CONVERGENCE OF CASCADE ALGORITHMS IN SOBOLEV
SPACES AND INTEGRALS OF WAVELETS
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ABSTRACT. The cascade algorithm with mask a and dilation M generates a sequence ¢,, n =1,2, ...,

by the iterative process

¢n(x) = Z a(@)pn—1(Mz —a) z€R’,

a€ZLS
from a starting function ¢o, where M is a dilation matrix. A complete characterization is given for
the strong convergence of cascade algorithms in Sobolev spaces for the case in which M is isotropic.
The results on the convergence of cascade algorithms are used to deduce simple conditions for the

computation of integrals of products of derivatives of refinable functions and wavelets.

1. INTRODUCTION

For 1 < p < o0, let L,(R®) denote the Banach space of all complex-valued measurable functions f
on R? such that || f||, < oo, where

1/p
= ([ r@pas) " for1<p<o,

and || f]|eo is the essential supremum of f on R®. The Fourier transform of a function f € L;(R?) is
defined by

~

[©:= [ fle)e**dn, £,

where z - £ denotes the inner product of two vectors z and ¢ in R®. For a vector x = (z1,...,%s) in

lz = /2% + - + o

We shall denote the set of all non-negative integers by Ny and the set of all natural numbers by N.

R®, its norm is defined to be

A multi-index is an s-tuple g = (p1,... ,ps) € Nj. The length of p is |u| := p1 + --- + ps, and the
factorial of p is u! := pq!--- pg!. For two multi-indices pp = (1,... ,ps) and v = (v1,... ,vs), we write
v<pifv; <pjforj=1,...,s If v < pu, we define
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The partial derivative of a differentiable function f with respect to the jth coordinate is denoted by
Djf,j=1,...,s, and for p = (p1,... ,us), D" is the differential operator D{"* - -- D4*.

For a non-negative integer k € Ny, let II;, be the linear space of all polynomials in s variables of total
degree at most k. We shall write II_; = {0}. Let II := U2 ,II;; be the linear space of all polynomials.
The degree of a polynomial ¢ is denoted by degq. If ¢ = i cux* is a polynomial, we shall use ¢(D)
to denote the differential operator ucuDH A compactly supported function f € L;(R®) is said to

satisfy the moment conditions of order k if f(0) = 1, and
DFf(2nB) =0  V|u| <k and BeZ*\{0}.
It is known that f satisfies the moment conditions of order k if and only if for each polynomial g € T 1,

Y ql@)f(-—a)—gq
a€Zs
is a polynomial of degree less than degq (see [19]).
We use W:f(Rs) to denote the Sobolev space that consists of all distributions f such that D*f €
L,(R?) for all multi-indices o with |u| < k, equipped with the norm defined by

£ lwg ey = D I1D*fllp-
lul<k
The linear space of all sequences and the linear space of all finitely supported sequences on Z° are
denoted by #(Z?) and £y(Z?) respectively. For a € Z*, we denote by d, the element in £4(Z°) given by
do(a) =1 and 6,(B) = 0 for all B € Z*\ {a}. In particular, we write § for §g. For j =1,... s, let e; be
the jth coordinate unit vector. The difference operator V; on £(Z?) is defined by V a := a —a(- —¢; ),
a € £(Z°). For a multi-index y = (u1,...,us), V¥ denotes the difference operator V4" ... V4. If
q(z) =3, cuz" is a polynomial we shall write ¢(V) to mean the difference operator ) c,V*.

We are concerned with functional equations of the form

(1.1) = ala)p(M- - a),

a€Zs
where ¢ is the unknown function defined on the s-dimensional Euclidean space R®, a is a finitely
supported sequence on Z° and M is an s X s integer matrix such that lim, ,,c M~ = 0. The
equation (1.1) is called a refinement equation, M is called a dilation matriz and the sequence a is
called a refinement mask. Any function satisfying a refinement equation is called a refinable function.

If a satisfies

(1.2) Z a(a) = m = |det M|,

a€Zs
then it is known that there exists a unique compactly supported distribution ¢ satisfying the refinement
equation (1.1) normalized so that qAS(O) = 1. This distribution is called the normalized solution of the

refinement equation with mask a. Refinement equations and refinable functions play an important role
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in wavelet analysis and the theory of uniform subdivision. Associated with the refinement equation
(1.1) is the refinement operator @, defined on L,(R*) by

(1.3) Quf =Y a(@f(M-—a), feLy,(R)

a€Zs
Let ¢o be an initial function in L,(R®) with compact support. For n =1,2,... , define
(1'4) bn = Qabn—1-

Clearly ¢p, = Q¥ ¢, n =0,1,... . The algorithm (1.4) is called the cascade algorithm with mask a and
dilation M. Convergence of cascade algorithms has been studied in connection with the solution of
refinement equations and the description of curves and surfaces in computer aided geometric design
(see [2], [9], [18], [20]).

