovery formula

and need to use a time-varying σ = σ(t) for each component xk(t). Consider the requirement of sep-

arating multicomponent signal with close IFs, we try to find a σ(t) with the sharpest representation

of each component first.

By (20), the sharpest representation of f(t), namely the minimal λm is obtained when

σ = σ(t) =
1√

2π|φ′′(t)|
. (33)
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With the σ defined by (33), the f(t) should be reconstructed by

f r(t) = 2<e
{√

1− j (Tσf) (t, θr)
}
. (34)

Compared to (29), (34) is a modified recovery formula with σ(t) = 1√
2π|φ′′(t)|

(φ′′(t) 6= 0). Obviously,

the recovery error by (34) is less than that by (29) for LFM modes, especially for large chirp rates

|φ′′(t)|.
Next we consider a two-component AM-FM signal s(t),

s(t) = s1(t) + s2(t)

= A1(t) cos (2πφ1(t)) +A2(t) cos (2πφ2(t)) ,

which can be approximated by two LFM modes for any fixed t as that in (21), where φ′′1(t), φ′′2(t) 6= 0.

If we choose σ(t) = 1
/√

2π|φ′′1(t)|, then we have the sharpest ridge of Tσs1.

For accurate recovery of the signal components, we should choose a σ(t) as small as possible, since

the hypothesis of well-approximation of LFM mode is true only during a narrow enough neighborhood

of t for a broadband signal with fast-varying frequency. But on the other hand, when φ′′1(t) is close to

0, the parameter σ(t) will be extremely large. So there is a contradiction between sharp representation

and accurate recovery of all signal components.

Hence, as ak,t introduced in Definition 1, we should use a time-varying parameter σk,t = σk(t)

for each signal component xk(t) in (1) and reconstruct the signal components one by one.

From the derivation of the component recovery error bound (32), observe that for f(t) =

A(t) cos(2πφ(t)), we will have smaller error if we use the recovery formula:

f r(t) = 2<e
{√

1− j2πσ2φ′′(t) (Tσf)(t, θr(t))
}
, (35)

where θr(t) is the estimated ridge of (Tσf)(t, θ).

After we discussed the recovery errors for monocomponent signal, we consider the component re-

covery of x(t) given by (1). We will reconstruct the component of x(t) one by one, say to recover xl(t)

first, then xm(t), l 6= m ∈ 1, 2, ...,K, and so on. When we target a particular component, say xk(t), we

will choose σ(t), denoted by σk,t depending only on IFs and their derivatives of xk−1, xk(t), xk+1(t).

More precisely, we will choose σk,t such that (Tσk,txk−1)(t, η), (Tσk,txk)(t, η), (Tσk,txk+1)(t, η) lie in

non-overlapping time-frequency zones, which can be guaranteed by

φ′k(t)− φ′k−1(t) > λk,t + λk−1,t, φ
′
k+1(t)− φ′k(t) > λk+1,t + λk,t, (36)

where t ∈ R, λk,t is defined by (24). Note for k = K, only one inequality in (36) is required; for

k = 1, x1(t) and the trend A0(t) should be well-separated on the ASSO plane, as we mentioned just

before (31), namely,

φ′1(t) > λ1,t + λ0,t, φ
′
2(t)− φ′1(t) > λ2,t + λ1,t, t ∈ R

where λ0,t = λgσ and σ = σ1,t. With the analysis above, in particular by (35), we propose the

following recovery formula for xk(t):

xrk(t) = 2<e
{√

1− j2πσ2k,trrk,t
(
Tσk,tx

)
(t, θrk,t)

}
, (37)
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where rrk,t is the estimation of chirp rate φ′′k(t) and

θrk,t = arg max
θ∈Gk
|(Tak,tx)(t, θ)|, (38)

with Gk introduced in Theorem 1. By (32), the component recover error with (37) is

|xrk(t)− xk(t)|
=
∣∣2<e{(Tσxk)(t, θ

r
k,t)
}
−Ak(t) cos (2πφk(t))

∣∣
≈
∣∣<e{Ak(t)ej2πφk(t)m(0)

}
−Ak(t) cos (2πφk(t))

∣∣
= 0.

