V/3-subdivision schemes: maximal sum rule orders
Qingtang Jiang', Peter Oswald* and Sherman D. Riemenschneiderf

tDepartment of Mathematics
West Virginia University
Morgantown, WV 26506-6310

E-mail: {jiang,sherm}@math.wvu.edu

*Bell Laboratories, Lucent Technologies
600 Mountain Avenue
Murray Hill, NJ 07974

E-mail: poswald@research.bell-labs.com



Corresponding author: Sherman D. Riemenschneider, Department of Mathematics,
West Virginia University, Morgantown, WV 26506-6310. (E-mail: sherm@math.wvu.edu,
telephone: 304-293-2011 ext 2322, fax: 304-293-3982)

Abstract

Subdivision with finitely supported masks is an efficient method to create dis-
crete multiscale representations of smooth surfaces for CAGD applications. Re-
cently a new subdivision scheme for triangular meshes, called v/3-subdivision, has
been studied. In comparison to dyadic subdivision which is based on the dilation
matrix 27, v/3-subdivision is based on a dilation M with det M = 3. This has
certain advantages, for example a slower growth for the number of control points.

This paper concerns the problem of achieving maximal sum rule orders for
stationary v/3-subdivision schemes with given mask support which is important
because the sum rule order characterizes the order of the polynomial reproduction,
and provides an upper bound on the Sobolev smoothness of the surface. We study
both interpolating and approximating schemes for a natural family of symmetric
mask support sets related to squares of sidelength 2n in %2, and obtain exact for-
mulas for the maximal sum rule order for arbitrary n. For approximating schemes,
the solution is simple, and schemes with maximal sum rule order are realized by
an explicit family of schemes based on repeated averaging [15].

In the interpolating case, we use properties of multivariate Lagrange polyno-
mial interpolation to prove the existence of interpolating schemes with maximal
sum rule orders. Those can be found by solving a linear system which can be
reduced in size by using symmetries. From this, we construct some new examples
of smooth (C?, C3) interpolating v/3-subdivision schemes with maximal sum rule
order and symmetric masks. The construction of associated dual schemes is also
discussed.



1 Introduction

Stationary subdivision is an efficient method to build smooth surfaces in CAGD in a
multiscale fashion. A subdivision scheme starts with a set of points with connectivity
relations between them, the so called coarse control mesh. By repeatedly applying a set
of refinement rules, we get a sequence of finer and finer control meshes which converges
to a limit surface. The refinement rules consist of a topological rule (or so-called split
operation) which determines the connectivity of the finer meshes, and local averaging
rules (usually given by coefficient stencils) which give the exact location of the control
points in the finer mesh by taking linear combinations of nearby control points in the
coarser mesh. If the positions of the coarse control points remain unchanged during
subdivision, the subdivision scheme is called interpolating, otherwise it is approzimating.

The topological rules for subdivision with triangular meshes are usually based on
the 1-to-4 split (dyadic split) operation which inserts a new vertex for every edge of the
given mesh, and then connects the new vertices with neighboring old and new vertices
appropriately. Recently a new subdivision scheme for triangular meshes, called /3-
subdivision, has been studied in [12], [13], [15]. The new scheme first inserts a new vertex
for every face of the given mesh, then discards the original edges, and finally connects
new and old vertices. Two steps of this topological rule correspond to trisection of the
original triangular mesh. Figure 1 illustrates this refinement process. Compared to
dyadic subdivision, v/3-subdivision has certain advantages (see [12], [13]), among them
a slower growth of the number of control points during subdivision.

A

Figure 1: Topological rules for a) dyadic and b) v/3-subdivision

In this paper, we will only deal with the so-called regular case, i.e., when all vertices
of the triangular mesh have valence 6. In this case, the structure of the limit surface of
a subdivision scheme is determined by the study of an associated refinement equation.
We say that ¢ is a refinable function provided that ¢ satisfies the refinement equation

= > Pup(Mz—0), re€R?, (1)

a€Z?

where P := {P, : o € Z*}, the mask of the refinement equation, is a finitely supported
sequence of real numbers, and M is the dilation matriz. The mask P contains the
information about the stencils, the dilation matrix M is solely defined by the topological
rule of the subdivision scheme. For the dyadic split, M = 21, where [ is the 2 x 2 identity



matrix, while for the v/3-split, the dilation matrix is

e (42)

The importance of the refinable function ¢ is based on the obvious fact that a paramet-
ric representation of the limit surface of the corresponding subdivision scheme can be
obtained by taking linear combinations of the integer translates of ¢. In particular, the
smoothness of the surface is related to the smoothness of ¢.

There are many aspects one has to deal with when designing subdivision schemes.
If we restrict our attention to the regular case, then one of the basic issues is to obtain
highly smooth limit surfaces with interpolating and approximating schemes that have
small coefficient stencils. In terms of refinable functions, this is the question about
mask support versus achievable Holder (or Sobolev) smoothness of ¢. Since smoothness
properties depend nonlinearly on the mask, this problem is hard to attack directly.
Therefore, it is often replaced by finding the mazimal sum rule order for masks P
with support in a given set Q C Z2. Under mild conditions on ¢, the sum rule order
characterizes the approximation properties of the subdivision scheme and represents an
upper bound for the Sobolev smoothness of the associated ¢. Since sum rule orders are
characterized by a linear condition, this weaker problem can be treated more easily. Its
dual formulation, i.e., the construction of masks with smallest support for a given sum
rule order, is also of interest.

Let us mention some research on this problem. Smooth interpolating dyadic sub-
division schemes were constructed in [16], for this case the problem of maximal sum
rule orders was studied in [4]. An interesting approach to the dual problem is implicitly
contained in [17], where an algorithmic description of a basis for the ideal of all symbols
with given sum rule order is given, from which masks with small support can be deduced.

Analogous questions for y/2-subdivision schemes which are based on quadrilateral
control meshes and related to the quincunx dilation matrix

1 -1
v=(1 1))

were discussed in [5]. A method for the construction of interpolating schemes with
arbitrarily large sum rule orders for general dilation was proposed in [2]. In [3], the
projection method was introduced to construct interpolating schemes. However, the
sum rule orders of the masks constructed by these two methods are not maximal, in the
sense that the same sum rule order could theoretically be achieved with much smaller
mask support.

In this paper, we study the problem of achieving maximal sum rule orders for both
interpolating and approximating v/3-subdivision schemes for a natural family of sup-
port sets. While in the approximating case the solution is straightforward, and optimal
schemes are known from [15, 11|, proving the existence of interpolating schemes with
optimal sum rule orders required some technical effort. In Section 2 we give the neces-
sary definitions and preliminary material. Section 3 contains the main results and their
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proofs. In the concluding section we provide some evidence on the actual smoothness
properties of the schemes with maximal sum rule orders. We also demonstrate by ex-
amples how to construct dual schemes which allows the construction of biorthogonal
multiresolution analyses and wavelets related to the v/3-split.