In one dimension the convergence of a cascade algorithm with dilation 2 depends on the two ma-
trices Ay := (a(2i — 5 — 1))2;-:1 and A; = (a(2i — j))afj:l associated with the mask (a(j))j-vzo. A
characterization of convergence in L,(RR) in terms of the joint spectral radius of Ag and A; was given

in [9]. In Ly(R) this characterization takes a simpler form which can be described in terms of the

transition matriz (a © a(2i — j))fyjzf n associated with the autocorrelation a ® a of a defined by
a®a(k) =Y a(j)a(j —k), keZ.
JEZ

This characterization of strong convergence of cascade algorithms in Ls(R) can be deduced from the
results in [9] as well from [7] and [2], and was also obtained independently in [18]. Similar results
were established in [15] for strong as well as weak convergence of cascade algorithms in Ls(R®) with
a general dilation matrix M. These results were further extended to matrix cascade algorithms with
dilation matrix M = 27 [17] and also to nonstationary cascade algorithms in Ly(R®) with an arbitrary
dilation matrix M [5]. Weak convergence of derivatives of cascade algorithms was also considered in
[5]. In this paper we are interested in the strong convergence in the Sobolev space W(R®) of the

cascade sequence (Q7®o)nen, i€,
(15) 7}1}%“Q2¢0 - ¢”W;(Rs) =0.

In one dimension (s = 1) with dilation 2 and p = 2, characterizations of weak and strong convergence
of cascade algorithms in WQk(]R) in terms of the spectral properties of the transition matrix (a ®
a(2i — j))ﬁ’jsz for the mask a = (a(j))é-\]:0 has been studied in [6]. The multivariate problem with a
general dilation matrix is more complicated and the techniques in [20] and [6] are not easily extended
to higher dimension. Our main objective is to give a characterization of strong convergence of the
cascade algorithm (1.4) in the Sobolev space WX(IR®) for the case in which the dilation matrix M is
isotropic, i.e., M is similar to a diagonal matrix diag (o1,... ,05) with |o1| = --- = |os|. We shall show
in Section 2 that if (1.5) holds then the initial function ¢ must satisfy the moment conditions of order
k 4+ 1. This motivates us to give the following definition. We say that the cascade algorithm with
mask a converges (strongly) in the Sobolev space W:f(]Rs) if (1.5) is valid for any compactly supported
function ¢g € Wf(Rs) satisfying the moment conditions of order k + 1.
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For an s x s dilation matrix M, let I' be a complete set of representatives of the distinct cosets of
Z°|/MZ?, and let Q be a complete set of representatives of the distinct cosets of Z*/MTZ*, where MT
denotes the transpose of M.. Evidently, #I' = #Q = |det M|. Without loss of any generality, we may
assume that 0 € T' and 0 € Q. We say that a sequence a € £y(Z*) satisfies the sum rules of order k&, if
for all p € IIx_1,

(1.6) > a(MB)p(MB) =) a(MB+7)p(MB+7)  VyeT.
BEL® BEL*

We shall also show in Section 2 that if the cascade algorithm (1.4) converges in the Sobolev space
W:f (R?), then the mask a must satisfy the sum rules of order k£ + 1. Our main theorem, Theorem 3.2,
is stated and proved in Section 3. Our proof in one direction depends on a result on the convergence
of cascade algorithms in C¥(R?), the subspace of WX (R?) that consists of all k times continuously
differentiable functions on R®. The proof here is different from that in [6]. In Section 4 we apply the
results of Section 3 on the convergence of cascade algorithms to deduce results on the computation of
integrals of products of derivatives of refinable functions and wavelets. These integrals are useful in
the construction of wavelets on a finite interval and for the multiscale solution of partial differential
equations. Computation of such an integral has been considered earlier by Beylkin [1] and by Dahmen
and Micchelli [4]. The approach in [4] is to express the integral as the unique eigenvector of a certain
transition matrix, under a linear constraint. Their results are obtained under the assumption that
the refinable functions are stable and belong to C*¥(R®). Our assumption based on the convergence of
cascade algorithms is weaker and easier to verify in practice. Furthermore, unlike stability, convergence

of cascade algorithm is preserved under convolution.

2. CASCADE ALGORITHMS IN SOBOLEV SPACES

Suppose a is a finitely supported sequence on Z* satisfying (1.2). Let ¢ be the normalized solution

of the refinement equation (1.1). Taking the Fourier transform of both sides of (1.1), we obtain

(2.1) $¢) = H(MT) 1) d((MT)1¢), EeP,

where

(2.2) H() = Z a(e)e™ ¢ /m, EeR.
a€Zs

Clearly, H is a 2w-periodic function and H(0) = 1. Taking the Fourier transform of both sides of (1.3),

we obtain
(23) Quf(€) = H(MT)7'¢) f(MT) %), ¢eRr.

