ROTATION INVARIANT AMBIGUITY FUNCTIONS

QINGTANG JIANG

ABSTRACT. Let $W(\psi;x,y)$ be the wideband ambiguity function. It is obtained in this note that $y^{-\frac{\alpha+2}{2}}W(\psi;x,y)(\alpha>-1)$ is SO(2)-invariant if and only if the Fourier transform of ψ is a Laguerre function.

1. Introduction

For $g \in L^2(\mathbb{R})$, the continuous Gabor transform (or windowed Fourier transform) of $f \in L^2(\mathbb{R})$ with analyzing function g is defined by

(1.1)
$$\Psi_g f(x,y) := \int_{-\infty}^{+\infty} f(t) e^{-2\pi i y t} \overline{g(t-x)} dt.$$

It was introduced by Gabor for study of communication theory ([4]). In (1.1), x is the time variable and y is the frequency variable. The transform $\Psi_g f(x, y)$ of f is formed by shifting the window function g so that it is centered at x, then taking the Fourier transform. In this way, $\Psi_g f(x, y)$ displays the frequency content of f near time x. For $f \in L^2(\mathbb{R})$, it can be reconstructed from $\Psi_g f(x, y)$:

$$f(t) = \frac{1}{\|g\|_2^2} \int_{\mathbb{R}^2} \Psi_g f(x, y) g(t - x) e^{2\pi i y t} dx dy.$$

For $f,g\in L^2(\mathbb{R})$, the radar cross-ambiguity function of f,g is defined to be

(1.2)
$$H(f,g;x,y) := \int_{-\infty}^{+\infty} f(t + \frac{1}{2}x) \overline{g(t - \frac{1}{2}x)} e^{-2\pi i y t} dt.$$

From (1.1), (1.2), one knows $\Psi_g f(x,y)$ is exactly H(f,g;x,y) except for a phase factor. Both $\Psi_g f(x,y)$ and H(f,g;x,y) are related to the representation of the Weyl-Heisenberg group ([15], [12]). For $f \in L^2(\mathbb{R})$, denote H(f;x,y) := H(f,f;x,y).

¹⁹⁹¹ Mathematics Subject Classification. 42C05, 42C99.

Key words and phrases. Ambiguity function, rotation invariant, Laguerre function.

Function H(f; x, y) is called the radar auto-ambiguity function or narrowband ambiguity function with respect to signal f. Ambiguity functions play an important role in radar analysis and design since they were introduced by Woodward (see [20], [19], [15]). Properties of H(f, f; x, y), H(f; x, y) and their applications can be found in many literatures, e.g. [19], [15]. One of these properties is that H(f; x, y), as a function on \mathbb{R}^2 , is SO(2)-invariant (or rotation-invariant) if and only if f(x) is a Hermite function, i.e. there exists a nonnegative integer m such that $f(x) = ch_m(x)e^{-x^2}$, here $h_m(x)$ is the Hermite polynomial of degree m, see [19], [15].

Originally proposed as an alternative to windowed Fourier transform, wavelet transform has its applications in many fields (see [6], [2]). Let $H^2(\mathbb{R})$ denote the Hardy space, the subspace of $L^2(\mathbb{R})$ consisting of functions ψ with $\operatorname{supp} \widehat{\psi} \subset [0, +\infty)$. The continuous wavelet transform of $f \in H^2(\mathbb{R})$ with analyzing function $\psi \in H^2(\mathbb{R})$, denoted by W_{ψ} , is defined by

(1.3)
$$W_{\psi}f(x,y) := \frac{1}{\sqrt{y}} \int_{-\infty}^{+\infty} f(t) \overline{\psi(\frac{t-x}{y})} dt.$$

Continuous wavelet transform is associated to the square integrable representation of the affine group "ax + b" (see [5]). When ψ satisfies the following condition

(1.4)
$$C_{\psi} := 2\pi \int_{0}^{+\infty} |\widehat{\psi}(\omega)|^{2} \frac{d\omega}{\omega} < +\infty,$$

then f(x) can be reconstructed from $W_{\psi}f(x,y)$ as from $\Psi_g f(x,y)$. In this case

(1.5)
$$f(x) = \frac{1}{C_{\psi}} \int_0^{+\infty} \int_{\mathbb{R}} W_{\psi} f(b, a) \frac{1}{\sqrt{a}} \psi(\frac{x - b}{a}) \frac{dadb}{a^2}.$$

