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Smooth orthogonal and biorthogonal multiwavelets on the real line with
their scaling function vectors being supported on [—1,1] are of interest in
constructing wavelet bases on the interval [0, 1] due to their simple struc-
ture. In this paper, we shall present a symmetric C* orthogonal multi-
wavelet with multiplicity 4 such that its orthogonal scaling function vector
is supported on [—1,1], has accuracy order 4 and belongs to the Sobolev
space W 255288 Bjorthogonal multiwavelets with multiplicity 4 and van-
ishing moments of order 4 are also constructed such that the primal scal-
ing function vector is supported on [—1, 1], has the Hermite interpolation

W3.63298

properties and belongs to while the dual scaling function vector

W1-75833 A continuous dual scal-

is supported on [—1,1] and belongs to
ing function vector of the cardinal Hermite interpolant with multiplicity
4 and support [—1,1] is also given. All the wavelet filters constructed in
this paper have closed form expressions. Based on the above constructed
orthogonal and biorthogonal multiwavelets on the real line, both orthogo-
nal and biorthogonal multiwavelet bases on the interval [0, 1] are presented.
Such multiwavelet bases on the interval [0,1] have symmetry, small sup-
port, high vanishing moments, good smoothness and simple structures.
Furthermore, the sequence norms for the coefficients based on such orthog-
onal and biorthogonal multiwavelet expansions characterize Sobolev norms
|+ llws(o,1) for s € (—2.56288,2.56288) and for s € (—1.75833, 3.63298),

respectively.
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1. INTRODUCTION

With high vanishing moments, both orthogonal and biorthogonal wavelets on
the real line prove to be very useful in various applications. However, in many
applications, one is interested in problems confined to an interval such as solutions
to differential equations with boundary conditions and image processing. One ex-
cellent construction of orthogonal wavelet bases on the interval [0,1] was given by
Cohen, Daubechies and Vial [4] by adapting the famous Daubechies orthogonal
wavelets on the real line to the interval [0,1] (see also [1, 3]). The motivation to
construct wavelets on the interval and the fast wavelet transforms associated with
wavelets on the interval were explained in detail in [4]. In the literature, several
other approaches were also reported in [6, 9, 12, 20] to obtain wavelets on the inter-
val by adapting the wavelets on the real line. Recently, the theory of multiwavelets
has been extensively studied in the literature. As a generalization of scalar wavelets,
multiwavelets have several promising features such as short support and relatively
high vanishing moments.

Before proceeding further, let us recall some definitions related to multiwavelets.

A refinable function vector ¢ = (¢1,...,¢,)T, where the positive integer r is the
multiplicity, satisfies the following refinement equation
$=> Hpp(2-—k), (1.1)
keZ

where H = {H}}rez is a finitely supported sequence on Z called the (matriz re-
finement) mask.

If the matrix Hy := ), ., Hy has a simple eigenvalue 2 and all the other eigen-
values in modulus are less than 2, then up to a scalar multiplication there is a
unique vector ¢ of distributions which is a solution to the refinement equation (1.1)
and H,$(0) = 2¢(0). Such a solution ¢ is called the normalized solution to the re-
finement equation with mask H. In this paper the Fourier transform of a function
f € LY(R) is defined by

flw) = / fe ™ di,  weR

For v > 0, W" denotes the Sobolev space consisting of all functions f in L?(R)
with f(w)(1 + |w|*)2 € L*(R).

We say that a function vector ¢ = (¢1,... ,¢,)T has accuracy order n if
o= MNo—k) Vji=0,...,n—1
keZ

for some sequences M of 1 x r vectors on Z. Accuracy order of a refinable function
vector has a close relation to the order of vanishing moments of a (bi)orthogonal
multiwavelet.

Biorthogonal multiwavelets come from a primal scaling function vector ¢ =
(b1,...,0.)T € (L2(1R))T and a dual scaling function vector ¢ = (551, ... ,¢7T)T €
(L2(R))" such that

$=> Hpp(2-—k) and =3 Hid(2-—k),

kEZ kEZ
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where H and H are finitely supported masks, and ¢ and $ satisfy the following
biorthogonal relation:

/ d(t)p(t — k)*dt = 6,1, VkeZ, (1.2)
R

where @(t — k)* := ¢(t — k)T and & is the Dirac sequence such that 8o = 1 and
0p = 0 for all £ € Z\{0}. If ¢ satisfies (1.2) with ¢ = ¢, then ¢ is called an
orthogonal scaling function vector.

If ¢ is a primal scaling function vector with mask H and <;~5 is a dual scaling
function vector with mask H , then it is necessary that

> HyyoiHy =261,  Vj€L. (1.3)
keZ

where H ho= I;T;{ Let H be a finitely supported mask on Z. If there is a finitely
supported mask H such that (1.3) holds, then the mask H is called a primal mask
and any such mask H in (1.3) is called a dual mask of H. H and H are also
called wavelet filters in the literature. If H and H satisfy (1.3) and the subdivision
schemes associated with H and H converge in the L? norm, then it was proved
in Dahmen and Micchelli [7] that ¢ and ¢ satisfy (1.2) where ¢ and ¢ are the
normalized solutions to the refinement equations (1.1) with the masks H and H,
respectively.