(39)

This shows the efficiency of the new reconstruction formula in (37).

From the above discussion, we should choose the parameter σk,t as the minimum σ for each time

t, with which xk is well-separated from other components on the ASSO plane, namely both of the

two inequalities in (36) hold.

Based on the discussions above, we present a signal recovery scheme in Fig.1. First, we extract

the trend of the input signal x(t) with a small constant σ, with which the trend is well-represented

along θ = 0. Then the trend is extracted by (30). After that, we use the recovering process given by

Algorithm 1 to extract the multi AM-FM modes in (2) one by one.

Algorithm 1 Adaptive recovering process

1. Input: s(1)(t), initialize p← 1.

2. Estimate σρ(t) for s(p)(t) with (43).

3. While maxθ{
∣∣(Tσρs(p))(t, θ)∣∣} > γ, do

4. θ`(t)← arg max
θ∈Gp
{|(Tσρs(p))(t, θ)| > µ}.

5. Let σp,t ← σ`(t) with Algorithm 2.

6. θrp,t = arg max
θ∈Gp

∣∣(Tσp,ts(p)) (t, θ)
∣∣.

7. Estimate rrp,t with (41).

8. fp(t) = 2<e
{√

1− j2πσ2p,trrp,t
(
Tσp,tx

)
(t, θrp,t)

}
.

9. s(p+1)(t) = s(p)(t)− fp(t).
10. p← p+ 1.

11. Estimate σρ(t) for s(p)(t) with (43).

12. End While.

13. d(t) = s(p)(t).

14. Outputs: sub-signals {fp(t), p = 1, 2, 3, ...} and the residual d(t).

Finally, we obtain the trend, all the possible sub-signals {fp(t), p = 1, 2, 3, ...} and the residual

d(t) of x(t),

x(t) = A0(t) +
∑
p

fp(t) + d(t). (40)

Note that with Algorithm 1, the energy of sub-signal fp(t) are supposed to be greater than that of

fp+1(t), p = 1, 2, 3, .... This is due to the component with maximum power is extracted first in the

13



Figure 1: Flowchart diagram for our algorithm.

iterative procedure. The chirp rate estimation rrp,t is obtained by linear fitting of θrp(t),

min‖θrp(u)− (θrp(t) + rrp,tu)‖, (41)

where u ∈ supp(gσ`). γ and µ are two thresholds for the sake of noises. Usually we let γ > µ.

Consider noises and interferences, here we smooth σρ(t), r
r
p(t) and σ`(t) in Algorithm 1 with some

low-pass filters.

In Algorithm 1, we call σρ(t) the global time-varying parameter, with which all components are

expect to be well-separated in the ASSO plane. We call σ`(t) the local optimal time-varying param-

eter, with which the component corresponding to θ`(t) are expect to be well-separated from other

components. We will provide the methods to estimate σρ(t) and θ`(t) in the following subsection.

4.2 Estimation of the time-varying parameter

Suppose x(t) given by (1) is separable, meaning (27) holds for all k = 2, 3, ...K. If we know φ′k(t) and

φ′′k(t) for k = 1, 2, ...K, then we can choose a minimum σk(t) satisfying (36) to obtain an accurate

14



recovery of xk(t). However in practice, we in general have no prior knowledge of φ′k(t) and φ′′k(t).

Hence, we need to have methods which provide suitable estimations of σρ(t) and σ`(t) in Algorithm

1. First, we propose an algorithm to estimate the time-varying parameter σρ(t) based on the Rényi

entropy.

The Rényi entropy is a commonly used measurement to evaluate the concentration of a time-

frequency representation such as STFT in (3), Wigner-Ville distribution[20] (WVD), SST etc. of a

signal of x(t), see [43, 44, 46, 45, 40].