Equation (1.5) holds at least "in the weak sense", i.e. taking inner product of both sides of (1.5) with any $g \in H^2(\mathbb{R})$ and commuting the inner product with the integral over a, b in the right hand side, leads to a true formula, which in fact is the Moyal formula. The convergence of the integral in (1.5) also holds in the following "strong sense" (see [2]):

$$\lim_{\delta \to 0, A, B \to +\infty} \|f(x) - C_{\psi}^{-1} \int_{\delta < a < A} \int_{|b| < B} W_{\psi} f(b, a) \frac{1}{\sqrt{a}} \psi(\frac{x - b}{a}) \frac{dadb}{a^2} \|_2 = 0.$$

For $\psi, f \in H^2(\mathbb{R})$, let $W(\psi, f; x, y) := W_{\psi} f(x, y)$ be the wideband cross-ambiguity function of ψ, f and $W(\psi; x, y) := W(\psi, \psi; x, y)$ the wideband ambiguity function.

Such ambiguity functions were studied by Swick in [16](1967), [17](1969). The renewed interest in the wideband functions ([1], [12], [10], [14], [18], [21], [8]) seems to have been inspired by the development of wavelet analysis. In this note, we will consider the SO(2)-invariant properties of $W(\psi; x, y)$. The rotation invariance of wideband ambiguity functions would be of interest for applications in radar/sonar analysis or design. In the following, when considering the SO(2)-invariant properties of ambiguity functions, we will assume that $\psi \in H^2(\mathbb{R})$, $\hat{\psi}$ is real and $\psi(x)$ having some smooth and decaying properties at infinity which insure that $\hat{\psi}''(\omega)$ exists on $\mathbb{R}_+^* := (0, +\infty)$ and $\hat{\psi}(\omega)\hat{\psi}'(\omega)$, $\omega\hat{\psi}(\omega)\hat{\psi}''(\omega) \in L^1(\mathbb{R}_+^*)$. Let \mathcal{A} denote the set of all such functions.

2. MAIN RESULTS

For $\psi \in \mathcal{A}$, let $W(\psi; x, y)$ be the wideband ambiguity function of ψ defined as above. As a function on the upper half plane U, if $W(\psi; x, y)$ is called SO(2)-invariant when it satisfies

$$W(\psi; x_{\theta}, y_{\theta}) = W(\psi; x, y), \text{ with } x_{\theta} + iy_{\theta} = \frac{(x+iy)\cos\frac{\theta}{2} - \sin\frac{\theta}{2}}{(x+iy)\sin\frac{\theta}{2} + \cos\frac{\theta}{2}},$$

then we can get as below that there is no SO(2)-invariant $\psi \in \mathcal{A}$. In the following we will consider the ambiguity functions with a different dilation factor.

For $\alpha > -1$, let $L^{\alpha^2}(U)$ denote the function space consisting of functions on the upper half plane U square integrable with measure $y^{\alpha}dxdy$. For $\psi \in H^2(\mathbb{R})$, define the wavelet transform of $f \in H^2$ with a different dilation by

$$W^{\alpha}(\psi, f; x, y) = W^{\alpha}_{\psi} f(x, y) := \frac{1}{y^{\nu}} W_{\psi} f(x, y),$$

where

$$\nu := \alpha + 2$$

and $h = \frac{1}{\nu}$ is the Planck constant in the terminology of quantum mechanics. If ψ satisfies (1.4), W_{ψ}^{α} is an isometry (up to a constant) from $H^{2}(\mathbb{R})$ into $L^{\alpha 2}(U)$. We will consider the rotation invariant properties of the ambiguity function

$$(2.1) W^{\alpha}(\psi; x, y) := W^{\alpha}(\psi, \psi; x, y) = \frac{1}{y^{\nu + \frac{1}{2}}} \int_{-\infty}^{+\infty} \psi(t) \overline{\psi(\frac{t - x}{y})} dt.$$

Let $SL(2,\mathbb{R})$ denote the special linear group. For $g \in SL(2,\mathbb{R})$, it acts on U via the transformations

$$g: z \to gz := g(z) = \frac{az+b}{cz+d}$$
, with $g^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$,

and it induces the action on $L^{\alpha 2}(U)$ via

(2.2)
$$U_q^{\nu}: F(z) \to F(gz)\{g'(z)\}^{\frac{\nu}{2}} = F(gz)(cz+d)^{-\nu}.$$

Let SO(2) be the special rotation group, the maximal compact subgroup of $SL(2, \mathbb{R})$, then elements $g \in SO(2)$ are given by

$$g = \begin{pmatrix} \cos\frac{\theta}{2} & \sin\frac{\theta}{2} \\ -\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}, \text{ with } g^{-1} = \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}, 0 \le \theta < 2\pi.$$