It is known that there are symmetric smooth orthogonal multiwavelet bases while
there is no symmetric continuous orthogonal scalar wavelet (see [8, 10]). The prop-
erties of short support, reasonably high vanishing moments and certain smoothness
of a multiwavelet are particularly attractive for the construction of wavelet bases
on the interval. For example, multiwavelet bases on the interval were reported in
[6, 9, 12]. In the current literature, many (bi)orthogonal multiwavelets with mul-
tiplicity 2 were reported, see e.g. [6, 10, 12, 17] and references therein. To obtain
multiwavelets with short support and high vanishing moments, it is quite natural
to consider multiwavelets with higher multiplicity. However, with higher multiplic-
ity, the construction of multiwavelets and the algorithm to perform the associated
wavelet transform will be much more complicated. Therefore, it is natural and in
its own right to consider multiwavelets with multiplicity 4. In this paper, we shall
construct both orthogonal and biorthogonal smooth multiwavelets with multiplicity
4 and support [—1,1]. Then the multiwavelets on the interval [0,1] are obtained
from them. The multiwavelets on the interval in this paper have four boundary
wavelets at each level with simple structure and small support. All the wavelet fil-
ters reported in this paper have closed form expressions and the multiwavelet bases
enjoy good smoothness, short support, symmetry and high vanishing moments. For
example, we construct a symmetric C? orthogonal multiwavelet with multiplicity
4, while a C? orthogonal multiwavelet given in [9] has multiplicity 11 and some
components of the (piecewise polynomial) refinable function vector lack symme-
try. In comparison with many other constructions of wavelet bases on the interval
[0, 1], besides many good properties such as good smoothness, short support, sym-
metry, high vanishing moments and interpolation properties, multiwavelet bases
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constructed in this paper have very simple structure with explicit expressions and
therefore, can be implemented efficiently.

The structure of this paper is as follows. In Section 2, we shall obtain a symmetric
C? orthogonal scaling function vector with multiplicity 4 such that it is supported on
[~1,1], has accuracy order 4 and belongs to the Sobolev space W?2-56288  Here and
in the following, a function f being in the Sobolev space W2-6288 means f € W2,
where s is approximately 2.56288. In Section 3, we shall discuss how to construct
biorthogonal multiwavelets by the parameterization method in [18] and the coset
by coset (CBC) algorithm in [11]. In particular, a C?® primal scaling function
vector ¢ and its C! dual scaling function vector 5 are constructed such that both
of them are supported on [—1, 1] and have accuracy order 4 while ¢ € W3-63298 and
¢ € W1-75833 Moreover, the primal function vector ¢ is a Hermite interpolant. In
Section 3, based on the CBC algorithm in [11] we construct a continuous dual scaling
function vector 5 for the following cardinal Hermite interpolant ¢ = (¢1,... ,¢4)7
given by

(¢1(t) = (t+ 1)*(1 — 4t + 10t — 20t%)x(_1,0)(t)
+(t — 1)*(1 + 4t + 10t + 20t) x70,11 (1),
J62(0) = (¢ + 1)t — 422 + 108 x(1,0)(0) 1.4
+(t — 1)*(t + 48 + 10t*) x[0,1(t),
¢3(t) = (t+ 1) (#2/2 — 2%)x [ 1,0)(t) + (¢ = D* (/2 + 2¢°) xq0,11(2),
(Ba(t) = (t 4+ 1)*? [6x[_1,0)(t) + (t — 1) /610,11 (D)-

It is easy to check that ¢ is supported on [—1, 1], has accuracy order 8 and belongs
to W*5. Therefore, ¢ € C*~¢ for any € > 0. The dual scaling function vector ¢ we
construct in Section 3 is supported on [—4, 4], has accuracy order 8 and belongs to
113762

In Section 4, we discuss how to obtain multigenerators on the interval [0, 1]
from the orthogonal scaling function vector ¢, and from primal and dual scaling
function vectors ¢, qz constructed in the preceding sections. The orthogonal multi-
generators ®; and biorthogonal multigenerators ®; and 5 at each level j € Z4
are explicitly constructed with a simple expression. The matrices H; and ]HIJ, for
the refinement equations ®; = H;®;,; and <I>] = H; <I>]+1, are explicitly given.
Finally, in Section 5, the orthogonal multiwavelets ¥;, and biorthogonal multi-
wavelets ¥, lI! at each level j are exphcltly given. Moreover The matrices G;
and (G for ¥; = G;®;4; and ¥; = G $,,, are explicitly given. The sequence
norms for the coefficients based on such orthogonal and biorthogonal multiwavelet
expansions characterize Sobolev norms || - ||y (jo,17) for s € (—2.56288,2.56288) and
for s € (—1.75833,3.63298), respectively. The orthogonal and biorthogonal multi-
wavelet bases on the interval constructed in Section 5 have good smoothness and
vanishing moments. At each level, two boundary multiwavelets with simple expres-
sions are used for each end point of the interval [0,1]. Moreover, the method of
constructing (bi)orthogonal multiwavelets in this paper can be used to construct
multiwavelets which are supported on [—1, 1] with multiplicity other than 4.
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2. ORTHONORMAL MULTIWAVELETS ON THE REAL LINE

To construct symmetric/antisymmetric orthogonal multiwavelets, we take the
mask H to be the following form:

o, = a —aw, Hy = cO, H = a aw and
—b bw

H,=0 VYk#-1,0,1,

(2.1)

where a,b,c,d and w are 2 x 2 real-valued matrices and w*w = I, i.e., w is an
orthogonal matrix.

In order to obtain an orthogonal scaling function vector, the mask H necessarily
satisfies

> HyyojHp =251, Vj€L. (2.2)
kEZ

From (2.1), it is easy to verify that the discrete orthogonal condition (2.2) is equiv-
alent to

daa* + cc* = 21, and 4bb* + dd* = 215. (2.3)

With the expression of (2.1), we want to construct an orthogonal scaling function
vector with good smoothness and approximation properties. Let us first recall
some results about accuracy order of a refinable function vector. Suppose ¢ =
(1,...,¢.)T is a compactly supported refinable function vector with mask H and
¢; € L*(R). For any nonnegative integer m, denote

E,, == 'sz Y"Hy,  and Oy = ,Z1+2k MH ok (2.4)
keZ kEZ

If (@ (w+2k7r))kez,j =1,...,r, arelinearly independent for w = 0 and w = 7, then
¢ has accuracy order n if and only if there exist 1xr row vectors y,,,,m = 0,... ,n—1
with yo # 0 such that (see [14])