2 Preliminary material

Consider the refinement equation (1) with the dilation matrix M given by (2). For the
representers of the coset space Z> /M Z?, we will choose

Yo == (O: 0)7 M= (170)a Y2 = (O: 1) (3)
We also define
21 Ar A 27
00 = ot = (2= 0= (—. ). 4
P =(0,0), =05, =5 (4)

For a mask P = {P,}, we call

1 .
P(w):=2 Y P,
3
a€Z
its symbol resp. the symbol of (1). We assume that P(0) = 1. This is the necessary
and sufficient condition for the refinement equation to have a (distributional) solution
¢ with ¢(0) # 0.
We say that P has the sum rule order k if P(0) =1 and

D'P(@) =0, j=1,2, |ul <k, (5)

where 1 = (i1, o) € Z. are multi-indices, |u| = p; + po, and D* = D} D4, This gives
formally k(k + 1) + 1 linear equations for the coefficients of the mask. The solvability of
this system (and, thus, the existence of a mask with sum rule order k) clearly depends on
the mask support and possibly further constraints on its coefficients such as symmetries
to be observed. As was already mentioned, the sum rule order k£ equals the approximation
order of the refinable function ¢ under a mild condition on ¢, see [8].
A \/3-subdivision scheme is interpolating if and only if the associated mask P = (P,)
satisfies
Pvoa =64, o€ X7 (6)

In this case, we call the mask P interpolatory.
Let us look at the mask P given by the coefficient array

0 0 0
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corresponding to the centered index box [—3,3]% ie., P, = 0 if a ¢ [—3,3]* and for
a € [-3,3]%, P, is the (4 — az, a; + 4)-th entry of the matrix on the right side of (7).
This mask was discussed in [11], and is obviously interpolatory. Its coefficient stencil for
newly inserted control points is shown in Figure 2 a). That the mask (7) contains only
3 free parameters a, b, ¢ is dictated by the geometric symmetries of the stencil support.
As was shown in [11] this P has sum rule of order 4 if and only if

3a + 3b + 6¢c =1,
a + 4b + 1l4c =0, (8)
a — 8 4+ 20c =0.

Note that many of the conditions in (5) become linearly dependent if the mask and its
support satisfy additional symmetries. The linear system (8) has a unique solution

a=32/81, b=—1/81, c = —2/8l.

The corresponding v/3-subdivision scheme was first introduced by Labsik and Greiner
in [13]. It can be checked that it cannot have sum rule order 5. Thus, the maximal sum
rule order for interpolatory schemes with (symmetric) stencils as shown in Figure 2 a)
is 4, and achieved by a unique scheme.

b) 9p a b ¢
PSS e

Figure 2: Stencils for simple interpolating and approximating schemes

Suppose b = ¢ = 0, i.e., the corresponding stencil is much smaller, see Figure 2 b).
Then P(0) = 1if and only if a = 5, but P has still sum rules of order 2 (but not 3). This
scheme, which corresponds to linear interpolation in the v/3-setting, was introduced in

[15] as VFV (1) scheme. We use P;(w) to denote its symbol given by
1
P (w) = 5(3 + 2(cos wy + coswy + cos(wy — ws)). 9)

Thus, the maximal sum rule order of interpolating (and approximating) schemes with
this smaller support is 2.

Let us look at some approximating schemes with coefficient stencils as shown in
Figure 2 c). The corresponding mask P is given by the coefficient array

b c b 00
c a a c 0
P=1bad abd (10)
0 c a a c
0 0 b ¢ b



It has sum rules of order 4 if and only if

6a + 6b + 6¢c + d =3,

—3a — 3b + 6c + d =0,
a + 4b — ©6c¢ =0, (11)

a — 8b = 0.

For details, see [11]. The linear system (11) has again a unique solution
a=8/27, b=1/27, c=2/27, d = 5/9.

The resulting mask is Py(w) = P;(w)?, does not have sum rule order 5, and the cor-
responding subdivision scheme is called VFV(2) scheme in [15]. Thus, the VFV (2)
scheme achieves the maximal sum rule order 4 for approximating schemes with the
above support.

Suppose b = 0 (i.e., the stencil for newly inserted control points becomes smaller).
Then P cannot have sum rule order 4. However, P has sum rule order 3 if and only if

6a + 6¢c + d =3,
—3a + 6c + d =0, (12)
a — 6c¢ =0.

The linear system (12) has a unique solution
a=1/3, c=1/18, d=2/3.

The corresponding scheme was introduced by Kobbelt in [12].

From the above examples, we find that in order to construct v/3-subdivision schemes
with maximal sum rule order for given mask support (and symmetry constraints on the
coefficients), one just solves a ladder of linear systems corresponding to increasing sum
rule orders. In all considered cases, the maximal sum rule order was achieved when
the corresponding system had a unique solution. It is natural to ask to which extent
these empirical findings generalize, and whether one can determine the maximal sum
rule order beforehand, i.e., without examining the whole ladder. Such results will be
given in the next section.

The symmetry properties of support sets and masks occuring in v/3-subdivision are
dictated by the symmetries of a uniform hexagonal triangular mesh, and the requirement
that a sound triangular subdivision scheme should not have any directional preferences.
The hexagonal triangulation, a portion of which is shown in Figure 3 a), best reflects
the geometric properties of a generic regular triangulation of R%. After transferring to
the three-directional mesh with vertex set Z* as shown in Figure 3 b) which is used
for the analysis based on the refinement equation (1) with dilation (2), we arrive at
the following natural definition of symmetry: A set Q C Z? is called symmetric if it is
invariant under linear transformations given by the matrices

= () w=(8h) =(V8) w
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Figure 3: Symmetries of uniform hexagonal and three-directional triangulations

and their superpositions. Here, and in the following I denotes the 2 x 2 identity matrix.
Analogously, a mask is called symmetric if

Pyo=P, Pyo=P, P,=P, acl?. (14)

Clearly, the support set of a symmetric mask is automatically symmetric. Note that
the masks of the above examples are all symmetric. The two matrices V, W from (13)
generate a multiplicative group G containing 12 different matrices. For future reference,
we set G = G1 U Gy, where

G = {Vi,....Ve}, Vi=-L, Va=-V, Va=-V2 Vi=W, Vs =WV, Vs =WV?
G = {Vi,....,Vioh, Vipe=-V,, s=1,...,6.

Mask symmetries automatically translate into symmetry properties of the refinable func-
tion ¢. It is easy to prove that for finitely supported masks satisfying P(0) = 1 the
(distributional) solution ¢ of the refinement equation satisfies

¢(331, 372) = ¢($2, —x1 — 372) = (25(352, 371) = ¢(—$1, —1152), (15)

if and only if P is symmetric in the above sense. Moreover, in this case we have ¢(z) =
¢(Vsz) for any of the above V.