In this paper, we define the local Rényi entropy for T (t, θ) = (Tσ,δx)(t, θ) as

Eζ,σ(t) := 5 log2
∫ t+ζ
t−ζ

∫∞
0 |T (b, θ)|2 dθdb

−2 log2
∫ t+ζ
t−ζ

∫∞
0 |T (b, θ)|5dθdb,

(42)

where ζ is the localization parameter to determine the length of local time. One may refer to [43]

for other measures of time-frequency concentrations. Note that the smaller the Rényi entropy, the

better the time-frequency resolution. So for a fixed time t and parameter ζ, we can use (42) to find

a σρ (denoted as σρ(t)), which is called the global time-varying parameter in Algorithm 1, with the

best time-frequency concentration of (Tσρx)(t, θ). Then, we obtain

σρ(t) = argmin
σ>0

{Eζ,σ(t)} . (43)

Next, we use Algorithm 2 to search for the local optimal time-varying parameter σ`(t). Remember

that we should choose a σ(t) as small as possible for an accurate recovery of the signal component.

Let 4σ > 0 denote the increment of σ, σmin > 0 is the minimum value of σ, s(t) is the signal to be

processed.

In Algorithm 2, for θt,0, we find its nearest left local maximum (left peak) with θt,−1 and nearest

right local maximum (right peak) with θt,1 on zt(θ), satisfying zt(θt,−1) > µ and zt(θt,1) > µ. If

there are no such local extrema, viz. no θt,−1 or θt,1 above, let θt,−1 = 0 or θt,1 = Fs/2, where Fs is

sampling rate of the discrete signal. [λ
(q)
l , λ

(q)
r ] denotes the support zone of zt(θ) around θt,0, which

can be obtained directly by the definition of support zone in this paper, see (19) for example. Gp in

Algorithm 1 and 2 is defined as that in Theorem 1.

5 Numerical experiments

In this section, we provide some numerical examples to further illustrate the effectiveness and ro-

bustness of our method in the IF estimation and sub-signal reconstruction.

5.1 LFM modes

First we consider a two-component LFM signal with a trend,

s(t) = s1(t) + s2(t) +A0(t)

= 1
2 cos

(
2π(17t+ 37t2/2)

)
+ 2 cos

(
2π(31t+ 171t2/2)

)
+ (2 + 2 cos (2πt(t− 1/4)− π)) ,

(44)
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Algorithm 2 Searching for the local optimal parameter

1. Input: s(t), initialize q ← 1.

2. Estimate σρ(t) for s(t) with (43).

3. σ`(t)← σρ(t).

4. zt(θ)←
∣∣(Tσ`s)(t, θ)∣∣.

5. θt,0 ← arg max
θ∈Gp
{|zt(θ)| > µ}.

6. Find θt,−1, θt,1, λ
(q)
l and λ

(q)
r around θt,0 on zt(θ).

7. While λ
(q)
l > θt,−1 & λ

(q)
r < θt,1 & σ`(t) > σmin, do

8. σ`(t)← σ`(t)−4σ.

9. q ← q + 1.

10. zt(θ)←
∣∣(Tσ`s)(t, θ)∣∣.

11. θt,0 ← arg max
θ∈Gp
{|zt(θ)| > µ}.

12. Find λ
(q)
l and λ

(q)
r around θt,0 on zt(θ).

13. End While.

14. Output: σ`(t).

where t ∈ [0, 1] for s1(t) and s2(t), t ∈ [1/4, 3/4] for A0(t). The number of sampling points is

N = 512 and the sampling rate is 512Hz. The IFs of s1(t) and s2(t) are φ′1(t) = 17 + 37t and

φ′2(t) = 31 + 171t, respectively. Hence, the chirp rates of s1(t) and s2(t) are φ′′1(t) = 37 and

φ′′2(t) = 171, respectively. For comparison, in this and the following experiments, we also show some

results of the CWT-based SST (WSST) in [5], the second-order CWT-based SST (WSST2) in [31],

the STFT-based SST (FSST) in [35], the second-order STFT-based SST (FSST2) in [37] and the

EMD and its corresponding Hilbert-Huang Transform in [7].

