ROTATION INVARIANT AMBIGUITY FUNCTIONS

QINGTANG JIANG

ABSTRACT. Let W (v;z,y) be the wideband ambiguity function. It is obtained in
this note that y_aTHWW; z,y)(a > —1) is SO(2)-invariant if and only if the Fourier

transform of ¢ is a Laguerre function.

1. INTRODUCTION

For g € L*(R), the continuous Gabor transform (or windowed Fourier transform) of

[ € L*(R) with analyzing function g is defined by
+00 o
(1.1) U, f(z,y) = / F(6)e~2 g — 7)dt.
It was introduced by Gabor for study of communication theory ([4]). In (1.1), x is the
time variable and y is the frequency variable. The transform ¥, f(z,y) of f is formed
by shifting the window function g so that it is centered at z, then taking the Fourier
transform. In this way, ¥, f(z,y) displays the frequency content of f near time z. For
f € L*(R), it can be reconstructed from ¥, f(z,y):
1 .
Jt) = [ WS (@, 9)g(t — 2)edudy.
lgll3 Je2 ~*
For f,g € L*(R), the radar cross-ambiguity function of f, g is defined to be

“+o0

(1.2) H(f, g:7,9) :=/ ft+ %w)g(t— %x)e‘”"ytdt.

From (1.1), (1.2), one knows ¥, f(z,y) is exactly H(f,g;z,y) except for a phase
factor. Both W, f(z,y) and H(f, g; x,y) are related to the representation of the Weyl-
Heisenberg group ( [15], [12]). For f € L%*(R), denote H(f;x,y) := H(f, f;z,y).
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Function H(f;,x,y) is called the radar auto-ambiguity function or narrowband ambi-
guity function with respect to signal f. Ambiguity functions play an important role in
radar analysis and design since they were introduced by Woodward (see [20], [19], [15]).
Properties of H(f, f;z,y), H(f;x,y) and their applications can be found in many lit-
eratures, e.g. [19], [15]. One of these properties is that H(f;x,y), as a function on R?,
is SO(2)-invariant (or rotation-invariant) if and only if f(z) is a Hermite function, i.e.
there exists a nonnegative integer m such that f(z) = chm(2)e™, here k() is the
Hermite polynomial of degree m, see [19], [15].

Originally proposed as an alternative to windowed Fourier transform, wavelet trans-
form has its applications in many fields (see [6], [2]). Let H?(R) denote the Hardy
space, the subspace of L?(RR) consisting of functions 1 with suppt C [0,+00). The
continuous wavelet transform of f € H?(R) with analyzing function v € H?(R) ,
denoted by Wy, is defined by

t—=x

1 +0oo
(13) Wolow) = — [ Fn— e

Continuous wavelet transform is associated to the square integrable representation

of the affine group “ax + b” (see [5]). When 1 satisfies the following condition
(1.4 Cy = [T B < too,

then f(z) can be reconstructed from Wy, f(z,y) as from ¥, f(z,y). In this case
(1) f@) =g [ L Werea e

(—)
Equation (1.5) holds at least “in the weak sense”, i.e. taking inner product of both

Vva a ' oa?

sides of (1.5) with any g € H%(R) and commuting the inner product with the integral
over a,b in the right hand side, leads to a true formula, which in fact is the Moyal
formula. The convergence of the integral in (1.5) also holds in the following “strong
sense” (see [2]):
ol IO [ [ Wt e TR =
For ¢, f € H*(R), let W (¢, f;z,y) := Wy f(z,y) be the wideband cross-ambiguity
function of o, f and W(¢;z,y) := W (¥, 9;z,y) the wideband ambiguity function.
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Such ambiguity functions were studied by Swick in [16](1967), [17](1969). The renewed
interest in the wideband functions ([1] , [12], [10], [14], [18], [21], [8]) seems to have
been inspired by the development of wavelet analysis. In this note, we will consider
the SO(2)-invariant properties of W (v;z,y). The rotation invariance of wideband
ambiguity functions would be of interest for applications in radar/sonar analysis or
design. In the following, when considering the SO(2)-invariant properties of ambiguity
functions, we will assume that ¢ € H2(R), 1 is real and () having some smooth and
decaying properties at infinity which insure that 9" (w) exists on R* := (0,400) and
D) (), wih(w)d" (w) € L'(R% ). Let A denote the set of all such functions.