We conclude this preliminary section with a helpful observation which allows us to
separate symmetry issues from the investigation of sum rule orders.

Lemma 1 Let Q € Z? be finite and symmetric. If there exists a mask P with support
in Q and sum rules of order k, then the formula

B 1 12
P,:==> Py, a€Z?,
124

delivers a symmetric mask P with the same properties.



Proof. To see this (and also to prepare for our further considerations), recall that if
P has support in 2 and satisfies sum rules of order k£ then

Y P, =3, (16)

a€cll

Y (Ua)tPyz?ater = 3 (Ua) Puz® 1t = 0 (17)

a€eN ac

for all 0 < |u| < k and any (complex) invertible matrix U. Here,
Z:=(—1+1iV3)/2. (18)

This immediately follows from the definition (5). Vice versa, if P has support in Q2 and
satisfies (16-17) for some invertible U then P satisfies sum rules of order k.
Set

O =Qn(u+MZ), 1=01,2, (19)
and
SZ,H(P) = Z Ua)*P,, 1=0,1,2. (20)
acQt

Using the fact that

1(22a1+a2 + 2a1+2a2) — 1 ) (OAS Yo + Z2/]\4%27
2 -1/2, aeyw+Z*/MZ* 1=1,2,

1

L o €+ 22 M2,

0
so1+2a2) __ ’
’ )= { (-1D)4v3/2, aen+Z/MZ* 1=1,2,

we obtain the following linear system equivalent to (16-17):

SIO],O(P) + Sllf,O(P) + SIQJ,O(P) =3, (21)
28?],#(P)_S(1],/,L(P)_S(2],M(P):Sflf,u(P)_S?J,p(P):O’ 0< ‘,U,‘ <k’ (22)
again for all U.
Observe that if we consider any of the matrices U = V,, s = 1,...,6, from G; we
have

UaeNe=aecQ, UaeW = ac®?, UanecP=ac,
while for U =V, s =7,...,12, from G, we have
UaeQe=ac, 1=012.
Thus, if P has support in 2 then for V; € G the rotated mask Py, := {Py,,} satisfies

SV (Py) = > (Via)*Pya= Y (Via)"Pya =57 ,(P),

a€eno VeaeQO



and
Sy, u(Pv,) =57 ,(P), Sy, .(Py,) =51 ,(P),

for s =1,...,6, while
Sy, u(Pr.) = S5 . (P) s=17,...,12, 1=0,1,2.

In any case, this shows that if P satisfies (21-22) then Py,, Vi € G, also satisfies (21-22).
This proves Lemma 1. &

The proof of Lemma 1 could be simplified by establishing D*P(&/) = 0, |u| <
k,j = 1,2, or the sum rule conditions in [8], directly. The reason for pointing out
the equivalence of (21-22) and (5) is to prepare for our further considerations. See [8]
for the derivation of conditions similar to (21-22) and equivalent to the sum rule order
conditions for the case of a general dilation matrix.

3 Maximal sum rule orders

In this section we will first derive a simple necessary and sufficient condition for the
existence of a real-valued masks P = { P, } with given finite symmetric support 2 satis-
fying sum rules of order k for the dilation matrix M given by (2), and then apply this
condition to find the maximal sum rule order for a certain family of support sets. As
follows from Lemma 1, we do not have to bother about any symmetry conditions for the
masks, they follow automatically once existence is proved. Without loss of generality,
we will assume that 0 € €.

Recall that P with support in Q has sum rule order & if the conditions (21-22) are
satisfied for some (and then all) invertible U. In this section, we will assume that U is
real. We will look at (21-22) as some linear system AP = B for the unknown vector P =
{P,, a € Q} with a real-valued rectangular matrix A of dimension (144 (k+1))x|Q|, and
a right-hand side B that contains exactly one non-zero element (for the first equation).
Its solvability is governed by the rank condition

rank(A) = rank([A B]) , (23)

which is equivalent to requiring that vA = 0 implies vB = 0 for any 1 x (1 + k(k + 1))
vector v (see [6, p.224]). Thus, taking into account the special form of B, we see that
(23) is satisfied if and only if the following statement is true: Whenever

a/2+ Y b(Ua)’ =0, aeQ,

0<|BI<k
a— Y b(Ua)’ - > cUa)’ =0, aeQh,
0<[BI<k 0<[BI<k
a— Y bUa)’+ > c(Ua)f =0, ae 0,
0<|BI<k 0<|BI<k

10



holds for some real a (the multiplier for the first equation) and real vectors b = {bg},
¢ = {cg}, we should have a = 0.
Let us introduce the polynomials

bz)= > beaf, cx)= Y cpaf

0<|BI<k 0<|BI<k

of total degree < k, i.e., b(x), c(z) € IIx. Here and below Il denotes the set of all (two
variable) polynomials with total degree < k. Then the above necessary and sufficient
condition for the solvability of (21-22) means that two b(x), ¢(x) € IIj cannot satisfy

bUa) = —a/2, ae,
bUa)+c(Ua) = a, a€Qh,
bUa) —c(Ua) = a, a €0,
with some constant a other than a = 0. Set
pi(z) :=b(z) +c(z) —a, pa(z) :=b(z) —c(x) —a .

Then the previous statement says that there are no two polynomials p;(z), pe(z) € Ik
such that p;(Ua) =0 fora € Q', [ =1,2, and

m(Ua)+p(Ua) = —3a, aeQ,

with some constant a # 0. Without loss of generality, we can assume that ps(z) = p;(—x)
(if p1(x), p2(z) are polynomials with the above properties then so are

- _ 1

Pi() = (i) +pa-2)) , Bola) = 5 (pr(-3) + (@) = () )

Thus, we have arrived at the following characterization:
Theorem 1 Let Q € Z? be finite and symmetric. Then there exists a mask P with

support in 2 and satisfying sum rules of order k if and only if there is no invertible U
and no polynomial p(x) € Iy, such that

p(Ua)=0, acQ', pUa)+p(-Ua)=1, acQ’. (24)

The invertible linear map U : R?* — R? is kept for convenience (the formulation of the
theorem remains true with any fired U, e.g., one can set U = 1).

Corollary 1 If there are no nontrivial polynomials of total degree < k vanishing on Q*
then there exists a symmetric mask P with support in Q) with sum rule order k. Moreover,
this mask can be chosen interpolatory (i.e., Py =1 and P, = 0 for 0 # a € Q°). The
result is tnvariant with respect to invertible linear transformations U.

11



Note that the condition used in Corollary 1 is only sufficient. The last statement in
the corollary follows by applying the previous result to the modified set Q := {0}UQ!UN?
(a mask with support in Q must be interpolatory!).