Let R_{θ} be the restriction of U_{q}^{ν} to SO(2) given by

$$R_{\theta}F(z) := \frac{(i\sin\frac{\theta}{2} + \cos\frac{\theta}{2})^{\nu}}{(z\sin\frac{\theta}{2} + \cos\frac{\theta}{2})^{\nu}}F\left(\frac{z\cos\frac{\theta}{2} - \sin\frac{\theta}{2}}{z\sin\frac{\theta}{2} + \cos\frac{\theta}{2}}\right),$$

where $c_{\theta} := (i \sin \frac{\theta}{2} + \cos \frac{\theta}{2})^{\nu}$. Adding the constant c_{θ} in the definition of R_{θ} is to assure that $R_{\theta}F(i) = F(i)$. In fact the point i is the rotation center. If $R_{\theta}F(z) = F(z)$, then F(z) is called SO(2)-invariant.

Let \mathbb{Z}_+ denote the set of all nonnegative integers and in this note we would consider the problem in the case $\alpha \in \mathbb{Z}_+$. We have

Theorem 2.1. For $\alpha \in \mathbb{Z}_+$ and $\psi \in \mathcal{A}$, let $W^{\alpha}(\psi; x, y)$ be the ambiguity function of ψ defined by (2.1), then $W^{\alpha}(\psi; x, y)$ is SO(2)-invariant if and only if there exists $k \in \mathbb{Z}_+$, $k < \frac{\alpha+1}{2}$, such that

(2.3)
$$\widehat{\psi}(\omega) = \begin{cases} c(2\omega)^{\frac{\alpha+1}{2}-k} L_k^{(\alpha+1-2k)}(2\omega) e^{-\omega}, & \text{for } \omega \ge 0, \\ 0, & \text{for } \omega < 0, \end{cases}$$

where c is a nonzero constant and $L_k^{(\alpha)}(\omega)$ is the Laguerre polynomial of degree k.

Proof. " \Longrightarrow " If there exists $\psi \in \mathcal{A}$ such that $W^{\alpha}(\psi; x, y)$ is SO(2)-invariant, then $R_{\theta}W^{\alpha}(\psi; x, y) = W^{\alpha}(\psi; x, y)$ for all θ and hence

(2.4)
$$\frac{d(R_{\theta}W^{\alpha}(\psi; x, y))}{d\theta} \bigg|_{\theta=0} = 0.$$

For appropriate functions F(z) on U, it follows by a direct calculation

$$\frac{dR_{\theta}F(z)}{d\theta}\bigg|_{\theta=0} = \frac{i\nu}{2}F(z) - \frac{\nu}{2}zF(z) + \frac{y^2 - x^2 - 1}{2}\frac{\partial F(x,y)}{\partial x} - xy\frac{\partial F(x,y)}{\partial y}.$$

From the definition of $W_{\psi}^{\alpha} f(x, y)$,

$$W_{\psi}^{\alpha}f(x,y) = \frac{y^{-\frac{\nu-1}{2}}}{2\pi} \int_{0}^{+\infty} \widehat{\psi}(y\omega)\widehat{f}(\omega)e^{i\omega x}d\omega.$$

Therefore we would consider functions with the form of

$$F(z) = y^{-\frac{\nu-1}{2}} \int_0^{+\infty} h(y\omega) g(\omega) e^{i\omega x} d\omega,$$

where z = x + iy, $h(\omega)$ and $g(\omega)$ are real functions on \mathbb{R}_+^* with $h''(\omega), g''(\omega)$ existing and having some decay properties at infinity. For such kind function F(z),

$$-2i\frac{dR_{\theta}F(z)}{d\theta}\bigg|_{\theta=0}$$

$$(2.5) \qquad = \nu(1-y)F(z) + ixF(z) + (y^2 - x^2 - 1)y^{-\frac{\nu-1}{2}} \int_0^{+\infty} h(y\omega)\omega g(\omega)e^{i\omega x}d\omega$$

$$+2ixyy^{-\frac{\nu-1}{2}} \int_0^{+\infty} h'(y\omega)\omega g(\omega)e^{i\omega x}d\omega.$$

Let D_{ν} denote the differential operator of functions on \mathbb{R}_{+}^{*} defined by

(2.6)
$$D_{\nu} := -\omega^{2} \frac{d^{2}}{d\omega^{2}} - \omega \frac{d}{d\omega} + \omega^{2} - \nu\omega + \frac{(\nu - 1)^{2}}{4}.$$