Let M be an s x s isotropic matrix with entries in C. Then M is similar to a diagonal matrix
diag (01,... ,0,) with |o1| = --- = |o,|. In this case, there exists an invertible matrix A = (X\1)1<ji<s
such that

(2.4) AMA™! = diag (o1,... ,0%)-
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Let f be a differentiable function on R®. By using the chain rule we obtain

D1 Dl
D D
N (FoMN@) =M | | f(MT2), zeR.
Dy Dy
It follows that
D1 Dl
D D
(2.5) A T (FoMT) (@) = AMATIA | T | f(MTs),  zeRS.
D, D

For j =1,...,s, let g; be the linear polynomial given by
S

(2.6) gj(z) = Z Nz, z = (r1,...,z5) € R,
=1

By (2.4) and (2.5) we deduce that
gj(D)(f o MT)(z) = 0jg;(D)f(MTz), =z€ER.
For a multi-index p = (p1,... ,is), define g, := ¢{"* -+~ ¢&*. Tt follows from the above equation that

4u(D)(f o M")(z) = o¥qu(D) f(M"z), z€R,

where o := o{* - - - ok*. Consequently, for n =1,2,...,

(2.7) 4u(D)(f o (MT)")(2) = 0" qu(D) f(M")"z),  z€R.

Proposition 2.1. Suppose M is an s X s isotropic dilation matriz, and a is an element in £y(Z°)
satisfying (1.2). Let ¢ € W;f(Rs) be the normalized solution of the refinement equation (1.1) with mask
a, and let Q, be the linear operator defined in (1.3). If ¢y is a compactly supported function in sz“(]Rs),
1 < p < oo, such that

RILIEOHQZ(:ZSO - (’ZS”W}(RS) =0,

then ¢g satisfies the moment conditions of order k + 1.

Proof. Since the supports of ¢, are uniformly bounded, it suffices to deal with the case p = 1. Let
bn = Q Py and g, (€) := ¢ (MT)"€), € € R®, n = 1,2,.... A repeated use of (2.3) with f = ¢
yields

~

gn (&) = hn(€)do(§),  E€R’,

where
n

ha(€) = [[H((MTY '),  EeR.
7j=1
For g € Z*, we have h,(2nf8) = hy,(0) = 1. It follows that

$o(27B) = gn(27B) = dn (MT)"27).
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In particular, ¢o(0) = g,(0) = ¢, (0). But |$,(£)—p(&)| < |pn— ¢, (s) — O uniformly in £ as n — oo.
Hence, |¢,(0) — $(0)] = 0 as n — oo. Therefore, ¢o(0) = ¢(0) = 1. Similarly, for 8 € Z*\ {0},

$o(2mp) = lim g, (27f) = lim ¢y ((MT)"21p) = lim ((MT)"2mB) = 0,

where the Riemann-Lebesgue lemma has been used to derive the last equality.
We claim that D#¢g(27f3) = 0 for all 8 € Z5\ {0} and all multi-indices p with || < k. This has
been established for || = 0. Let 0 < r < k and suppose our claim has been verified for all |u| < 7.

Let p be a multi-index with |u| = r. By using the Leibniz formula for differentiation, we obtain
K v —v
DHg, (&) = Z( ) ) DY ¢o(€) DH~" hn (€).
v<p

For v < p and v # p, by the induction hypothesis, we have D”q§0(27rﬁ) = 0 for all g € Z°\ {0}.

Consequently,
(2.8) DFgn(2m8) = D*¢o(2r8) VB € Z°\ {0} and |u| =r-

Since the matrix M is isotropic, it is similar to a diagonal matrix diag (o1,... ,05) with |oy| =--- =
los|. Suppose A = (\ji)1<j,<s is a matrix such that (2.4) is valid. With © := (AT)™! it follows from
(2.4) that

oMTe™! = diag (01,... ,04).

Let g, := ¢{" ---¢§*, where gj, j = 1,...,s, is the linear polynomial given in (2.6). Since g,(§) =
dn((MT)"¢), € € R®, (2.7) shows that

(2.9) au(D)gn(€) = 0" (qu(D)dn) (MT)"€),  EE€R.
On the other hand, it follows from (2.8) that
(2.10) 9u(D)gn(27B) = qu(D)do(2rB) VB € Z*\ {0} and [u| =r.
Let
bun(@) == qu(—iz)¢n(z) and  ¢y(z) = qu(—iz)d(z), €k
Since (¢n)nen converges to ¢ in the Sobolev space W;(]RS), for any multi-index v with |v| = r we have
nli_{{,lO”DU‘ﬁu,n - DV¢NHL1(RS) =0.
Note that the Fourier transforms of D¢, , and D"¢, are
(i€)" qu(D)$n(€) and (&) qu(D)(&),

respectively. Hence,

(2.11) Tim (€] gu(D)gn(€) = lim €] gu(D)B(E), €€,
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where the convergence is uniform in £. Since DV¢,, € Li(R?®) for any multi-index v with |v| = r, by the

~ ~

Riemann-Lebesgue lemma, £”q,(D)¢(§) — 0 as ||{]| — oo. Hence, ||£]|"qu(D)¢(&) — 0 as ||£]] = oo.
Combining this and (2.11), we obtain
(212 Tim [|(M)"25B]] u(D)du(M7)"2n8) =0, B € 7\ {0}.
Note that |o1| = --- = |os| = m'/*, where m = |det M|. In light of (2.4), we see that there exists a
positive constant C' independent of n such that
I(MT)"8]| = |0~ " diag (oF,... ,0})OB] > Cm™*|B].