Theorem 1 and Corollary 1 reduce the existence of masks with support in a given
finite symmetric set €2 and with specified order of sum rules to properties of polynomials
from IT;, with zeros in Q!. Since Q! is a finite subset of the lattice Z? but otherwise may
have a complicated structure (depending on the specification of ), the verification of
the above conditions, though not hopeless, remains a problem. As far as we know, there
are no general statements about the class of lattice subsets which cannot be in the zero
set of a nontrivial polynomial from IIj.

In the remainder of this section we will apply the above characterizations to find the
maximal sum rule orders for approximating and interpolating v/3-subdivision schemes
with mask support in the sets

Q, ={a € Z® : max(|a; + ayl, ||, |az]) < n}, n=12,.... (25)

Obviously, the examples given in Section 2 have support sets from this family for some
specific n < 3. Although there might be other situations of interest, we find this fam-
ily very natural for v/3-subdivision in the following way. Families of v/3-subdivision
schemes can be characterized by their stencil supports for new and old control points
(for interpolating schemes, only the stencils for new control points matter). The larger
the stencils, the more flexible and complicated the schemes! Figure 4 shows a natural
hierarchy of triangular complexes whose vertex sets serve as support sets for stencils
of level n = 1,2,... for new and old vertices in v/3-schemes. The rule of enlarging
the triangular complex when going from level n to level n + 1 is based on adding the
triangle-neighbors of all triangles in triangular complex. The triangle-neighbors of a
triangle are the 3 flaps attached through its edges (only for the degenerate triangular
complex at level n = 1 all triangles attached to the old vertex are added). See [15] for
more background information on why adding flaps is very natural and convenient in this
context. The reader may easily verify that approximating schemes with mask support
in €2, are exactly those with stencils of level n, while interpolating schemes with mask
support in €2, have stencils of level n for the new vertices (and of level 1 for the old
vertices). Clearly, there are more combinations of possible interest (such as taking n-th
level stencils for new and (n + 1)-th level for old vertices, as this would cover Kobbelt’s
scheme with n = 1) but we will not pursue them.

We start with deriving upper bounds for the possible sum rule order of masks with
support in €2,,. To do this, we change the two dimensional masks into one dimensional
ones as in [4]. At this point, it is convenient to use

1 -1
UO_<1 1)7

because Uy2. possesses then a simple geometric structure which makes the upper bounds
for k easier to explain. Figure 5 shows the sets Uy} for n < 7. In Figure 5 and in the

12
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Figure 4: Stencil hierarchy for v/3-subdivision schemes

following, for n € Z, k(n) denotes the number given by

k(n) :=n+[(n+2)/3]. (26)

Lemma 2 a) With the above Uy, the set Uyl is contained in the union of exactly
k(n) wvertical lines x; = 3l + 1, | = —[2(n 4+ 1)/3],...,[2(n — 1)/3]. By symmetry,
UoS22 is contained in the union of the k(n) vertical lines z; = —(3l + 1), | = —[2(n +
1)/3],...,[2(n — 1)/3]. Finally, UyQ® is contained in the 4n + 1 — 2k(n) vertical lines
z1 =3, l=-2n+k(n),...,2n — k(n).

b) The mazimal sum rule order for interpolatory masks with support in €2, is < k(n).
¢) The mazimal sum rule order for arbitrary masks with support in Q, is < 2n.

Proof. Part a) follows since (1, z2) € UpS2. implies
1 =1mod 3, —2n <z <2n,

by the definitions of Uy and QL. Thus, z; = 3l + 1 for some | = —lIy,...,ly, where
ly :==[2(n+1)/3] and I := [2(n — 1)/3]. This shows that UyQ! is contained in the line
system specified above (note that indeed k(n) = lo+ {1 +1). The reasoning for the other
statements in Part a) is analogous.

For Part b), consider the polynomial

p(ar, 23) = %I_Hl (1= 2/(31+1)).

Obviously, this polynomial belongs to Ilj)11, its zero set contains U2l by Part a),
and p(0) = 1/2. If we choose Q, = {0} U Q). U Q2 in Theorem 1, we have Q) = Q! and

13
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Q% = {0}, and we see that a mask with support in €, and sum rules of order k(n) + 1
cannot exist. Consequently, there is no interpolatory mask with support in €2, and sum
rules of order k(n) + 1.

Finally, for Part ¢), in view of Theorem 1 and Part a), it is sufficient to construct a
univariate polynomial p(t) of degree 2n that satisfies

pBl+1)=0, [=—l,...,ls, p(=3l)+p3Bl)=1, 1=0,...,2n—k(n). (27)

These are exactly 2n + 1 linear conditions for the 2n 4+ 1 unknown coefficients of p(t).
Since all our attempts to directly verify the non-singularity of this linear system failed we
resort on the following indirect argument. By repeating the proof of Theorem 1 we can
easily show that (27) has no solution if and only if there exists a univariate trigonometric
polynomial

2n
h(w)= > ke ™

l=—2n
such that 5 4
h(0) =1, h<r>(g) - h<r>(§) =0, r=0,...,2n
The latter condition is equivalent to the univariate mask h = {h;, | = —2n,...,2n}

having sum rule order 2n + 1 for dilation factor 3. By writing h(w) = 27"¢(2), where

z=e " and q(z) = 2 zfg_% hiz! is an algebraic polynomial of degree < 4n, it follows
that the existence of an h(w) with the above properties implies

") =4¢q"E)=0, r=0,...,2n,

where Z is given by (18). Since the degree of ¢(z) is < 4n we obtain ¢(z) = 0 which is in
contradiction with A(0) = 1. Thus, (27) has a solution, and Lemma 2 is established. &

Let P; be the mask with the associated symbol given by (9). It is clear that the
mask P, associated with the symbol

Po(w) = P (w)" (28)

has support in §2,, and possesses sum rules of order 2n since the mask P; has support in
), and satisfies sum rules of order 2. Subdivision schemes with these masks have been
introduced in [15], see also [11]. Thus, the bound in Part c¢) is sharp and we have

Theorem 2 The mazimal sum rule order for masks P with support in , is 2n. It is
achieved by the symmetric masks with symbol P,(w) defined in (28).

From (9), we know the critical points of P; are characterized by either wy = —w; mod(27)
or w; — we = mwmod(27), which implies

min P (w) = Py(27/3,47/3) = 0.

weR?
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Thus P, > 0. This property is useful for computing exact Holder exponents for the
associated refinable function ¢,,.

Either by the numerical calculations in [11], or by the results in Section 4.3 below
that the transition operator Tp associated with P satisfies Condition E (i.e., 1 is a
simple eigenvalue of Tp and other eigenvalues lie inside the unit disk) and that P;(w)
has a biorthogonal dual P(w) such that T associated with P also satisfies Condition
E, we know ¢ is Lo-stable. One can also obtain the L.-stability of ¢; from the facts
that P; is interpolating, P;(w) > 0, and the subdivision operator Sp, associated with
Py satisfies Condition E (see [9]). Thus, for any w € IR?, there is a k € Z* such that
¢1(w + k) is not zero (this is a necessary and sufficient condition for L,-stability, see
[10]). Since ¢, (w) = ¢ (w)", for any w € R?, there is a k € Z* such that ¢,(w + k) is
not zero. Therefore ¢, is also L,-stable (for any 1 < p < 00).