8

D (=D My B =y, and Y (=1)"2° "y, Om =y,
m=0 m=0 (25)

Vs=0,...,n—1

Furthermore, under the condition yoa(O) =1, we have

ZZ ,ysmw—), ze€R s=01,...,n—1.  (2.6)

k€EZ m=0

If a mask H satisfies (2.5), then we say that H satisfies the sum rules of order n
with {y,, : m=0,...,n—1}. See also [11, 13, 15, 19] about the relation between
the accuracy of a refinable function vector and the sum rules of the corresponding
mask.
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In the following we shall construct a mask H of the form given in (2.1) such that
(2.3) holds and H satisfies the sum rules of order 4 with vectors {yo, y1,¥2, Y3}
By an appropriate orthogonal transform and the special structure of the mask H,
without loss of generality, we may assume

Yo = [1507050]5 Y1 = [05075[:170]7 Y2 = [.712,.733,0,0], and Ys = [070;:174;-775])

for some real numbers z;,j = 1,...,5. If the refinable function vector ¢ € C?,
then by (2.6), we have

1 0 00 Yo
0 0 =z 0f[¢(0) ¢'(0) ¢"(0)] = |y | [6(0) ¢'(0) ¢"(0)] = I. (2.7)
To I3 00 Y2

Therefore 21 # 0 and z3 # 0. In the following we also assume that x5 # 0.
It is easy to see that the mask H of the form given in (2.1) satisfies the sum rules
of order 1 if and only if

[1,0la =[1/2,0] and [1,0]c=1[1,0]. (2.8)
Under the condition (2.8), H satisfies the sum rules of order 2 if and only if
[21,0]b=[1/4,0] 4 [21/4,0]lw* and [1,0]d =[1/2,0]. (2.9)

Under the conditions (2.8) and (2.9), H satisfies the sum rules of order 3 if and
only if

[%2,23]a = [22/8 + 1/16,23/8] + [21/8,0lw* and [x2,z3]c = [22/4,23/4].
(2.10)

Finally, under the conditions (2.8), (2.9) and (2.10), H satisfies the sum rules of
order 4 if and only if

[4,25]b = [22/16 + 1/96,23/16] + [11/32 + 24/16, x5 /16]w*,

(2.11)
[SE4,.’L’5]d = [334/8,.%'5/8]
The equations (2.8) and (2.10) together are equivalent to
1
1o 0 0] . 1 0
a= [l%m l] + [E_l O] w and c= [_3& l] ) (2.12)
T6z; 8 83 izs 4

The equations (2.9) and (2.11) together are equivalent to

10 Lo
+ |:z146:c4 L:| w* and d= [ %.’m l:| . (2'13)
32z5 16

96175 16z5 " 8z5 8

1
b —_ 4:c1 0
- T1+6T120—2424 T3

Let w; ; denote the (i, j) entry of the orthogonal matrix w. By the first equation
of (2.3), one can obtain

{ ro = bwnam + 45w = @iy & \fafud —30). where

— 02 _ a2 1 1
co = 30z3 — 27 — 2x1wy 1 (22 + 5) — T2 — 7
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By the second equation of (2.3), we have

T =5 (wl’l + 4\ /wi, +6) ,

—(252aB—na—m)+4/(252af—na—n1)2—504(1+a2)(12682—y—Bn) (2.15)
252(14+a?) )

Ty =
T5 = axy + 0,

where

a = (30x1 —w1,1)/wi,2,

b= _wz11,2 ((xz + %)/55'1 +w1,1(:1:2 + %) + x3w21 + w2—1),

n=2(zs + § w12 + 2z3ws 0,

m =2(z2 + §)wi + 2z3we + 71,

7= (@ +3)? +af+ e - o
From the above expressions, we compute the parameters in the order z1,z2, 3, 4
and zz. For an orthogonal 2 x 2 matrix w, it is given by one parameter. Thus
there is one free parameter for the mask H given in (2.1) such that H satisfies the
discrete orthogonal condition (2.2) and the sum rules of order 4.

By choosing ¢ = 477/512 and

w = '111171 '111172 _ t —\/1—t2
T wen wap| T |—V1I—t2 —t ’

we obtain the orthogonal scaling function vector ¢ such that ¢ € W?2-56288 and ¢
has accuracy order 4 where ¢ is the normalized solution to the refinement equation
(1.1) with the mask H. Here and in the following we use the smoothness estimate
for scaling functions provided in [16]. Thus ¢ € C?-%6288. Moreover, the orthogonal
scaling function vector ¢ = (¢1, d2, d3, d4)” satisfies

¢1(—z) = ¢1(z), ¢2(—2) = $2(2), ¢3(-2) = —¢3(2),

da(—1x) = —s(x) VzeR
In [9], a C? scaling function vector supported on [—1,1] was constructed. Each
component of the scaling function vector is a piecewise polynomial. However its
multiplicity is 11 and some components of the refinable function vector lack sym-
metry.

In the following we shall derive the corresponding multiwavelets on the real line
from the mask H and ¢. Set G =0 for all k € Z\{-1,0,1} and set

_|¢e —ew _ [~4ea*(c7h)* 0 e ew
G—l - |:—f fw:| ’ GO - |: 0 _4fb*(d—1)*:| ’ Gl - |:f fw] 5 (216)

where the 2 x 2 matrices e and f are given by
e'e =[2L +8a*(c™')*c ta]™! and f*f =[2L +8b*(d"1)*d7'b]"t.  (2.17)
It is not difficult to verify that

> Hyy2jGy =) GryajHy =0 and Y GGy =201y  VjeL.
kEZ kEZ kEZ
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Define ¢ = (11,9, %3,14)T as follows:
Y(z) = G192z + 1) + Gog(22) + G14(2z — 1). (2.18)

Then for all z € R,

Y1(—x) = Pi(x), Yo(—x) =v2(x), vY3(—x)=—3(x), Ya(—x)=—1Ps(x),

/¢ Y(x + k)*dr =0 and /zb Wz + k) do = 61y VkelZ.