This together with (2.9) and (2.12) gives

lim g,(D)ga(27B8) = lim o*"q,(D)g((M")"2rB) =0, B € Z*\{0}.
Finally, this in connection with (2.8) yields

qu(D)po(27B) =0 VB € Z*\{0} and |u| =r.
This completes the induction procedure and also the proof of Proposition 2.1. O

As a corollary of Proposition 2.1, we have the following result which was obtained earlier in [10].

Corollary 2.1. Suppose M is an s X s isotropic dilation matriz, and a is an element in £o(Z°)
satisfying (1.2). Let ¢ € WIf(RS) be the normalized solution of the refinement equation (1.1) with mask

a. Then ¢ satisfies the moment conditions of order k + 1.

Proof. Choose the initial function ¢y = ¢. Then the cascade sequence (Q7 ¢),en satisfies the conditions

of Proposition 2.1. It follows that ¢ satisfies the moment conditions of order k + 1. O

Theorem 2.1. If the cascade algorithm with mask a converges in the Sobolev space W;“(Rs), 1<p<

00, then the mask a satisfies the sum rules of order k + 1.

Proof. Let f be a stable and compactly supported function in Wf (R*), and suppose that (QF f)nen
converges in sz(]Rs) to the normalized solution ¢ of the refinement equation (1.1). By Proposition
2.1, f satisfies the moment conditions of order k + 1. Since (Q7 f)nen converges in W]ﬂ“(Rs) to ¢, it
follows that (Q7(Qaf))nen also converges to ¢ in WIf(RS). By Proposition 2.1, g := Q,f also satisfies
the moment conditions of order k + 1. By (2.3)

(2.13) &) =H((M")7'e) f(MT)7Ne),  ¢eR.
In order to prove that a satisfies the sum rules of order k + 1, it suffices to show that
(2.14) D'H((MT)'27w) =0  Vwe )\ {0} and |u| < k.

This will be done by induction on |y, the length of 4.

Let w be an element of 2\ {0}. Since f is stable, there exists some ~ € Z* such that f((M7) ™" 2rw+
2my) # 0 (see [12], [13]). Let 8 := w + MTy. Then 8 € Z*\ {0}, and so §(273) = 0. This together
with (2.13) gives

0=H(MT)2nw) f(MT) ™ 27p).
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But f((MT) 12x8) # 0. Therefore, H((MT) '27w) = 0. This verifies (2.14) for |u| = 0.
Let 0 < r < k. Suppose our claim has been verified for || < r. Let 4 be a multi-index with |u| = 7.
Let 8 = w4+ M7y be given as above. Applying the Leibniz formula for differentiation to (2.13), we

obtain

DHg(2nf) = Y- ( 1) DY (H o (7)) @np)DH (f o (M) ") (218,
v<p
In the above series, if v < p and v # p, then by the induction hypothesis we have DY (Ho(M™T)™1)(278) =
DY(H o (MT)™1)(27w) = 0. Hence,
DHG(2nf) = DH(H o (MT)™) 2nw) f(MT)20),  |u] =r.
It follows that

9.(D)§(27) = qu(D)(H o (M")7") (27w) f(MT)"'21B),  |u| =1
But ¢,(D)§(2w8) = 0, and by (2.7) we have
qu(D)(H o (M")™")(2mw) = 0 #q,(D)H ((M")™'27w).
Hence,
0 =0 #q,(D)H((MT)'2nw) f((MT)27p).
But f((MT)~12x8) # 0. Therefore,

qN(D)H((MT)*127rw) =0 V|u| =rand w € Q\ {0}.

This verifies (2.14) for |u| = r, thereby completing the induction procedure. The proof of Theorem
2.1 is complete. U

Remark 2.1. From the proof of Theorem 2.1 we see that the following stronger result holds.

If the cascade sequence (Q7¢o)nen converges in the Sobolev space W;(Rs) to the normalized solution
of the refinement equation (1.1) for some stable initial function ¢o, then the mask a satisfies the sum
rules of order k + 1.