Then by a direct calculation and (2.5), one has

(2.7)
$$\int_{0}^{+\infty} h(y\omega) \frac{1}{\omega} D_{\nu} g(\omega) e^{i\omega x} d\omega - \int_{0}^{+\infty} g(\omega) \frac{1}{\omega} D_{\nu} h(y\omega) e^{i\omega x} d\omega$$
$$= -2iy^{\frac{\nu-1}{2}} \frac{dR_{\theta} F(z)}{d\theta} \bigg|_{\theta=0}.$$

Let $F(z) = W^{\alpha}(\psi; x, y)$, then (2.4) and (2.7) lead to

$$\int_0^\infty \widehat{\psi}(y\omega) \frac{1}{\omega} D_\nu \widehat{\psi}(\omega) e^{i\omega x} d\omega = \int_0^\infty \widehat{\psi}(\omega) \frac{1}{\omega} D_\nu \widehat{\psi}(y\omega) e^{i\omega x} d\omega,$$

and hence $\widehat{\psi}(y\omega)D_{\nu}\widehat{\psi}(\omega) = \widehat{\psi}(\omega)D_{\nu}\widehat{\psi}(y\omega)$ for all $y, \omega \in R_{+}^{*}$. Therefore one can get that $\widehat{\psi}(\omega)$ is an eigenfunction of D_{ν} . The differential operator D_{ν} has spectra (see [3], [13]):

$$\sigma(D_{\nu}) = \left\{ \left(\frac{\nu - 1}{2}\right)^2 - \left(\frac{\nu - 1}{2} - k\right)^2, k \in \mathbb{Z}_+, k < \frac{\nu - 1}{2} \right\} \cup \left\{ \left[\left(\frac{\nu - 1}{2}\right)^2, +\infty\right) \right\}.$$

For $k < \frac{\nu-1}{2}$, denote $\lambda_k := (\frac{\nu-1}{2})^2 - (\frac{\nu-1}{2} - k)^2$, and let $\widehat{\psi}_k(\omega)$ be the eigenfunction of D_{ν} corresponding to λ_k , i.e.

$$(2.8) D_{\nu}\hat{\psi}_{k}(\omega) = \lambda_{k}\hat{\psi}_{k}(\omega).$$

And Let φ be the function defined by $\widehat{\psi}_k(\omega) = (2\omega)^{-\frac{1}{2}}\varphi(2\omega)$. Then by (2.8),

(2.9)
$$\varphi''(t) + \left(-\frac{1}{4} + \frac{\nu}{2t} + \frac{1 + 4\lambda_k - (\nu - 1)^2}{4t^2}\right)\varphi(t) = 0.$$

Equation (2.9) is just the "Whittaker's differential equation" (see [11]) and it has solution $M_{\mathcal{N},\mu_k}$, the Whittaker's function, given by

$$M_{\mathcal{N},\mu_k}(t) = e^{-\frac{t}{2}t^{\mu_k + \frac{1}{2}} {}_1F_1(\mu_k + \frac{1}{2} - \mathcal{N}; 1 + 2\mu_k; t),$$

where $\mathcal{N} = \frac{\nu}{2}, \mu_k = \frac{\nu - 1}{2} - k$. Thus

$$\widehat{\psi}_{k}(\omega) = (2\omega)^{-\frac{1}{2}} M_{\mathcal{N},\mu_{k}}(2\omega) = (2\omega)^{\frac{\nu-1-2k}{2}} e^{-\omega} {}_{1}F_{1}(-k;\nu-1-2k;2\omega)$$
$$= (2\omega)^{\frac{\alpha+1-2k}{2}} e^{-\omega} L_{k}^{(\alpha+1-2k)}(2\omega).$$

For the continuous spectra λ of D_{ν} , let $\widehat{\psi}_{\lambda}$ be the corresponding eigenfunction, then one can get as above that

$$\widehat{\psi}_{\lambda}(\omega) = (2\omega)^{\mu_{\lambda}} e^{-\omega_{1}} F_{1}(\mu_{\lambda} + \frac{1}{2} - \frac{\nu}{2}; 1 + 2\mu_{\lambda}; 2\omega),$$

where $\mu_{\lambda} = \pm i \sqrt{\lambda - (\frac{\nu - 1}{2})^2}$. Such ψ_{λ} is not in \mathcal{A} since $\widehat{\psi}_{\lambda}(\omega)$ is not a real function. " \Longleftrightarrow " For any $k \in \mathbb{Z}_+, k < \frac{\alpha + 1}{2}$, let $\psi_k \in \mathcal{A}$ given by

$$\widehat{\psi}_k(\omega) = \begin{cases} (2\omega)^{\frac{\alpha+1}{2}-k} L_k^{(\alpha+1-2k)}(2\omega) e^{-\omega}, & \text{for } \omega \ge 0, \\ 0, & \text{for } \omega < 0. \end{cases}$$