The reader is referred to Figures 2 and 3 in the Appendix for the graphs of ¢ and
).

In the rest of this section, we discuss the interpolation properties of ¢. Since ¢
is supported on [—~1,1] and ¢ € C*%288 we have ¢ (k) = 0 for all j = 0,1,2
and k € Z\{0}. From ¢(z) = H_1¢(2z + 1) + Ho¢(2z) + H1¢(2z — 1), we have
¢'(0) = 2Hy¢'(0). By the symmetry of ¢ and ¢'(0) = 2Hy¢'(0), from (2.7) and
(2.13), we have

$(0) = [1, —z2/23,0,0]", ¢'(0) =[0,0,1/x1, —z4/(x125)]" and

¢"(0) = [0,1/23,0,0]""
Assume that { fﬁ}kez, j = 0,1,2, are three arbitrary sequences. Let f be the
function defined by

f(.’l?) = Z(f,g + .’L'Qf,?)qﬁl (.’L’ + k) + $3f,?¢2($ + k) + $1f,%(]53($ + k), z€R

kEZ

Then we have
fR)y=fi, fk)=fi and f'(k)=fi Vkel.
For ¢ constructed above, the corresponding parameters z;,xs, z3 are

@y = (477 — V/1800393)/3072,  x» = (337987 — 159+/1800393) /3145728,

_ \/34615(+/1800393 — 477) — 41/1483904377950 — 970842870+/1800393
= 47185920 '

3. BIORTHOGONAL MULTIWAVELETS ON THE REAL LINE

In this section we shall construct biorthogonal scaling function vectors and biorthog-
onal multiwavelets with good approximation and smoothness properties.

3.1. The primal Hermite interpolatory mask with the sum rules of
order 4
In this section, we want to obtain a refinable function vector ¢ with mask H such
that

¢(k) = 6[1,0,0,0]", ¢'(k) = 6[0,0,1,0]", ¢"(k) = 6x[0,1,0,0]",
¢" (k) = 0x[0,0,0,1]7 VkeZ.
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That is, ¢ is a refinable Hermite interpolant. By Lemma 4.1 in [11], it is necessary
that

Hyy, = Opdiag(1,1/4,1/2,1/8) VkeZ

and H satisfies the sum rules of order 4 with
yOZ[laOJOaO]a n :[analao]a Y2 :[07]-’070]7 y3:[070a071]' (31)

We take the primal Hermite interpolatory mask H to be the following form:
Hy, =0for all k € Z\{-1,0,1} and

a —aw
-b bw

a aw

H = [ ] ., Hy=diag(1,1/4,1/2,1/8), and H; = [b bw] . (3.2)

where a,b and w are 2 x 2 matrices and w is nonsingular.
Let O,,,m € Z4 be defined in (2.4). It is easy to verify that H of the form given

in (3.2) satisfies the sum rules of order 4 with {yo,y1,¥2,ys} given in (3.1) if and
only if

%000 = yo; (3.3)
29100 — yoO1 = y1; (3.4)
4y200 — 2y101 + yoO2 = yo; (3.5)
8y30g — 4y201 + 2y102 — yoO3 = y3. (3.6)
One can obtain that (3.3) is equivalent to
[1,0]a =[1/2,0]. (3.7)
Under condition (3.7), (3.4) is equivalent to
[1,0]b = [1/4,0] + [1/4,0]w . (3.8)
Under conditions (3.7) and (3.8), (3.5) is equivalent to
[0,1]a = [1/16,1/8] +[1/8,0]w . (3.9)
Under conditions (3.7), (3.8) and (3.9), (3.6) is equivalent to
[0,1]b = [1/96,1/16] + [1/32,1/16)w . (3.10)
Combine (3.7) and (3.9) together, we have
a=| 12 0 4| 0 Oy (3.11)
| 1/16 1/8 1/8 0 ' '

Combine (3.8) and (3.10) together, we have

b= [11//946 1/016] + [11//32 1/016] w (3.12)



10 BIN HAN AND QINGTANG JIANG

3.2. The dual mask with the sum rules of order 4
In the following, we shall recall the coset by coset (CBC) algorithm proposed
in [11] to construct dual masks with arbitrary order of sum rules for any given
interpolatory mask. The reader is referred to [11] for a proof of the following result.

THEOREM 3.1. (Coset By Coset (CBC) Algorithm) Let H be a finitely supported
mask on Z with multiplicity v such that the matriz ), , Hy has a simple eigenvalue
2 and all the other eigenvalues in modulus less than 2. Suppose Hy is invertible
and Ha, =0 for all k € Z\{0}. Let n be any positive integer.

1.Let o be a nonzero 1xr row vector such that yoJo = 2o (Since Jo := Y ;o7 Hi,
by the assumption, Yo is unique up to a constant multiplication). Compute the 1 X r
row vectors Y, < m < n by the following recursive formula:

= (Y 2" Gudm) @™ L =), 0<m<n, (3.13)
0s<m

where the matrices J,,, are defined as follows

2—m
Jm :W E Hkkm, m€Z+;
kEZ

2.Choose an appropriate subset E of Z (e.g., any subset B of Z such that the
cardinality of E is no less than n) such that after setting Hy 12 = 0 for allk € Z\E,
the following linear system

Z (_1)m28_m3757m6m = fl]

m=0

I3
<
v,
Il
>
E
|
o

(3.14)

has at least one solution for {fIlJrzj : j € E} where the matrices O are defined
by

~ 1 ~
O = — > Hipar(1+2k)™, meZy;
' kEE

3.Construct the coset ofI;T at 0 as follows:

Hy; = [25ﬂr =Y Hypo Hy o) |(H )Y, G €
keE

Then the mask H is a dual mask of the primal mask H and H satisfies the sum
rules of order n.