It is conjectured from the computations reported in [11] (see also Section 4.2) that
the Holder and Sobolev smoothness exponents of ¢,, approach their trivial upper bound
2n given by their sum rule orders, i.e.,

lim (20 = soo(¢n) = lim (2 = 52(6,)) = 0.

This is in contrast to the analogous family {,}of odd degree box splines for dyadic
refinement for which

SOO(QOR)ZQTL—]_, 82((pn):2n_1/2, 7121

Either delete the following paragraph or indicate where the source is On the
other hand, the above ¢, are not the smoothest ¢ related to a symmetric refinement
mask with support in §2,. E.g., there is a box spline example (with unstable shifts!)
with mask support in {25 and only sum rule order 3 which has Sobolev exponent 4.5 and
Holder exponent 4. These numbers exceed the corresponding values for ¢, (compare

Table 2 below).

Theorem 3 The mazimal sum rule order for interpolatory masks P with support in €,
is k(n), where k(n) is given by (26).

We will use Corollary 1 and the following known result (see [14, Section 11.4]).

Lemma 3 Suppose Z = {zy, : u=1,...,v, v=1,...,r} is such a set of r(r +1)/2
different points in R? that there exist r different lines €, in R* satisfying

xu,fuegfu\uw>ru€w, U,Zl,...,v,
forv=1,...,r. Then the Lagrange interpolation problem
p(xu,v):fu,v, u=1,...,v,v=1,...,7r,

has a unique solution p(z) € Il,. In particular, if p(x) € I, vanishes on Z then p(z) = 0.
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It is convenient for us to prove Theorem 3 by transforming 2,, into the set of lattice
points within a uniform hexagon. Denote

1 1
U::l 2‘|.
0

Then US), is the set of lattice points from UZ? within the hexagon with vertices
(£n,0), (£3, i?n) One can check that (z1,z9) € UQL if and only if (z1,29) € UQ,
and

71 — V32, = 1 mod 3. (29)

Since Q! is invariant under V' (defined in (13)), UQ! is invariant under

-1 _\/31'

1
— -1 _ =

Denote

3 V3
vi=(0,-V3), wi=Ulw=(, g). (30)
By Corollary 1, to prove Theorem 3, it is enough to show that there is no polynomial p
of total degree smaller than &k (k := k(n)) such that
p(@) =0, aecUQ..

Without loss of generality, we can assume deg(p) = k£ — 1 (otherwise, multiply by an
appropriate monomial). On the contrary, assume that such a polynomial exists. Suppose
for a moment that we were able to identify a set Z,, such that it satisfies the conditions
in Lemma 3 with r = k — [£] and

k
Zn—sveUQ., V0<s< [5]. (31)

The existence of such a Z,, will be formally established in Lemma 4 below. From (31)
we find by induction that

k
V£12]p(a) =0 VaeZ,
where for v € R?, V,, is the difference operator defined by

Vep:i=p—p(-—v), vE R?,

. : k
and VJ := V,(VI™1), j > 2. Since Vq[ﬁ}p is a polynomial of total degree < r = k — [£],
k
and Z, satisfies the assumptions of Lemma 3 with this r, we conclude that Vq[ﬁ]p is
identically zero.
Since USQ}, is invariant under the rotation Uy, we have

UrZn —sw=U(Z, —sv) eUQL, V0<s< [g]

17



Thus, using Z, := U, Z, resp. w instead of Z, resp. v, we conclude in complete analogy

k
that VE,?}p also vanishes. Since {v,w} is a basis of IR?, this implies

p(x1,22) = Z CzﬂZﬂ%
i<[%],j<[%]

Therefore deg(p) < 2[%] — 2 < k — 1, a contradiction to deg(p) = k — 1. (See [7] for a
discussion of the solutions to difference equations.)

/W\/ VAVAVAN
* N
VAVAN A\VAVAVAVAN
v { VAVAVAVAYAVAVAVAN
N N \WAVAVAVAVAVAVAVAVAN
AV \VaVAVAYA VAVAVAVAVAYAVANAVAVA
,/n=4 & A - P n=7
T k=6 11 O G g . k=10
r=3 13 ! J’ r=5
/l5 //1:1 12

AVAVAVAVAVAVAN
NN NN NN
VAVAVA VAVAVAVAVAV

Figure 7: The sets UQ} and Z, for n =3m + 2 and m =0, 1

To finish with the proof of Theorem 3, it remains to construct sets Z, with the
properties mentioned above. In Figures 6-8, the used notation is visualized for some
small n, the lattice points in UQ)} are highlighted by dots, the elements of Z, C UQ!
are indicated by bigger dots. In the figures, the points Z, = Z°U Z¢ will lie on two sets
of lines in the direction of the vector w (see (30), Z° on the odd labeled lines and Z¢ on
the even labeled lines. Because of slight technical differences, we distinguish the three
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\VAVAVAVAVAY

TAYAVAVAVAVA

\VAVAYAVAV
AVAVAVAV

\VaV/

N
AVAVAN

V4

Figure 8: The sets UQ2. and Z, for n = 3m + 3 and m =0, 1

cases n =3m+ 1, n=3m + 2, and n = 3m + 3. The formal definition runs as follows.

We define 7, = Z°U Z° for n =3m + 1 by
3m+1 1-—

7= (-2 (S
7= (S -5,

for n =3m + 2 by

3m—+1
f

3m+2
2

3m+8

2% = {( —3j,—
7= {(— 3m+1 (1—2m

and for n = 3m + 3 by

70 = {(= 3m+1 \/g(l—m

3)+sw, 0<s<2j—1,1<j <m};

2
{(3m+5 3 _3m+3
We also introduce the rectangular container sets for the points Z,

3 1

Rsma1 = {(z1,25) € UZ? : — m2+ <1 <
3 1

R3m+2 = {(1‘1,.7)2) S U%Q L= m2+ < <
3 1

Rsmiz = {(z1,22) € UZ? : — m2+ <z <

Im+2 3m+1
53 V3 <y <
Im+2 3m-+2
9 y 9 \/gng
Im+2 3m+3
5 V3 <, <

B VB +sw, 0<s<2j—2,1<j<m+1},

V3)+sw, 0<s<2j—2,1<j<m+1},

—)V3) +sw, 0<s<2—1,1<j<m+1}

— ) 5w, 0< s <2 ~21<j <m+1},

V3)+sw, 0<s<2j—1,1<j<m+1}.

m—i—l\/—}

< -5V3},

m—i—l\/—}

The regions R,, are depicted by bold dot-dashed lines in Figures 6-8. Clearly, 7, C
R, C UQ,, and since the points in Z, satisfy (29), we also have Z,, € UQL.
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Lemma 4 For all n, with k = k(n) defined by (26), the above defined set Z, satisfies
(81), and the assumptions of Lemma 8 for r =k — [g]

Proof. We give the details for the case n = 3m + 1, where we have £k = 4m + 2
and r = 2m + 1. First of all, the assumptions for Lemma 3 immediately follow from the
definition of Z, since the set Z° is the union of m+ 1 parallel lines (ordered by the index
j), each containing exactly 25 — 1 points (indexed by s). These correspond to the lines
l1,. .. lomy1. Similarly, Z¢ is the union of m parallel lines /s, ..., {5, each containing
exactly 27 points (j =1,...,m).