Then

$$\begin{split} W^{\alpha}(\psi_k; x, y) &= \frac{1}{2\pi y^{\frac{\alpha+1}{2}}} \int_0^{+\infty} \widehat{\psi}_k(y\omega) \widehat{\psi}_k(\omega) e^{i\omega x} d\omega \\ &= \frac{2^{\alpha-2k}}{\pi y^k} \int_0^{+\infty} \omega^{\alpha+1-2k} L_k^{(\alpha+1-2k)}(2\omega) L_k^{(\alpha+1-2k)}(2y\omega) e^{-\omega(y+1-ix)} d\omega. \end{split}$$

Denote $p := \frac{y+1-ix}{2} = \frac{1-iz}{2}$ with z = x + iy, one can get

$$\begin{split} W^{\alpha}(\psi_{k};x,y) &= \frac{1}{4\pi} y^{-k} \int_{0}^{\infty} \omega^{\alpha+1-2k} L_{k}^{(\alpha+1-2k)}(\omega) L_{k}^{(\alpha+1-2k)}(y\omega) e^{-\omega p} d\omega \\ &= y^{-k} \frac{\Gamma(\alpha+2)}{4\pi (k!)^{2}} \frac{(p-1)^{k} (p-y)^{k}}{p^{\alpha+2}} {}_{2}F_{1}(-k,-k;-\alpha-1;\frac{p(p-1-y)}{(p-1)(p-y)}) \\ &= y^{-k} \frac{\Gamma(\alpha+2)}{4\pi (k!)^{2}} \frac{(p-1)^{k} (p-y)^{k}}{p^{\alpha+2}} (\frac{y}{(p-1)(p-y)})^{k} \cdot \\ &\cdot {}_{2}F_{1}(-k,k-\alpha-1;-\alpha-1;\frac{p(p-1-y)}{-y}) \\ &= \frac{2^{\alpha} \Gamma(\alpha+2)}{\pi (k!)^{2}} \frac{1}{(1-iz)^{\alpha+2}} {}_{2}F_{1}(-k,k-\alpha-1;-\alpha-1;\frac{|1-iz|^{2}}{4y}), \end{split}$$

where $_2F_1(a,b;c;t):=\sum_{n=0}^{\infty}\frac{(a)_n(b)_n}{(c)_nn!}t^n$ is the hypergeometric function with $(a)_0:=1,(a)_n:=a(a+1)\cdots(a+n-1).$

For
$$z \in U, g^{-1} = \begin{pmatrix} \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{pmatrix} \in SO(2)$$
, denote

$$\omega := u + iv = g(z) = \frac{z \cos \frac{\theta}{2} - \sin \frac{\theta}{2}}{z \sin \frac{\theta}{2} + \cos \frac{\theta}{2}},$$

then $\frac{|1-i\omega|^2}{4v} = \frac{|1-iz|^2}{4y}$ and

$$R_{\theta}W^{\alpha}(\psi_{k}; x, y) = \frac{(i\sin\frac{\theta}{2} + \cos\frac{\theta}{2})^{\alpha+2}}{(z\sin\frac{\theta}{2} + \cos\frac{\theta}{2})^{\alpha+2}} \frac{2^{\alpha}\Gamma(\alpha+2)}{\pi(k!)^{2}(1-i\omega)^{\alpha+2}} {}_{2}F_{1}(-k, k-\alpha-1; -\alpha-1; \frac{|1-i\omega|^{2}}{4v})$$

$$= \frac{2^{\alpha}\Gamma(\alpha+2)}{\pi(k!)^{2}(1-iz)^{\alpha+2}} {}_{2}F_{1}(-k, k-\alpha-1; -\alpha-1; \frac{|1-iz|^{2}}{4y})$$

$$= W^{\alpha}(\psi_{k}; x, y).$$

That is $W^{\alpha}(\psi_k; x, y)$ is SO(2)-invariant. The proof of Theorem 1 is completed. \square