Fig. 2 shows the original waveform and some recovery results of the trend A0(t) when σ = 0.02.

Observe that the trends recovered by FSST and FSST2 are not as smooth and accurate as the

proposed method in this paper. This is because of the nonlinear operations in FSST and FSST2.

Since WSST and WSST2 can not be used for trend extraction, we just consider signals after trend

removal in the following experiments.

We will use Algorithm 1 and Algorithm 2 to estimate the adaptive parameters and extract the

sub-signals one by one. First we estimate the global time-varying parameter σρ(t), with which all

components are expect to be well-separated in the ASSO plane. Since s2(t) is larger than s1(t) in

power, so s2(t) will be extract firstly with an estimated local optimal time-varying parameter σ`(t).

After that, s1(t) will be extracted similarly. Fig.3 shows the IF estimation results of the ASSO

method proposed in this paper and other methods. For WSST, WSST2, FSST and FSST2, the IF

estimations are base on curve fitting of the ridges on the corresponding time-frequency planes. For

EMD, the IFs are estimated by the Hilbert transform of the IMFs and then with a low-pass filter.

All methods can recover the two IFs of signal s(t) but with different precision. Observed that the

results of ASSO, WSST2 and FSST2 are more precise than those of WSST, FSST and EMD.

16



Figure 2: Example of the two-component LFM signal. Top-left: Waveform of s(t); Top-right: Trend recovered

by our method when σ = 0.02; Bottom-left: Trend recovered by FSST when σ = 0.02; Bottom-right: Trend

recovered by FSST2 when σ = 0.02.

Fig.4 demonstrates the reconstruction results of sub-signal s1(t) and s2(t) with the ASSO, WSST2

and FSST2, respectively. We also plot the true waveforms s1(t) or s2(t) on each picture. If the

reconstructed and the true waveforms are overlapped, then the reconstructed result is good. Observe

that our method is better than others for both s1(t) (Component 1) and s2(t) (Component 2).

To evaluate the reconstruction errors, we adopt the relative root of mean square error (RMSE),

defined as,

RMSEυ =
‖υ − υ̂‖2
‖υ‖2

, (45)

where υ is a vector and υ̂ is an estimation of υ. Hence, υ = φ′k(t) for Fig.3, υ = s1(t) or υ = s2(t) for

Fig.4. Fig.5 shows the RMSEs of the methods above. Note that there are phase shifts with WSST

and WSST2, especially for s2(t). In general, our method is superior to other methods both on IF

estimation and sub-signal reconstruction.

5.2 Nonlinear FM signal

Next we consider a three-component nonlinear FM signal,

x(t) = x1(t) + x2(t) + x3(t)

= cos (2.7πt+ 0.4 cos(3πt)) + 2
3 cos (4.7πt+ 0.3 cos(3πt))

+1
2 cos (6.4πt+ 0.2 cos(3πt)) ,

(46)

where t ∈ [0, 20]. The number of sampling points is N = 512, namely sampling rate is Fs = 25.6

Hz. The IFs of x1(t), x2(t) and x3(t) are φ′1(t) = 1.35− 0.6 sin(3πt), φ′2(t) = 2.35− 0.45 sin(3πt) and

φ′3(t) = 3.2t− 0.3 sin(3πt), respectively.

Fig.6 shows the reconstruction results of x1(t), x2(t) and x3(t) with ASSO and FSST2, respec-

tively. Obviously, the reconstructed waveforms by the proposed ASSO is better than those by FSST2.
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Figure 3: IF estimations of the two-component LFM signal with different methods. Top-left: ASSO; Top-

right: WSST; Middle-left: WSST2; Middle-right: FSST; Bottom-left: FSST2; Bottom-right: EMD.