To establish (31) for n = 3m + 1, it is enough to show that

—iv+Z,CUQ,, i=0,....2m+1, (32)
since shifts of points from Z,, by multiples of v again satisfy (29). But for any such i

—w + Z3m+1 C —w+ R3m+1

3m + 1 3m + 2 3m + 1
C Ryppy o= {(21,72) UL’ : — m2+ <z < mx , |a] < m V3.

= 5 S

The rectangular region containing R, is indicated by a dot-dashed line in Figure 6.

Since the set UZ?* N 5, 5] [—@n, @n] is obviously contained in €Q,,, we only have

to check those lattice points from R}, ., which are on the vertical line z; = ¥2t2. Note
that (3242 £3m41,/3) ¢ UZ?, and if —2\/3 < 2, < ¥/3 and (32 2,) € UZ’,
then (322 7,) € UQsy41. This establishes (32), and completes the proof of Lemma 4
forn =3m + 1.

The proof for the cases n = 3m + 2 and n = 3m + 3 is completely analogous, and

the details are omitted here. Lemma 4 and Theorem 3 are proved. &

Remark 1. The argument for the proof of Theorem 3 also gives clues on how to
select a subset Q' C QL of size || = k(k + 1)/2 such that the reduced system

S ofP,=65, 0<|Bl<k, (33)
acY
has a unique solution. Such sets will be called defining. Note that if ' is defining in the
above sense then (33) is equivalent to (21-22) with U = I and Q = Q,,, i.e., it is easy to
produce symmetric interpolatory masks of the maximal sum rule order k£ = k(n), if we
solve (33). Without going into details, we mention that it follows from the proof that a
defining set is given by

(3]
Q' = J(—iv+ Z,) U (—iw+ U, Z,) .

1=0

But this choice is by no means the only defining set.

Remark 2. The above method can also be used to find out whether the support of a
symmetric interpolatory mask P could be made slightly smaller than all of €2,,. Indeed,
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if (0¥ is a proper symmetric subset of Q,, then an interpolatory mask with support in
Q¢ and sum rule order k = k(n) exists if we are able to find a replacement Z for the
set Z, such that it satisfies the conclusions of Lemma 4 with UQ] replaced by U(Q2)!.
The earliest this might happen is for n = 6. Set

=Q\{Via : s=1,...12, a=(2,4)} .

Figure 9 shows a possible choice for Z§ for which the conclusions of Lemma 4 are
obviously satisfied. The empty circles indicate the images of o = (2, 4) under the action
of G that were deleted from 2. We conjecture that a similar reduction of mask size can
be achieved for all n = 3m + 3, m > 1, but also for some other n.

AV NN
VA'AVAVA'AVAVA"AV
AVA"AAVA'AVAVA
AN VAVAAVA

VA "AVAVA.VAVA

Figure 9: The sets U(Q)! and Z;

4 Examples and further remarks

4.1 Reduction of linear systems

Although the results of the previous section tell us exactly how to find a linear system
whose solutions give all (non-symmetric) masks of maximal sum rule order with support
in any of the €, and, subsequently, find the corresponding symmetric mask(s) via Lemma
1, this is cumbersome, and one wishes to come up with a smaller system by directly using
the symmetry conditions. Since such reduced systems could be useful for small-sized (2,
we give a few details on their derivation for the case of interpolatory masks.

Let V and W be the matrices defined in (13). Then one has V3 = I, and

V(y;+ M#Z?*) =~;+ MZ*, j=0,1,2.

The eigenvalues of the matrix V' are

1 . 1 .
)\1::5:4—7\/37’ )\2:222:7\/32_

2 ’ 2
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Denote

T =X
=i
It can be easily verified that
A O 0 A
-1_ | M -1 _ 2
AVA _lO)Q]’ AWA™ = lAlO]

Thus, for all a € Z?
(AVA~Ia)* = MM2ak,  (AWA- @)t = (—1) e\ g

where pi' = (pia, p11).
Suppose P is interpolatory and symmetric, with support in 2. Setting U = A, and
using the notation (20) together with (21-22) we see that (5) is equivalent to

O =Spu(P)=Siu(P),  0<|pl<k.

The mask symmetry implies that P g = P3 and since —I € G; we have —Q' = Q2| so
we get

Sau(P) = (=1)" 37 (ABY'P5 = (1) 37 (AB)“Ps = (=1)¥S% ,(P).

Bet BeN?
Therefore, an interpolatory and symmetric mask P has sum rules of order k if and only
if
Sap=0u 0<|pul <k (34)

A further reduction of the number of equations can be achieved by using the other
symmetry properties. E.g., since Pyg = Pz and V € Gy, we have VQ! = Q! and

SiuP) = > (AVB)Pyg= > ((AVAT)(AB))"Pp
Vet Bet
= MG Y (AB)Ps = 2] (P).
Bent

Thus, for any multi-index p such that s — p1 ¢ 3% we automatically have S} ,(P) = 0,
and we can drop these equations from (34). Moreover, applying the same arguments
with W € G;, we get

SiuP) = Y (AWB)*Pwg= Y (A\WATH)(AB)) Py
wpen! BeN?
= (D)MNMENE Y (A Py =2 Sy L, (P).
Be?

Thus, only p with gy > uo need to be considered.
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These findings and (34) imply that a symmetric interpolatory mask has sum rule
order k if and only if

1, if (m, ¢) = (0,0)
(m+3¢,m) _ ’ 3 sy U)Js
%;(AB) Py = { 0. otheraise, Ym0 € Ly, 2m+30<k.  (35)

One can avoid complex coefficients by observing that (35) is equivalent to

1 12 1, if (m, £) = (0,0)
_ (m+3¢,m) — . , , ,
ﬂglfi(;(/\v;ﬁ) )P { 0, otherwise, Vm,l € Zy,2m+ 3L < k,

vl

— g(m.6)
=Ag

(36)
where we again have used the symmetry of P and V,Q! = Q', s = 7,...,12. It turns
out that for any 8 € Z' and all 5,1 € Z., the expressions for averaged coefficients A%m’e)
are real-valued and can be computed as

£
AP = (G4 a7 =50 s 53 (5 ) B mr| e

2 r=0

We leave this as an exercise for the reader. Clearly, Agj ﬂx) = A(ﬂm’e) forall s =7,...,12.
Similar results can be obtained for approximating schemes.