As an example, let ¢ be the normalized solution of the refinement equation
1 1 1 1
¢(r) = 3 o(2z) + 2 ¢(2z — 1)+ 2 ¢(2r —2) + 2 ¢(2z — 3), z €R

Thus, the refinement mask a is given by a(j) = 1/2 for j = 0,1,2,3, and a(j) = 0 for j € Z\{0,1,2,3}.
One can check easily ¢ = (h(-) + h(- — 1))/2, where h is the hat function supported on [0,2]. Thus
¢ € WHR). It is easily verified that the cascade algorithm associated with mask a converges in La(R).
Howewver, the mask a does not satisfy the sum rules of order 2. Therefore, the cascade algorithm
associated with mask a does not converge in the Sobolev space W (R). This answers the question

raised at the end of the revised version of the paper [16].
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3. CHARACTERIZATION OF CONVERGENCE

In this section we give a characterization for the convergence of a cascade algorithm in the Sobolev
space WF(R?®) in terms of the corresponding mask. The results are based on the transition operator
and subdivision operator associated with a given mask. Let us review their basic properties.

Let a be an element in £y(Z°) and let M be a dilation matrix. The transition operator 7, is the

linear operator on £y(Z?®) defined by
(3.1) Tov(a) := Z a(Ma — B)v(B), a€Z® wvely(Z).
pezs

Let G =suppa := {a € Z* : a(a) # 0}, and let

K::iM_nG = {iM_"yn: yn € G VTLEN}.
n=1

n=1
We shall denote the linear space of all sequences supported on K by #(K). Then £(K) is a finite
dimensional invariant subspace of T,. Moreover, any eigenvector of T, corresponding to a nonzero
eigenvalue is supported in K. See ([8], Theorem 4.2) and ([11], Lemma 3.1) for these facts. For an

invariant subspace V' of T, we define the spectral radius of T, |y by
p(Tuly) == p(Ta|Z(K)ﬂV)-

In particular, p(Ts) := p(Tulyk))-
The subdivision operator S, is the linear operator on £(Z?®) defined by

(3.2) Seu(a) := Z ala — MpB)u(p), a€Z wu€lZ).
BEL®
Let @, be the linear operator given in (1.3), and let ¢, := Q%¢g, n =0,1,... . Then
(33 bn= Y anle)o(M™ -~ a),
a€Zs
where the sequences a,, n =1,2,... , are obtained iteratively by the relation
an(@) = Y an-1(flala — MB),  a€Z’,
A
with a1 = a. Consequently, a, = Sy(ap_1) =--- = SI'6.

When p = oo, it is more appropriate to discuss convergence in the space C*(R*) with norm

Ifllox@ay = Y ID*flloos  f € CH®).

lul<k
We say that the cascade algorithm with mask a converges strongly in C*(R?) if
nli_{ToloHQZd’O - ¢Hck(Rs) =0

holds for any compactly supported function ¢y € C¥(R®) satisfying the moment conditions of order
k+1.
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For a vector v € R® \ {0}, we let V, denote the difference operator defined by V,f := f — f(- — v)
for any f, and we use D, to denote the directional derivative, i.e.,

Duf(e) ot T 1) (@)

t—0 t ’ re RS’

if the limit exists. Tt is easily seen that, for a function f € C1(R?),
0
va(:c):/ D, f(z + tv) dt, z € R°.
-1
Suppose f € C*(R*) and vy, ... ,vx € R® \ {0}. Then

0 0
Vo -+ Vo f(2) :/ / Dy, --- Dy, f(z + tivr + - -+ + tyvg) dty - - - dity.
-1 Ja
It follows that
(3:4) [Vor -+ Vo fll o < [1Por -+ Do f|

Let
Vi = {v € £y(Z°) : Z pla)v(a) =0Vp € Hk}.
a€Zs
It is known that Vj is invariant under 7, if and only if a satisfies the sum rules of order k+1 (see [10],
Theorem 5.2).

The following theorem gives a necessary condition for convergence of cascade algorithms in C*(R?).

Theorem 3.1. Suppose M is an s X s isotropic dilation matriz, and m := |det M|. Let a be a finitely
supported mask satisfying (1.2). For a stable compactly supported ¢o € C*(R®), if the cascade sequence
(Q™¢o)nen converges in C*¥(RS) to the normalized solution of the refinement equation (1.1), then Vj

is invariant under the transition operator T, and

p(Tulv,) < m~F/s.

Proof. Let ¢ be a stable compactly supported function in C*(R?). Since the cascade sequence (ngﬁo)n N
converges in C¥(R?), ¢ satisfies the moment conditions of order & +1 by Proposition 2.1. By Theorem
2.1, the mask a satisfies the sum rules of order k+1. Thus V} is invariant under the transition operator
T,.