We also use the RMSE to evaluate the errors of IF estimation and waveform reconstruction of all

the six methods mentioned in Fig.5, which are shown in Fig.7. Both the results in Fig.5 and Fig.7

demonstrate the correctness and efficiency of our proposed adaptive SSO. Note that for all the ex-

periments in this paper, we use Morlet’s wavelet for WSST and WSST2, and Gaussian window for

FSST and FSST2. One may consider use some suitable parameters to improve the results of SSTs.

This may work for some non-stationary signals, but still can not separate the fast-varying broad-

band signals. Because for complicated broadband multicomponent signals, there is no one constant

parameter which is fit for all the components.

5.3 Radar echoes

Here we consider the measured data from a conventional low-resolution very-high-frequency (VHF)

surveillance radar. The pulse-repetition frequency (PRF) of the radar is 400 Hz. The left picture of

Fig.8 shows the data to be processed, which consists of 300 discrete samples. Note that these samples

are corresponding to each radar echoes, which means the samples are obtained after the radar signal

processing of matched filtering and detection. Therefore the sampling rate in left picture of Fig.8 is

equal to the PRF, namely 400Hz.

The middle and right pictures of Fig.8 shows the IF estimation results by ASSO and FSST2,

respectively. Observe that there are two frequency components in time-frequency plane. Actually,
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Figure 4: Reconstructions of s1(t) and s2(t) with different methods. Top-left: ASSO for s1(t); Top-middle:

WSST2 for s1(t); Top-right: FSST2 for s1(t); Bottom-left: ASSO for s2(t); Bottom-middle: WSST2 for s2(t);

Bottom-right: FSST2 for s2(t).

the data here is collected when two targets in formation fly past the radar. The IFs are corresponding

to the Doppler frequencies aroused the changes of targets’ aspects and speeds with respect to the

radar. Since the two targets in formation are close, they are located at the same range unit of

the conventional low-resolution radar. It is hardly to distinguish the two targets and estimate their

Doppler frequencies by conventional Fourier-based methods. It shows the Doppler frequency of aerial

target varies approximate linearly and smoothly in [47]. To be fair, the window parameters σ for

FSST2 is equal to the average value of the global time-varying parameter σρ(t) estimated in Step a

of Algorithm 1. All the IFs in Fig.8 are estimated by the ridges directly (without curving fitting).

Observe that the results of our method are much smoother than those of FSST2.

5.4 Bat signal

Finally, we test our method on a bat echolocation signal emitted by a large brown bat (Eptesicus

Fuscus) in real world. Fig.9 shows the waveform and spectrum of the Bat echolocation signal. There

are 400 samples with the sampling period 7 microseconds (sampling rate Fs ≈ 142.86 KHz). The data

can be downloaded from the website of DSP at Rich University: http://dsp.rice.edu/software/bat-

echolocation-chirp[48].The IF representation of this bat signal has studied in [30], [32] by second-

order FSST and the instantaneous frequency-embedded synchrosqueezing wavelet transform (IF-
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Figure 5: Performance comparisons of different methods. Left: The RMSE of IF estimation; right: The

RMSE of sub-signal reconstruction.

SST) respectively. From the results in [30] and [32], we know the bat echolocation signal is consist

of four components, and all the components are approximated to LFM modes.

Fig.10 shows the results of IF estimation and waveform reconstruction. Observe that the four

components are decomposed clearly. Different from the ridge detection method in [30], which assumes

the number of components is known, we extract each ridge by the local maxima without any prior

knowledge. And by Algorithm 1, our method is adaptive and automatically. We can process sub-

signals which are time staggered.

6 Conclusion

In this paper, we introduce a direct signal separation method via extraction of local frequencies. The

proposed method works like the EMD approach, can separate complicated multicomponent non-

stationary signal adaptively and automatically without any prior knowledge. By the approximation

of LFM modes and derivation of separation conditions, we show the proposed method is capable

to separate components with closer IFs than the existing state-of-the-art methods. Moreover, for

measured signals, the proposed method can be implemented by FFT, which is suitable for engineering

applications. The further study is to consider how to take advantage of the ASSO for separating

multicomponent signals with crossings of instantaneous frequency curves.
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