From (3.13) and the special structure of the primal mask H in (3.2), we have
gO = [1160;070]: 371 = [0,0,Cl,CQ], g2 = [03504;070]: §3 = [0,0,65,66], (315)

where cqg, ¢1, c2, €3, ¢4, c5 and ¢g are uniquely determined by (3.13) and depend only
on w.
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By a simple computation, we take the dual mask to be the following form: H r =0
for all k € Z\{-1,0,1}, and

~ _la —a(wh)* ~  |2(l» — 2aa*)D 0
Hor= l—E bw 1) ] >, o= l 0 4(L, — 20b*)D |’

7 )" (3.16)
= li; E(wl)*] ’

where @ and b are 2 x 2 matrices and D := diag(1,4). It is easy to verify that H
and H satisfy the discrete biorthogonal relation (1.3). The reader is referred to [18]
for the parametric expressions of H, H satisfying (1.3) and the expressions of the
matrix filters for the multiwavelets. Now we want to construct H of the form given
in (3.16) such that H satisfies the sum rules of order 4.

With the expression of H given in (3.16), the equations in (3.14) with n = 4 in
Theorem 3.1 are equivalent to

[1,cola = [1/2,¢0/2]; (3.17)
[e1, b = [1/4, co/4] + [c1 /4, c2/ 4w (3.18)
[es,cala = [c3/8 +1/16,¢0/16 + c4/8] + [c1/8, ca]w™; (3.19)
[c5, ce]b = [c3/16 4+ 1/96,¢0/96 + c4/16] + [c1/32 + ¢5/16, ¢2/32 + c6/16]w*.
(3.20)

The equations (3.17) and (3.19) together are equivalent to

‘= [clg Zﬂ_l ([63/811{21/16 00/1%0*/'204/8] " [010/8 020/8] w*) 6

The equations (3.18) and (3.20) together are equivalent to

b= [Z; Z;] ([03/161{;11/96 00/9501%34/16] (3.22)

+ 61/4 02/4 w*
01/32+Cs/16 02/32+66/16 ’

With the matrices @ and b given in (3.21) and (3.22), by Theorem 3.1, Hy is given
in (3.16) and H satisfies the sum rules of order 4. The reader is referred to [11] for
more detail on the CBC algorithm.

For the primal and dual masks given above, with the choice of

—443/128 221
- 2
Y= 1 2571024 —1989/64] (3:23)
the corresponding primal scaling function vector ¢ € W3 %3298, ¢ has accuracy order
4, while the dual scaling function vector ¢ has accuracy order 4 and ¢ € W1-75833,
Therefore, ¢ € C® and ¢ € C'. See Figures 4 and 5 in the Appendix for the graphs
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of the scaling function vectors. For our choice w in (3.23), from (3.13), we have

- 1483 . 6900768640 .= 906791128
0™ 61828’ 1 91534081821’ 2 7 2880861726063’
o = 18820966561 = 22776774817267

3 366136327284 4 T 11149034233961442’

. 105623702245419799136 1403308886084382119774

5

T 42523380535070357423073°  ° T 122169608136842836876488720°

One can choose other nonsingular matrix w such that ¢ is more smooth while (E
is less smooth, or ¢ is less smooth while % is more smooth.

In the following we shall derive the multiwavelets and dual multiwavelets from
the masks H and H.

Set Gy =0 and Gy, = 0 for all k € Z\{—1,0,1} and set

e —ew e ew
Gflz [_f f’ll):|7 G1: f fw:|7
Go = 2ea* (2aa* — I,)"'D~! 0 (3.24)
° 0 fb*(20b* — L)' D!
and
~ _| e —ew )| = _|-4ea*D 0 ~ [e &w)*
Gl_l—f f('w_l)*‘| ’ GO—[ 0 —Sfb*D] ) Gl—l}" f(w_l)*] s (325)

where D := diag(1,4) and the matrices e, €, f and f satisfy the following relation:

e*¢ = 2 + 4a* (I — 2aa*) '@t and f*f = [21, + 4b* (I, — 2bb*) 1B
(3.26)

It is not difficult to verify that for all j € Z,

ZH}H_Qjéz = Zﬁk"'szz =0 and ZG/H_QJ'GZ = Zék+2jGZ = 2(5]'14.

keZ keZ keZ kez
Define v, ’(Z as follows:
Y =G_162z + 1) + Goop(2z) + G162z — 1)

and

=G 162z + 1) + God(2z) + G16(2z — 1).
Then for all k € Z,

/]R¢($)IZ($+k)* dz = /Rg(m)w(m—}-k)* dz=0 and /}Rw(m)zZ(m+k)* dz = 6i14.

Moreover, the first two components of 1, {bv are symmetric about the origin and the
other two components of 1,1 are antisymmetric about the origin.
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3.3. Cardinal Hermite Interpolation
In the rest of this section, we are interested in constructing a continuous dual
scaling function vector for the cardinal Hermite interpolant given in (1.4). A refin-
able function vector ¢ = (¢1,...,¢,)7 is said to be a refinable Hermite interpolant
ifg; eCrtforallj=1,...,r and

&V (k) =6p0j_ic1 Vi=1,...,r,1=0,...,r—1, k€Z.

i

Tt is easy to see that the cardinal Hermite interpolant given in (1.4) satisfies the
following refinement equation

¢=H_14(2-+1) + Hop(2) + Hi4(2- -1),

where the mask H is given by Hy = diag(1,1/2,1/4,1/8) and

64 140 0 —840 64 —140 0 840

1 | =22 —38 60 420 1 | 22 —38 —60 420
H,]_:— , le_

128 3 4 —14 —60 1281 3 -4 —14 60

-1/6 —-1/6 1 3 1/6 —1/6 -1 3

Therefore, ¢ is a refinable Hermite interpolant. Both this refinable Hermite inter-
polant and the piecewise Hermite cubics belong to the family of refinable Hermite
interpolants constructed in Theorems 4.2 and 4.3 of [11].