For small support sets €2, the use of (36-37) represents an alternative way of finding
the linear systems for interpolatory masks with maximal sum rule orders. E.g., taking
2, with n < 3, we recover the known results from [11]. However, for large n, it is easier
to explore the results of Section 3 directly.

4.2 More Examples

For symmetric interpolatory P, we get interpolatory masks with maximal sum rule order
and support in €2, by solving equation (5). Here we give some more examples for the
values 4 < n < 7. For n < 3 the corresponding schemes can be found in [11] and Section
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2. The symbol P is formally given by the coefficient array

(g1 g2 0 g3 g3 0 g0 ¢¢ O 0O O O O 0O O]
92 0 fi o O fo i 0 g 0 0 0 0 0 0
0 f1 €1 0 €y €9 0 €1 f1 0 0 0 0 0 0
g3 fo 0 di do 0 do di O fo g3 0 0O 0 O
gs 0 ()] d2 0 C C 0 d2 €9 0 gs 0 0 0
0 fg ()] 0 C b 0 b C 0 €9 f2 0 0 0
g fi 0 do ¢ 0 a a 0 ¢ do 0O fi go O

P= g1 0 €1 d1 0 b a 1 a b d1 €1 0 g1 . (38)
0 go fl 0 d2 C 0 a a 0 d2 0 f go
0 0 0 f2 €2 0 C b 0 b C 0 €9 f2 0
0 0 0 g3 0 e do 0 ¢ ¢ 0 dy e 0 g3
0 0 0 0 g3 fo 0 di do 0 dy di 0 fo g3
0 0 0 0 0 0 fi e1 0 e e 0 e fi O
0 0 0 0 0 0 g 0 fi for 0 fo fi 0 g
L0 0 0 0 0 0 0 g1 g2 0 g3 93 0 g2 g1 |

The interpolating schemes with maximal sum rule order k£ are shown in Table 1. The
regularity exponents s, and s, of the resulting scaling functions ¢ are also provided
there, where s; is the Sobolev smoothness exponent and s, is (an upper bound for) the
Holder smoothness exponent. For calculating smoothness estimates of scaling functions,
we refer to [11].

We note that for n = 6 the solution is not unique. In fact, as follows from Remark 2,
we can delete g = (2,4) and all its images under G from g, and still have the same sum
rule order. In other words, the parameter f, which corresponds to the coefficients Py,
s=1,...,12, is a free parameter for the symmetric interpolating schemes supported in
Q¢ with sum rule order 8. The number 295/4/3% for f, was determined by requiring
DID,P(&"') = 0 in addition to the conditions for the sum rule order 8. This resulted in
slightly better smoothness properties than when taking fo = 0. It can be verified that
the symbols P(w) associated with the masks in Table 1 for n = 4, n = 6 with f, =0,
and n = 7 are nonnegative. So, for these cases the value s, in Table 1 equals the exact
Holder smoothness exponents for the limiting surfaces (and not just an upper bound!).
See Figure 10 for the graphs of the associated refinable function ¢ for n = 4, 5.

For symmetric approximating P and mask support in )5, the symbol P is given by
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n 4 5 6 7

a | 104/3° | 3080/3% 2920/3% + 4f, 80500,/3

b | —20/3% | —620/38 —740/3° — 6f, —65800/3"3

c | —32/3%| —10/3° —1090/3° — f, —102235/3'3

dy | 7/3° 55/3% 325/3°% + 4 f, 34685/3'3

dy | 4/3% | 130/3% 70/3% + 3£, 21875/3'3

el — —28/3% —44/3% — 2f, —4109/3'3

e - —10/38 10/3% — 3f, 7805/313

fi - — —20/3° —4655/313

f2 - - f2 —3010/33

g1 — — — 715/3'3

9 — — — 385/313

g3 — — — 560/3'3

k 6 7 8 10

sy | 3.2804 | 3.3208 | 4.0873(f, = 295/4/3°) 4.4667
3.9107(f, = 0)

Seo | 2.3465 | 2.8840 | 3.4840(f, = 295/4/3°) 3.5921
3.0213(f, = 0)

Table 1: Sum rule order, Sobolev and Holder smoothness for some interpolatory schemes

with symbol (38)

the coefficient array

es e3s e 0 0 O
d3 d2 dl €3 0 0
Ci C1 C d2 €2 0
bl bg bl C1 dg €9
b2 a a b2 C1 d2
b1 a Qapg a b1 Co
C1 bg a a bQ (&1
d3 ¢ b by b1 o
€2 do Co c1 €1 C
e3 di dy d3 d

0 €1 €3 €9 €9

dy ey
dy e3
€3 €1

(39)

Table 2 shows some approximating schemes with maximal sum rule order, and mask
support in 2,, 2 < n < 5, as well as the regularity of the resulting scaling functions. We
note that for these cases the solutions of the system (5) are unique (we also checked this
for n = 6,7). Thus, the above symbols coincide with P;(w)", where P;(w) was defined
in (9). Whether this holds for all n remains open.
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n 2 3 4 )

ao 5/9 31/81 | 71/3° 517/37
a 8/27 | 20/81 | 152/3% | 3535/3°
by | 1/27 5/81 | 160/37 | 1520/3°
by | 2/27 8/81 76/35% | 2020/3°

c1 - 1/81 | 52/3" | 70/37
Ca — 1/243 | 8/3% | 115/3%
dy - — 1/37 35/3°
do - — 4/37 95/3°
ds - - 6/3" | 130/3°
€1 — — - 1/39
e - - - 10/3°
es — — — 5/3°
k 4 6 8 10

S92 | 3.9518 | 5.9961 | 7.99967 | 9.9999
Seo | 3.3143 | 5.7073 | 7.9036 | 9.9721

Table 2: Sum rule order, Sobolev and Hélder smoothness for some approximating
schemes with symbol (39)

12 12

Figure 10: Graphs of ¢: Interpolating schemes in Table 1 with n =4 and 5
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4.3 Dual scaling functions

Masks with maximal sum rule order are appealing for use in subdivision schemes since
the schemes are compact, the approximation order of the schemes is high, and surfaces
are usually quite smooth. However, they might not be the best candidates for primal
scaling functions in the construction of biorthogonal wavelet systems. To explain this
point, in the following we construct several dual scaling functions. After primal and dual
scaling functions with decent smoothness properties have been found, the construction
of the biorthogonal wavelets is standard, details are omitted here.