Let ¢, := Q7 o, n =1,2,..., and let vj := M "e;, for j =1,... ,s. It follows from (3.3) that
Voo = Y Vian(a)go(M™- — a).
Q€S
Moreover, for a multi-index p = (u1,... ,is), we have
Vo, Vil Vhep, = 3~ VVFan () do(M™ - — a).
a€Zs

Since ¢y is stable in L (R?®), there exists a constant C; independent of n such that

1V, 9" an]|, < C1 [V, Vi - Vhe o .-
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This in connection with (3.4) yields
(3:5) 1V5V¥an| o < C1[[Vo; D3 - DE? | -

Since M is isotropic, there exists an invertible matrix A such that (2.4) holds with |o1| = --- =

/s Consequently, M—" = A~ 'diag(o7",... ,0,™)A. Suppose M ™ = (ci;)1<ji<s. Then
1 S 7 SIS

los| = m
Dy, = Dpy-ne, = cuyD1 + -+ + cyDs. The above discussion shows that |cj| < Com™™/% for some

constant Cy independent of n. Therefore, there exists a constant C3 independent of n such that

J

(3.6) [Ves D52 -+ Dl o < Com™ /" max || DV ag-ne; b
Combining (3.5) and (3.6), we see that there exists a constant C independent of n such that
(37) a0V ¥ anl| o < O x| D Varves bl

b= =

Let us estimate the right-hand side of (3.7). By the triangle inequality we have

1D#V r=ne;dnllog < [1P#Vrone; (dn = D oq + |12 Vir=ne; ] -

Since (¢, )nen converges to ¢ in C*(R?), we have

lim || D#Vasne, (dn = 9)|| o =0, |u|l =k

n—oo

Furthermore, for |u| = k, D*¢ is a compactly supported continuous function; hence
[0, = i D76 DRt~ =0

Therefore,

lim || D*V py-ne; ¢n| = 0.

n—oo

This together with (3.7) gives

(3.8) lim |m*"*Vra,|| =0  V|ul=k+1.

n—0o0
Note that a, = S?d, where S, is the subdivision operator given by (3.2). By ([11], Lemma 3.2) we
have
T (VFEIg) () = VESTS(M™ o — ) Va,B € Z°.
Thus, it follows from (3.8) that

lim ||m*™/* T2 (V*dg)|| ., =0  V|ul=k+1 and B € Z*.

n—oQ

But V is spanned by the vectors V#dg, |u| = k + 1, B € Z*® (see [11], Theorem 4.3). Therefore, we

have

lim ”mlm/STgv”C><> =0 VveV.

n—oo

Consequently, p(T,|v;) < m~k/5 as desired. O
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For two functions f and g in Lo(R®), their correlation f ® g is defined by

fog(z) = N f(z+y)g(y) dy, zeR.

In other words, f ® g is the convolution of f with the function y — g(—y), y € R®. It is well-known
that f © g lies in Cy(R?), the space of continuous functions on R® that vanish at oco. Clearly,

If @ glloo < I ll2llgll2-

Similarly, for any two sequences u,v € £y(Z?), their correlation u ® v is defined by

u@v(a) = Z u(a + B)v(B), a € 7Z°.
a€ls
The following is the main theorem which gives a characterization for the convergence of cascade
algorithms in the Sobolev space W¥(R®).

Theorem 3.2. Suppose M is an s X s isotropic dilation matriz and m := |det M|. Let a be a finitely
supported mask satisfying (1.2), and let b := a ® a/m. Then the cascade algorithm with mask a

converges in WE(R®) if and only if Vo is invariant under the transition operator Ty and

p(Tb|V2k) <m72H/s,

Proof. Let ¢o be a stable compactly supported function in W¥(R?) satisfying the moment conditions
of order k+ 1. For n =0,1,..., let ¢, := Q7 ¢y, where @, is the refinement operator in (1.3), and let
In = dn © ¢. We have

gn := ¢n © ¢n = Q (o © do) = QF go-

If (¢n)nen converges to ¢ in the space W& (R®), then (g,)nen converges to g := ¢®¢ in the space
C?(R?). Moreover, ¢ is stable implies that gy = ¢o@do is stable. By Theorem 3.1, we conclude that

Vo, is invariant under Tp and p(Tpy,, ) < m—2k/s,

~2k/s  Since M is isotropic,

Conversely, suppose that Vo is invariant under Ty and p(Tp|vy,) < m
there exists an invertible matrix © = (0};)1<<s such that @©M7O~! is equal to diag(o1,... ,0y),
where |o1| = -+ = |os| = m'/%. Let p, := p{*---pk*, where p; is the linear polynomial defined by

pi(z) :== >, Oz, © = (21,... ,2,) € R°. We have the following formula which is similar to (2.7):
pu(D)(¢o 0 M")(z) = o""pu(D)po(M"z),  z€R’,

where o# = gi" --

(3.9) pu(D)gn = Y an(@)o""pu(D)o(M" - — a).
a€Zs

- 0. Applying the differential operator p,(D) to both sides of (3.3), we obtain

We want to show that (p,(D)¢n)nen converges in the space La(R®) for all |u| < k. Let us consider
Gn+1 — én. We have

Pnt1 — dn = QU o — Qldo = QL o,
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where @g 1= Qqbo — ¢o- Let ¢, := Qrypo and fr, := pu(D)en = pu(D)(bnt1 — ¢p) for n =0,1,....
We deduce from (3.9) that