By employing the CBC algorithm in Theorem 3.1, we have

7o = [42,0,1,0], % =[0,10/3,0,1/45], % = [7/3,0,1/10,0],
75 = [0,7/55,0,1/990], s = [49/990,0,1/396,0],

7s = [0,3/1430,0,7/386100], s = [1/1716,0,1/30888,0],

7 = [0,1/49140,0, 1/5405400].

We find a dual scaling function vector ¢ of the cardinal Hermite interpolant in (1.4)
such that ¢ satisfies the following refinement equation

52 Z ﬁka(Q : _k)a

k=—4
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where the matrices H, , are given by

r 169991055281 0 24027875971 0
73383542784 513684799488
0 1030147673162020993 0 71818411656475751
i 218124545427505152 3271868181412577280
0 —
_22101993992813965 0 _ 1901125625545013 0
308085516140544 1232342064562176
0 __ 15490427520365900927 0 896579329192526443
L 18177045452292096 272655681784381440
[ _ 33683707 3674703181 27 0
500607936 32105299968 2096
90291809 5005522001 303577211 5303296415
i 339738624 9172942848 2474639360 2535683260416
1 =
3953600465 _ 34718219293 1131593 88734645931
169869312 1528823808 4194304 1267841630208
65634021050 _ 745486058039 _ 14900207793 _ 489554719329
169869312 1528823808 1237319680 422613876736
r _ 3337913993 20345104379 5266413727 76450861
36691771392 513684799488 1027369598976 770527199232
_ 5955365400962245 120271049835895153  _ 230213273223029917 794944485478807
i 7394052387373056 436249090855010304 1362490908550103040  3271868181412577280
2 —
7115204694626665 _ 7384072244519443 1166055435816953 _ _26679945678437
616171032281088 1232342064562176 2464684129124352 1848513096843264
394243385262887461 _ 10558051260308115955  11269664992509816943 _ 136098273547007401
1232342064562176 72708181809168384 727081818091683840 545311363568762880
4875 2625 _ 1125 125
1194304 4194304 8388608 8388608
183 _ 2411 _ 123 139
i 8192 524288 32768 1048576
3 =
2255 _ 3533 21 245 ’
1096 1096 512 65536
6539 _ 4549  _ 181540107 _ 9053017641
L To24 512 618650840 211306938368
r 375
67108864 0 0 0
332499 _ 134091 16113 0
i 8388608 8388608 8388608
4 =
674875 _ 272531 16385 15
1048576 1048576 524288 1048576
21109340991791 _ 251733163699750 302423546016659 _ 170360752669
L 3380911013888 99736874909606  097368749006960 498684374548480

and Hy, = diag(l,—1,1,—1)fI_kdiag(1,—1,1,—1) for k = —4,-3,-2,—-1. Tt is
easy to check that H satisfies the sum rules of order 8 and ¢ € W1-13762_ Therefore,
a has accuracy order 8 and qz~5 is a continuous dual scaling function vector of the
cardinal Hermite interpolant ¢ in (1.4). See Figure 1 for the graphs of ¢ and <;~5

4. ORTHOGONAL AND BIORTHOGONAL MULTIGENERATORS
ON [0,1]

In this section we construct multigenerators on [0, 1] based on the scaling func-

tion vectors constructed in the preceding sections. Since the refinable function

vectors ¢ are supported on [—1, 1], the refinable function vectors (multigenerators)

on [0, 1] are constructed by just restricting ¢; s to [0, 1] and using a (bi)orthogonal

procedure. Here for a function vector ¢, denote
S = 2P°¢(2 - —k), jELi ke

Suppose ¢ and 5 are primal and dual scaling function vectors on the real line
satisfying

¢(z) = H_14(2x + 1) + Hog(2z) + H14(2z — 1) (4.1)

I
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1 5
0.5 0
0 -5
-1 -0.5 (0] 0.5 1 -4 -2 [¢] 2
0.5 50
0 \/\ o
-0.5 -50
-1 -0.5 0 0.5 1 -4 -2 0 2
0.03 500
0.02
O k.
0.01
Ol -500
110 -0.5 (0] 0.5 1 —4X 10* -2 o] 2
2 1
0 0
-2 -1
-1 -0.5 0 0.5 1 -4 -2 0 2
FIG. 1. The cardinal Hermite interpolant (the left column) and its dual scaling function
vector (the right column)
and
#(z) = H 142z + 1) + Hop(2z) + Hi¢(2z — 1) (4.2)

for some refinement masks {Hy}}__,, {lika},lc:_1 such that the refinable function

vectors ¢ and ¢ satisfy J qb(:c)a(x + k)*dx = 0rIyxa for all k € Z. For simplicity,
in this section, we assume

Sop(—z) = ¢(z), Sop(—z) = p(z) Vo € R, where Sy := [IZ B 12] . (43)

In other words, the first two components of ¢ and 5 are symmetric about the origin
and the other two components of ¢ and ¢ are antisymmetric about the origin.
First we have the following lemma.