2. MAIN RESULTS

For ¢ € A, let W(¢; z, y) be the wideband ambiguity function of ¢ defined as above.
As a function on the upper half plane U, if W (v; z, y) is called SO(2)-invariant when
it satisfies

é

3 9 sin?
W (s xg,y9) = W (s 2,y), with g + iyy = %,
2

" (x+iy)sin %—I—cos

then we can get as below that there is no SO(2)-invariant ¢ € A. In the following we
will consider the ambiguity functions with a different dilation factor.

For a > —1, let L**(U) denote the function space consisting of functions on the
upper half plane U square integrable with measure y®dzdy. For ¢y € H*(R), define the

wavelet transform of f € H? with a different dilation by

1
Wa(waf;xay) = W$f(x,y) = ?Wde(l‘ay):
where
vi=o+2

and h = % is the Planck constant in the terminology of quantum mechanics. If v
satisfies (1.4), W, is an isometry (up to a constant) from H?*(R) into L**(U). We will

consider the rotation invariant properties of the ambiguity function

ar i . _ 1 +oo t—x
(2.1) We(ia,y) = W i) = | v e




4 QINGTANG JIANG

Let SL(2,R) denote the special linear group. For g € SL(2,R), it acts on U via the

transformations
b b
g:2z—gz:=g(2)= Zjid, with ¢ ' = (Z d) ,
and it induces the action on L*?(U) via
(2.2) Uy : F(z) — F(92){¢'(2)}* = F(g2)(cz +d)™".

Let SO(2) be the special rotation group, the maximal compact subgroup of SL(2, R),
then elements g € SO(2) are given by

cosg sing . o cosg —sing
g= ) y , with g7 = ; p , 0<0 <27

— Sin 9 COS 9 sin ) COSs )

Let Ry be the restriction of U, to SO(2) given by
(isin g + cos )" (z cos & — sin g)

in @ (V7 in @ 9
(zsin 5 4 cos 5) zsin 5 4 cos 5

RyF(z) :=

where ¢y := (isin £ +cos £)¥. Adding the constant ¢, in the definition of Ry is to assure
that RypF' (i) = F (7). In fact the point ¢ is the rotation center. If RyF'(z) = F(z), then
F(z) is called SO(2)-invariant.

Let Z, denote the set of all nonnegative integers and in this note we would consider

the problem in the case o € Z. We have

Theorem 2.1. For « € Z, and ¢ € A, let W(¢; z,y) be the ambiguity function of ¥
defined by (2.1), then We(¢; z,y) is SO(2)-invariant if and only if there ezists k € Z .,

k< O‘T“, such that

(2.3) P(w) = { c(2w) T FLET TP Qw)e,  for w > 0,

0, for w <0,

where ¢ is a nonzero constant and LEj‘) (w) is the Laguerre polynomial of degree k.

Proof. “=" If there exists ¢ € A such that W*(¢;z,y) is SO(2)-invariant, then
RyWe(¢p; z,y) = W*(2p; z,y) for all @ and hence

d(RyW*(¢; 2,))

(2.4) _

=0.
0=0




ROTATION INVARIANT AMBIGUITY FUNCTIONS )

For appropriate functions F(z) on U, it follows by a direct calculation

dRyF(2) y  — 12— 10F(z,y) B xyaF(a:, )
o |,_, 2 Ox oy

From the definition of W f (z,y),

= %F(z) — ng(z) +

WesGy) = L [ b)),

Therefore we would consider functions with the form of

v—1

FE) =57 [ ho)g)erds,

where z = z + 4y, h(w) and g(w) are real functions on R with A"(w), ¢"(w) existing

and having some decay properties at infinity. For such kind function F(2),

)Y e i
“Tae

(2.5) =v(1 —y)F(2) +izF(2) + (4® — 2> — 1)y~ 7 /0—|—oo h(yw)wg(w)e™*dw

v—1

+0o0 .
+2izyy” T / B (yw)wg(w)e*dw.
0
Let D, denote the differential operator of functions on R’ defined by

d? d (v —1)2
e 2 — _ —
(2.6) D, :=—-w 72 Y +w? — v+ T

Then by a direct calculation and (2.5), one has

—I—ooh 1D iwz‘d oo lD h iwzd
| heo)=Dug@)e dw = [ g(w) = Duh(yw)e d

w1 dRyF(2)
2. — g
(2.7) iy b,

Let F(z) = W*(¢;x,y), then (2.4) and (2.7) lead to
/Ooo QZ(yw)éDy{b\(w)eiwmdw — /0Oo ﬁ(w)épuﬁ(yw)eimdw;

and hence ¥ (yw)D,(w) = ¥(w)D,¥(yw) for all y,w € R . Therefore one can get

that ¢(w) is an eigenfunction of D,. The differential operator D, has spectra (see [3],

[13]):

o(D) = {(“ 57 —Rtke k< P U (IS o))

2 2
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For k < Y31, denote )y, := (%51)? — (%52 — k)?, and let ¢ (w) be the eigenfunction of

D,, corresponding to A, i.e.