(3.10) fn® ful®) = ) bal@)m™®™ fo @ fo(M"z — ), TR,
a€Ls

where b, := S}'d. The Fourier transform of the function fo © fy is

— cnr 2 - 2 5
Fo®fo(&) = |pu(i)[91(6) — b0 (©)]]",  EER’.
Suppose || = k. Then p, is a homogeneous polynomial of degree k. It follows that D”(W))(O) =0
for all |v| < 2k. Since both ¢y and ¢; satisfy the moment conditions of order k + 1, we have
D*(fo®fo)(2nB) =0  V|v| <2k and 8 € Z°\ {0}.
Let
v(a) := fo© fola), a€Z’
By the Poisson summation formula, we obtain for any p € Iy,
> p(@)o(a) = Y pla)(fo ® fo)(@) = D (p(iD) fo@ fo)(27p) = 0.
a€Zs a€Zs BEZLS

In other words, v € Vy.
It follows from (3.10) that

”fn”g = fn ® fn(0) = Z bn(a)kan/s,U(_a).

a€L*
Furthermore, by ([11], Lemma 3.2) we have
(3.11) Tyo(0) = Y v(@)Spd(—a) = Y ba(@)v(—a) = m™"/*||f,]3.
a€Zs a€Zs

—2k/s

Since Vo is invariant under T, and p(Tp|v,,) < m , we can find some n with 0 < 7 < 1 and a

constant C independent of n such that
(3.12) | 75|, < Clm=2%/5"  YneN
Combining (3.11) and (3.12), we obtain

I3 < Cn™  VneN.

But f, = pu(D)(¢n+1 — ¢n). Thus, (p(D)dn)nen converges in Lo(R®). Therefore, for all p with
|| = k, (D" )nen converges to some function in Ly (R?).
Now suppose |p| < k. By the results of [14] we have

spec (Tylo(x)nvs,) = spPec (Thlex)nve,) U{o™ 125 + 1 < |v| < 2k},

where 0™ = 07" - - - 07 and spec(T') denotes the spectrum of the operator 7. Hence, p(Th |y x)nvy;) <

m~2%/% for j = 0,1,... ,k. By what has been proved before, we conclude that, for all lp| < k,
(DH ¢y, )nen converges to some function in Ly(R®). In other words, the cascade algorithm associated

with the mask a converges in the Sobolev space WX(R®). The proof of the theorem is complete. [
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From the proof of Theorem 3.2 we have actually established the following stronger result which

gives a necessary condition for the convergence of cascade algorithms in W§(R?).

Proposition 3.1. Let ¢y be a stable and compactly supported function in WER®). If (Qdo)nen
converges in WX (R®) to the normalized solution of the refinement equation (1.1), then Vi is invariant

under the transition operator Ty and

p(Thlv,,) < m=2He.

Proposition 3.1 and Theorem 3.2 give the following corollary.

Corollary 3.1. Suppose M is an s X s isotropic dilation matriz. If the normalized solution ¢ of the
refinement equation (1.1) belongs to WE(R®) and is stable, then the cascade algorithm with mask a and

dilation M converges in the Sobolev space W¥(R?).

Proof. Clearly if the normalized solution ¢ of the refinement equation is in WJ(R?*), then (Q"¢)nen
converges in W§(R®). If ¢ is stable, then by Proposition 3.1, Vo, is invariant under the transition
operator Ty, and p(Ty|v,,) < m~2¥/%, where b = a ® a/m, m = |det M|. Tt follows from Theorem 3.2
that the cascade algorithm with mask a converges in WF(R?). O

4. COMPUTATION OF INTEGRALS OF REFINABLE FUNCTIONS AND WAVELETS

In this section we apply the results of Section 3 to the evaluation of integrals of products of refinable
functions and wavelets. For simplicity we shall assume that the dilation matrix M = 21. The evaluation

of such an integral requires the computation of integrals of the form

l
(4.1) / [1 2" ¢;(2"z + o) da,
Rs j:()
where for j = 0,1,... ,4, ¢; are refinable functions, peNg, k; € Ny and o’ € 7. Tt was shown in [4]

that the integral in (4.1) can be determined explicitly in terms of integrals of the form

¢ '
(4.2) /R 0@ [[ ¥ (0 + o) do,

where o/ € 75 for j = 1,2,... L.
Suppose that for each j = 0,1,... ,4, ¢; € WE¥(R®) is the normalized solution of the refinement

equation
(43) ;= d(@)g;(2: ~ o),
a€Zs
where a/, j = 1,... , £, are finitely supported masks. Let
e
(4.4) (X):=d(z',...,a") = | ¢o(z) [] ¢i(x +27) ds,
RS .

j=1

where

X=(@'...,2eR", ek, j=12,...,L



CASCADE ALGORITHMS AND INTEGRALS OF WAVELETS 15

It is easy to see that ® belongs to C¥(Rf), is refinable and is the normalized solution of the refinement

equation

(4.5) (X)) = D c()@(2X —1),
’)’6le

where

12
(4.6) c(y) ==c(yh,... 7Y =27¢ Z a®(a?) H a?(a® ++7),

a0eZs
and
=0 ezt ez, j=1,2,... L

For multi-indices p/ € Ny, j = 1,2,... £, with |p!| 4+ -+ + 4] <k, let

Z y -

(4.7 ou(@) = [ o) [[ D ¢yl + o) da,

RS -

7j=1
where p := (p',--- , u%). Then (4.4) and (4.5) give
(4.8) Tov, = 2—(|u1\+---+|u"|)vu_
Further,
(4.9) S (a) (@) = (0 B Syt Wl <
acZls

This follows from the fact that ® satisfies the moment conditions of order k + 1, or equivalently for
any polynomial p € Il,

> p(@®(-—a)—p

a€cZts
is a polynomial of degree less than degp.