We say that a mask P is dual to P if its symbol P(w) satisfies

P(w)P(w) + P(w + @&1)P(w + @1) + P(w + @) P(w + @) =1,

or, equivalently, if }
> PuatpPs =30s, o €Z’ (40)

Bez?

Let ¢ be the solution of the refinement equation with symbol P. If the subdivision
schemes associated with both P and P are convergent in L? norm, then ¢ is a dual ¢,
i.e.,

| 6@)d@ = Bde = 0(8), B e

Even when the subdivision scheme associated with P is convergent in L2 norm and ¢ is
in L2, (40) cannot guarantee ¢ being a dual of ¢.

In practice, to find a dual mask P for a given primal mask P with sum rule order
k, we start with a large enough symmetric support set for P, and solve the equations
(40), together with symmetry constraints and conditions for achieving sum rule order &
for P. Clearly, if we take any of the examples of the previous subsection, to be able to
satisfy all these conditions, we should either take the support for P much larger than the
support of P or live with k¥ << k which most likely implies poor smoothness properties
for the dual subdivision schemes. For this brief discussion, we restrict ourselves to the
case of symmetric dual masks P with support in Qs, i.e., the dual symbol is given by
the coefficient array

G, 63 6y 69 € 6 0 0 0 0 0
€3 dy do d3 do d; €3 0 0 0 O
€y dy Gy G G G dy & 0 0 0
€ d3 ¢ b1 by by ¢ d3 é 0 0
€ dy & by @ a by & dy &3 0
P=1|¢ di 6 b @ 8 a b & d é (41)
0 & dy & by @ @ by ¢ dy &
0 0 & ds & b by by & ds &
0 0 0 é dy Gy & ¢ Gy do &
0 0 0 0 & di do dy dy dy &
(0 0 0 0 0 & & & é& & é |




With P being the mask of VFV (1), the choice of P with support in
Gop=T7/3,a=1/3, b1 =0, by =—2/9, ¢ =d; =¢&; =0,

turns out to be dual, with £ = 2. However, the corresponding dual subdivision scheme
is not convergent. Therefore, we have to enlarge the support to {23. For the parameters

o = 53/27, a=14/27, by = —5/27, by = =2/9, &, =5/81, ¢, =d; = & = 0,

P has sum rule of order 3, and the dual subdivision scheme is convergent. Thus, the
resulting ¢ is a dual of the scaling function ¢. Our calculations show that ¢ is in the
Sobolev space W75 (IR?).

If we take Kobbelt’s scheme as primal mask, the choice of

926762 2220691 ; 5747765 , 497 T
% = 353199’ T 3178701’ 1 T 127151647 2 1089’ T 278’
. _ BO3767 5 _ —173465 ;18 . 12 1
2= 91101947 M T 1816452 T 31 BT 12T 1 T BT Y

corresponds to convergent dual scheme, and the resulting ¢ belongs to the Sobolev space
W09222(R?). If one wants to construct a smoother dual scaling function, the support of
the symbol must be larger than €25. The same is true if one attempts to find a convergent
dual scheme to the VEFV(2) scheme, but we will not give the details. Recall that the
masks for both Kobbelt’s scheme and V F'V(2) have support in €.

By giving up the optimality of the primal scheme, we could try to achieve a better
balance between the properties of primal and dual schemes. Let P, P be a pair of primal
and dual symmetric masks supported in s, €24, and parameterized as in (10), (41),
respectively. If both of P, P are required to have sum rule of order 3, then the mask for
P contains only one free parameter which we choose to be b. It turns out that the duality
conditions together with the conditions for achieving k = 3 can be satisfied for any value
of b. For the choice b = —0.1751872 (a root of 13122t* + 2673¢> + 279t + 19t — 29/9), P
even has sum rule order 4. The resulting ¢ and ¢ are in W'421(IR?) and W%77(IR?),
respectively. For the choice of b = —1/9, we have computed that ¢ € W'#%7(IR?) and
¢~> e W0.7853(]R2).

Altogether, the above discussion suggests that, in order to construct biorthogonal
multiresolution analyses with good properties (high smoothness, high sum rule orders,
small symmetric masks, etc.), it might not be the best idea to start with an optimized
primal scaling function. Instead, it is better to construct primal and dual schemes
and optimize their properties simultaneously, see [2] for an alternative approach to this
problem.

References

[1] S. Dahlke, K. Grochenig, P. Maass, A new approach to interpolating scaling func-
tions, Appl. Anal. 72 (3-4) (1999), 485-500.

28



[2] S.Dahlke, P. Maass, G. Teschke, Interpolating scaling functions with duals, Preprint
00-08, Univ. Bremen, April 2000.

[3] B. Han, Projectable multivariate wavelets, preprint, Univ. of Alberta, 2001.

[4] B. Han, R. Q. Jia, Optimal interpolatory subdivision schemes in multidimensional
spaces, SIAM J. Numer. Anal. 36 (1998), 105-124.

[6] B. Han, R. Q. Jia, Quincunx Fundamental Refinable Functions and Quincunx
Biorthogonal Wavelets, Math. Comp. 71(2002), 165-196.

[6] F. E. Hohn, “Elementary matrix algebra”, 3th edition, The Macmillan Company,
New York, 1972.

[7] R. Q. Jia, Multivariable discrete splines and linear diophantine equations, Trans.
A.M.S. 340 (1993), 179-198.

[8] R. Q. Jia, Approximation properties of multivariate wavelets, Math. Comp. 67
(1998), 647-665.

[9] R. Q. Jia, Cascade algorithms in wavelet analysis, preprint, Univ. of Alberta, 2002.

[10] R. Q. Jia, C. A. Micchelli, Using the refinement equations for the construction
of pre-wavelets. II. Powers of two. “Curves and surfaces” (Chamonix-Mont-Blanc,
1990), 209-246, Academic Press, Boston, MA, 1991.

[11] Q. T. Jiang, P. Oswald, On the analysis of v/3-subdivision, preprint, Bell Labs,
2001.

[12] L. Kobbelt, v/3-subdivision, “Computer Graphics Proceedings”, Annual Conference
Series, pp. 103-112, July, 2000.

[13] U. Labsik, G. Greiner, Interpolatory v/3-subdivision, Proceedings of Eurographics
2000, Computer Graphics Forum, 19(3):131-138, September, 2000.

[14] R. A. Lorentz, Multivariate Birkhoff Interpolation, LNM 1516, Springer, Berlin,
1992.

[15] P. Oswald, P. Schréder, Composite primal/dual v/3-subdivision schemes, preprint,
2001.

[16] S. D. Riemenschneider, Z. W. Shen, Multidimensional interpolatory subdivision
schemes, SIAM J. Numer. Anal. 34 (1997), 2357-2381.

[17] T. Sauer, Polynomial interpolation, ideals and approximation order of multivariate
refinable functions, preprint, Univ. Giessen, May 2001.

29