(2.8) Dy (w) = Methi (w)-
And Let ¢ be the function defined by ¥ (w) = (2w)~2¢(2w). Then by (2.8),

(29) S+ (4 A g

Equation (2.9) is just the “ Whittaker’s differential equation” (see [11]) and it has
solution My, , the Whittaker’s function, given by

1
My (1) = €7 3895 3 Fy (g + 5~ N1+ 2 0),

where N = ¥, ju, = 7% — k. Thus

v—1—2k

Pr(w) = (2w) T My, (2w) = (2w) 7 e Fi(—kiv — 1 — 2k; 2w)

= (2w) B e*‘"LSCaH*Zk) (2w).

For the continuous spectra A of D,, let 12)\ be the corresponding eigenfunction, then

one can get as above that

~ 1 v
W) = ()P e 1P + 5 — 531+ 20 2w),

where py = £iy/A — (%57%)2. Such ¢, is not in A since ¥x(w) is not a real function.
“—=" Forany k€ Z,, k< O“T“, let ¢y € A given by

-~ (Zw)aTH’kLgcaH*Zk)(Qw)e’“’, for w >0,
0, forw <0.

Then

+oo

W*(r; 2,9) = QMJ;&%/O D (yw) P (w) e dw

2@—2]«:

“+oo
a+1—-2k 7 (a+1—2k) (a+1-2k) —w(y+1—iz
= | et L ) L 2g)e v,
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Denote p := “12—_”” = % with z = x + iy, one can get

1 o0 atl— atl— _
W (y; z,y) = Ey_k/o wa“—?’“L; + 2k)(w)Lgc + 2k)(yw)e “Pdw

L@+ -1 e-y)* o pp—1-9)
am(k!)? PR N o-Do—-1)
sLa+2)(p— 1)’“(p—y)’°( y .
Am(k!)? pet? (=1 —y)
'2F1(—k, k — 0 — 1; -0 — 1; p—(p __L_ y))
_2°T(a+2) 1 1 —izf?

);

a+22F1(—k,k — o — 1, —Q — 1,

m(k)? (1 —iz) 4y

where oFy(a,b;c;t) == Y00, %t" is the hypergeometric function with (a)y :=

L(a),:=ala+1)---(a+n—1).

. cos? —sint
Forz e U,g7" = € SO(2), denote
sin g oS g

) zcosg —sing
WIZU'HUZQ(Z): — 0 0
ZSsIn 5 + oS 5
_ |1—izf?

Iy and

[1—iw|?
then T

RoW* (¢x; z,y)
_ (isin§ +cos§)*t?  2°T(a+2) Fi(—k k—a—l'—a—l-w)
B (Z Sing + cos g)a-i-Z 71-(]5!)2(1 _ iw)a+22 1 ) ) ) 1o

2°T (o + 2) |1 — iz
m(kD2(1 — iz)ot2? =k k—a-L—a—1—p=)

= Wa(q/)k; €, y)'

That is W(¢x; x,y) is SO(2)-invariant. The proof of Theorem 1 is completed. [

Remark 1. The differential operator D, given by (2.6) is equivalent to the Casimir
operator of the representation U of SL(2,R) given by (2.2). In fact, the Casimir
operator OJ,, is given by

0? 0? .0 0
Ly = ﬂf(@ + a—yg) + Wy(a—x + Za_y)’
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and we have (see [7], [3])

OV, f529) = ~—gzr [ (D) () Fw)e"ds

2y 2

We shall also note here that function v given by (2.3) satisfies (1.4) since O‘T“ —k > 0.

Remark 2. If « is not an integer and v is the function defined by (2.3), then for
0 € [0,2n], RyWe(¢; z,y) equals to W*(¢; z,y) (up to a constant on the unit circle).
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