It was shown in ([4], Theorem 3.5) that if the refinable functions ¢; belong to C*(R®), j = 0,1,... , £,
and are stable, then the vector v, is the unique eigenvector of T, satisfying (4.8) and (4.9). As a simple
consequence of the results in the previous section we shall show that if the cascade algorithms with
mask o’ and dilation 21 converge in W4 (R®) for j = 0,1,... ,4, then v, is the unique eigenvector
of T, satisfying (4.8) and (4.9). We remark that the stability of ¢; implies the convergence of the
cascade algorithms in W5 (R®) with mask a/, j = 0,... ,£. By Theorem 3.2 the convergence of cascade
algorithms with masks a’ can be determined by computing the spectral radii of the transition matrices
T vy, » Where b = o/ ® o/ /2.

We shall first obtain the result based on the convergence of a cascade algorithm in C*(R®). Let ¢

be the normalized solution of the refinement equation

(4.10) d(z) = Z a(a@)p(2z — a), z € R,

a€Zs
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where a is a finitely supported sequence satisfying Y, 5. a(e) = 2°. Suppose that ¢ lies in C*¥(R®)
for some non-negative integer k. For |y| = k, applying D? to both sides of (4.10) yields

DY¢(z) = Z a(a)2¥D7 (22 — a), z € R°.
a€Zs

It follows that, for g € Z?,

D¢B) =Y a(@)2"D¢(28 — ) = D a(28 — a)2FD7(a).

Q€S Q€S

Let v, be the sequence given by
vy (B) :=D"p(B), BeZ
Then v, is an eigenvector of the transition operator T, corresponding to the eigenvalue 27k ie.,
(4.11) Tovy =2 %0,
and v, is supported on K =Y "° , M~ "suppa. Further,

(4.12) > (=B oy (B) =6y VY[ <k

BEeL®
Theorem 4.1. Let ¢y be a compactly supported stable function in C*(R®). If the cascade sequence
(Q"¢o)nen converges in the space C*¥(R®) to the normalized solution of the refinement equation (1.1),
then there exists a unique sequence vy € £y(Z°®) satisfying conditions (4.11) and (4.12).

Proof. Suppose there are two sequences u and v in £p(Z*) satisfying both (4.11) and (4.12). Consider
w := u — v. It follows from (4.12) that

Y (=B)w(B) =0 V| <k
BELS

In other words, w € V. Since the cascade algorithm associated with a converges in C*(RR*), we have
p(Talv,) < 27%. Hence, w must be 0, for otherwise (4.11) would imply p(T,|v;) > 27%, which is a
contradiction. This proves the uniqueness of the solution of (4.11) and (4.12). O

Theorem 4.2. Let ¢ and v, be as in (4.6) and (4.7) respectively and suppose that ¢; € C*(R®) for
j =1,...,L. If the cascade algorithms with mask a’ converge in WE(R®), j = 0,1,... ,¢, then vy 18
the unique eigenvector of T, satisfying (4.8) and (4.9).

Proof. Suppose that the cascade algorithms with masks a’/, j = 1,... , £, converge in WQIC(RS). For each

J=0,...,4, let ¢;o be the tensor product of one-dimensional central B-splines of degree > k. Then
e .
(4.13) Bo(X) 1= / do.0(@) [] $i0(x + %) de
RS -
Jj=1

is a compactly supported stable function in C*(R®).
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For j=0,1... ,and n=1,2..., define

(4.14) Gjn = Z a (@) jn—1(2+ — @),
a€Zs
and let
e .
(4.15) B, (X) = / bon(®) [ bim(s + 27) da.
Rs -
7j=1
Then (®,,)nen is a cascade sequence with mask ¢, i.e.,
(4.16) (X)) = Y c(1)Pn1(2X — 1),
’)’GZZ‘S

where c is defined in (4.6). Since ¢g € W§(R®) and for j = 1,... ,¢, ¢; € C¥(R®), the convergence of
(¢jm)nen in WE(RS) to ¢; for j =0,... ,n, implies that (®,,)nen converges to ® in C*(R®) as n — oo.
By Theorem 4.1, we conclude that v, is the unique eigenvector of T; satisfying (4.8) and (4.9). O

Remark 4.1. In Theorem 4.2 we do not require ¢y to belong to C*(R®). If £ = 1 we also do not
require ¢1 to belong to C*(R?).
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