Remark 1. The differential operator D_{ν} given by (2.6) is equivalent to the Casimir operator of the representation U^{ν} of SL(2,R) given by (2.2). In fact, the Casimir operator \Box_{ν} is given by

$$\square_{\nu} := -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + i\nu y \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right),$$

and we have (see [7], [3])

$$\Box_{\nu}W^{\alpha}(\psi, f; x, y) = \frac{1}{2\pi y^{\frac{\alpha+1}{2}}} \int_{0}^{\infty} (D_{\nu}\widehat{\psi})(y\omega)\widehat{f}(\omega)e^{i\omega x}d\omega.$$

We shall also note here that function ψ given by (2.3) satisfies (1.4) since $\frac{\alpha+1}{2}-k>0$.

Remark 2. If α is not an integer and ψ is the function defined by (2.3), then for $\theta \in [0, 2\pi]$, $R_{\theta}W^{\alpha}(\psi; x, y)$ equals to $W^{\alpha}(\psi; x, y)$ (up to a constant on the unit circle).

Acknowledgements. The author would like to express his thanks to the anonymous referee for many helpful suggestions to this paper.

References

- 1. L. Auslander and I. Gertner, Wideband ambiguity functions and the $a \cdot x + b$ group, in "Signal Processing: Part I Signal Processing Theory", L. Auslander et al eds, Springer-Verlag, New York, 1990, 1-12.
- 2. I. Daubechies, "Ten Lectures on Wavelets", SIAM, Philadelphia, 1992.
- 3. I. Daubechies, J. Klauder and T. Paul, Wiener measures for path integrals with affine kinematic variables, J. Math. Phys., 28(1987), 85-102.
- 4. D. Gabor, Theory of communication, J. Inst. Electr. Eng., 93(1964), 429-457.
- 5. A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM. J. Math. Anal., 15 (1984), 723-736.
- C. Heil and D. Walnut, Continuous and discrete wavelet transform, SIAM. Rev., 31(1989), 628-666.
- Q. Jiang and L. Peng, Casimir operator and wavelet transform, in "Harmonic Analysis in China", Hongkong, Kluwer Academic Publishers, 1995.
- 8. G. Kaiser, "A Friendly Guide to Wavelet", Birkhäuser, 1994.
- E. Kalnins and W. Miller, A note on group contractions and radar ambiguity functions, in "
 Radar and Sonar, Part II", F. Alberto Grünbaum et al eds, Springer-Verlag, New York, 1992,
 71-82.
- P. Maas, Wideband approximation and wavelet transform, in "Radar and Sonar, Part II", F. Alberto Grünbaum et al eds, Springer-Verlag, New York, 1992, 83-88.
- 11. W. Magnus, F. Oberhettinger and R. Soni, "Formulas and Theorems for the Special Functions of Mathematical Physics", Springer-Verlag Berlin, Heidelberg, 1966.
- 12. W. Miller, Topics in harmonic analysis with applications to radar and sonar, in "Radar and Sonar, Part I", R. Bluhat et al eds, Springer-Verlag, New York, 1991, 66-168.

- 13. P. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels, Physical Review, 34(1929), 57-64.
- 14. H. Naparst, Dense target signal processing, IEEE Trans. Inform. Theory, 37(1991), 317-327.
- 15. W. Schempp, "Harmonic Analysis on the Heisenberg Nilpotent Lie Group, with Applications to Signal Theory", Longman, 1986.
- 16. D. Swick, An ambiguity function independent of assumption about bandwidth and carrier frequency, NRL Report 6471, Washington, DC, 1966.
- 17. D. Swick, A review of wide-band ambiguity function, NRL Report 6994, Washington, DC, 1969.
- L. Weiss, Wavelets and wideband correlation processing, IEEE Signal Proc. Magazine, Jan. 1994, 13-32.
- C. Wilcox, The synthesis problem for radar ambiguity functions, in "Radar and Sonar, Part I",
 R. Bluhat et al eds, Springer-Verlag, New York, 1991, 229-260.
- P. Woodward, "Probability and Information Theory with Applications to Radar", 2nd ed, Pergamon Press, New York, 1964.
- 21. R. Young, "Wavelet Theory and Its Applications", Kluwer Academic Publishers, Boston, 1993.

DEPARTMENT OF MATHEMATICS, PEKING UNIVERSITY, BEIJING 100871, P. R. CHINA.

CURRENT ADDRESS: DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF SINGAPORE, LOWER KENT RIDGE ROAD, SINGAPORE 119260.

E-MAIL: QJIANG@HAAR.MATH.NUS.SG.