LEMMA 4.1. Let ¢ and ¢ in L2(R) be given in (4.1) and (4.2) such that the
biorthogonal relation (1.2) holds. Denote C := fol o(x)p(x)* dz. If 2 is not the

eigenvalue of the matriz Hy ® Ho where ® denotes the Kronecker product of two
matrices, then the matriz C is uniquely determined by the following relation:

2C = HyCH{ + H,H;. (4.4)
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_ PfOOf- Since ¢(x)|j0,1] = Ho#(2z)|jo,1j+H1¢(22—1) and $($)|[0,1] = ﬁ0$(2$)|[0,1]+
Hi¢(2z — 1), we obtain

20 =2 /0 3(2)d(x)* dz

=2 /1 [Hod(2z) + Hip(2x — 1)] [Hop(2z) + Hy (22 — 1)]" dz
0

= ZHO/ #(22)$(2z)* dzH + 2H1/ b2z — 1)p(2z — 1)* dzH;

—HO/ bz * dzH| +H1/ b(z)p(z)* deH;
= H,CH; + H,H.
Thus
(25 — Hy ® Hp)vec(C) = vec(H, HY).
Here for a matrix B = (Bu,... , B,) with B; being its jth column, vec(B) denotes

the column vector (Bf,...,BI)T. Therefore, C is uniquely determined by (4.4).
This completes the proof. MW

For the purpose of graphing the biorthogonal multiwavelet on the interval, we
shall adjust the refinable function vectors so that they are balanced and can be
plotted together at a comparable scale. That is, we shall consider the primal
scaling function vector ¢"®V := diag(1,2%,25,2!?)¢ and its dual scaling func-
tion vector ¢"°¥ := diag(1,27%,275 2~ 12)¢ with ¢, ¢ constructed in Sections
3.1 and 3.2. For the scaling functlon vectors ¢™% = diag(1,25,25,2'2)¢ and
" = diag(1,275,27°,2712)¢ with ¢, ¢ constructed in Sections 3.1 and 3.2,
the matrix C is

1/2 0 .58592278017697 —.30202156474400

C = 0 1/2 .73688152900109 1.22479094459656
.23970858883924 .09038744399097 1/2 0
—.12013864250355 .14687265801947 0 1/2

Now let us give the main theorem of this section.

THEOREM 4.1. Let ¢ and qS be the scaling function vectors given in (4 ) and
(4.2) such that the biorthogonal relation (1.2) holds. Assume that C := fo Yo(x)* dx
is invertible. For j € Z ., define

05 (z) := CT ' B0 (@)0,1), 65 () == Sodf (1 — x) = SoCi ' Sodjj 291 (%) [0,11
¢f($) = Cf1¢[j,0] ($)|[0,1]; ¢f($) = So‘f’f(l —z)= Socf150¢[j,2i]($)|[0,1];
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where 01,51 are two matrices satisfying 510{‘ = C, and Sy is defined in (4.3).

Then

\/§¢f = C;1H001¢f+1 + C;1H1¢[j+1,1]7

ﬁ‘bf = SOC{IH—1¢[]'+1,2J‘+1—1] + 500f1H001So¢f+1,

\/555 = 5{1ﬁ051$§+1 + 5;1ﬁ1$[j+1,1]7

\/54? = Soéflff—150$[j+1,2j+1,1] + 505f1ﬁ05150$f+1_
Denote

@ ={¢; Syup k=1,...,2 - 1; ¢’}

and

Then ®; and 5]- are biorthogonal to each other with
®; =H;®;,1 and ®; = H,; ®;1 with the (2912 + 4)

H; given by

—C;1H001 C;1H1
H 1 Hy H
H \/5 Hfl Ho H1
=5 |
H_, Hj,
and
_51_1H051 Cl_lHl
H , Hy H
]ﬁ[ \/§ H_, Hy H;
=%
H 1 Hy

respect to the L2([0,1]) norm,
x (2913 + 4) matrices H; and

H,
SoCT H_1Sy SoCy'HoC1S0 ]

505;11?_150 Soéflﬁoélso_

Moreover, if ¢ and (;~5 have accuracy order k and k respectively, then ®; and 51-
can reproduce all polynomials on [0, 1] of degrees up to k—1 and k — 1, respectively.

Proof. It suffices to prove that fol gf ()¢} (2)* dz = I1. By a simple computa-

tion, we have

/ FE (2)p ()" de = 290} / 3(x)
0 0
—C; / H2)o(z)

The other statements can be easily verified. H

¢(2z)* du(Cy) ™

*do(Cr)~t = I,
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In Theorem 4.1, if we choose Cy = Iy, then the boundary multigenerators ¢7, ¢5*

are just the restrictions of ¢p; o}, #y;,24) to [0, 1], respectively. The choices of C1, Cy
provide some flexibility for the construction of the boundary multigenerators. Here
we would like to choose C1,Cy such that three components of both ¢} and ¢f are

continuous on R.

For the scaling function vectors ¢ and 5 constructed in Sections 3.1 and 3.2, ®;
and ® ;j defined in Theorem 4.1 by Cy = I and Ci=C reproduce all polynomials on
[0,1] of degrees up to three on [0, 1]. Furthermore, ®; has the Hermite interpolation
properties at knots k/27,0 < k < 27:

[(67) (65)" (#7) (#1)"] (55
() (¢)" (¢5)" (&)™) (

k

57) = Ok Jj

k

g) =021 Jj

k

Vk=0,...,2;

Vk=0,...,2;

[(BGm) Bpm)" (Pum) @Gm)"] (55) = Om—rJ;

27

Vm=1,...,2 —1,k=0,...,2%,

where J; := diag(27/2,259/2 233/2 27i/2) since our primal scaling function vec-
tor is ¢"e® = diag(1,2%,25, 212)¢ and its dual scaling function vector is ¢"ev =
diag(1,275,275,2712)¢ with ¢, ¢ constructed in Sections 3.1 and 3.2.

Similarly, for the orthogonal case, we have the following theorem.

THEOREM 4.2. Assume that ¢ is an orthogonal scaling function vector satisfying
(4.1). Suppose C := fol d(z)p(x)* dz is invertible. For j € Z ., define

05 (@) := O ' dpj0 (@)|o,1), 95 (2) := S0} (1 — x) = SoCy ' Sodj291(2)|[0,11>

where Cy is an invertible matriz satisfying C1Cy = C. Then

\/§¢f = CI_IH001¢§I+1 + 01_1H1¢[j+1,1]7
\/§¢f = Socl_lHOC&So(ﬁﬁ_l + SOCf1H7150¢[j+1,2J+1_1],

where Sq is defined in (4.3). Denote ®; := {¢%; ¢pu,k =1,...,27 = 1; ¢ft}.
Then elements in ®; are orthonormal to each other with respect to the L*([0,1])
norm, and ®; = H; ®;,1 with the (271! + 4) x (2913 + 4) matriz H; given by

[CT'H,C, CTYH,y
H_,

Hy

H,y
H_{ Hy

H;

H_, Hy

H,
5001_le150 SoCl_lHoclso_

Moreover, if ¢ has accuracy order k, then ®; can reproduce all polynomials on [0,1]

of degrees up to k — 1.

For the orthogonal scaling function vector ¢ constructed in Section 2, C' is given
below. The matrix C; is not unique. We choose a Cy such that the second, third
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and fourth components of ¢f are continuous on R.

1/2 0 —.43677970083296 .17535239421305
C = 0 1/2 .23763810755456 .38168609250669
—.43677970083296 .23763810755456 1/2 0 ’
17535239421305 .38168609250669 0 1/2
.14574297280612 —.55915098774268 .39502847421501  .10030784288073
o = 17671071874332  .43276809059487  .51325396998223  .13437062157172
0 .69442476791991 —.13012323474392 .02902043209824
0 .13329254635566  .67450586007773 —.16515126946486

5. ORTHOGONAL AND BIORTHOGONAL MULTIWAVELETS
ON [0,1]
In this section, we construct orthogonal and biorthogonal multiwavelets on [0, 1]
from the orthogonal and biorthogonal multiwavelets on the real line constructed in
Sections 2 and 3.

5.1. Orthogonal multiwavelets on [0, 1]
Let the masks H and G be given in (2.1) and (2.16) with the matrices a, b, ¢ and
d given in (2.12) and (2.13). Then we have the following result.

THEOREM 5.1. Let B be the 2 x 2 matriz given by

1
B'B = I + 5[w*, LJH; (H; )"0 Hy Hy[w*, B]*
Define the 2 X 1 function vectors zb]L and zbJB as follows:

V2] = Bidfy + Badjpay  and  4f(z) =95 (1 - a),
where By := —Blw*, L] Hy (H;')*(C7)* and By := Blw*,I,). Let

U= {055 Yy k=1...,2 = 1; ¢j},
where

P(x) = G102z + 1) + Goop(2z) + G19(2z — 1).

Let ®; be given in Theorem 4.2. Then {¥;, ®;} is an orthogonal system, span{®;, ¥;} =
span{®;1} and ¥; = G; P11 where the 2972 x (2913 + 4) matriz G; is given by

B, B, -
G_1 Gy Gy

\/i G_1 Gy Gy

2 :

G_1 Go Gy
BzSg Bl_
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where Sy is defined in (4.3).

Proof. Tt is equivalent to verifying the following equalities.
1 1
| wh@st@ =0, [ vh@)yu ) do=o,
0 0

1 1
| vty ds=o, [ sh@i}e" do= L.
0 0
From Theorem 4.2, the above equalities are equivalent to

BiCYHG(CiY)* + B2 Hy (C11)* =0, B,HZ, =0,
BQth = 0, _BlBik + BQB; = 2_[2

which can be easily verified by the assumptions. H

5.2. Biorthogonal multiwavelets on [0, 1]

In the following, we shall construct biorthogonal multiwavelets on [0, 1] from the
biorthogonal multiwavelets on the real line constructed in Sections 3.1 and 3.2. The
method used in [6] can be employed to obtain a multiwavelet basis on the interval
from the biorthogonal multiwavelet constructed in Section 3.3.

Let the masks H,G and H,G be given in (3.2), (3.24), (3.16) and (3.25), respec-
tively. Then we have the following result.

THEOREM 5.2. Let B and B be 2 x 2 matrices such that
~ 1 v I7—1\ % —1\* 77— * * -1
B'B = b + 3lw™", LIH; (H; )" (€)' Hy  Haw*, L)'

Define the boundary wavelets 17, JJL and ¢ f, @ZJR as follows:

V2J = Big}yy + Badiray  and  Yf(z) =yl (1- 1),
Vogt = Bigk, + Badpjpr,y and  9f(2) = 4F(1 - 2),

where
By = —Blw ', LIH{ (Hg )" (CTY)" and  By:=Blw ', b,
B, := —Blw*, LIH; (HyY)*(C7Y)*  and By := Blw*, L.
Let
U=k g, k=1,...,2 —1; ¢F},
U= {055 Y, k=1...,27 =1 ¢},
where

(z) :=G 162z + 1) + Goo(2z) + G192z + 1),

(]
d(z) = G 162z + 1) + Go(22) + G162z + 1).
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Let ®; and <AI;]- be given in Theorem 4.1. Then {®;,¥;} and {<I>J,\Il } form a
biorthogonal system, ¥; = G;®;41 and 1I! = G <I>J+1 where G; takes the form in
(5.1) and the 292 x (2773 4 4) matriz G; is given by

where Sy is defined in (4.3).

The matrices B and B in both Theorem 5.1 and Theorem 5.2 are used to obtain
boundary wavelets on the interval [0, 1]. Though they are not uniquely determined
by the relation in Theorems 5.1 and 5.2, different choices of B and B will not
affect the symmetry and smoothness of the boundary wavelets. In this paper we
are choosing such matrices B and B such that some of the corresponding boundary
wavelets are continuous.

The orthogonal and biorthogonal multiwavelet bases characterize the Sobolev
norm || - [|ws(jo,17), where W#([0, 1]) is the restriction of W* to [0, 1] For the multi-
wavelets on [0, 1] constructed in the above theorem based on ¢, 1, qS 1/1 constructed
in the preceding section, we have (see [2], [5], [6]) the following theorem.

THEOREM 5.3. For any f € W*([0,1]),

(S ]0) 0,1 ||e2(AJO) + Z I(f,® )o 1]||e2(vJ

J=jo
N { 1oy, s € [0,3.63208),

I = (0,179 € (—1.75833,0),

where A; = {0,1,2,...,27},7; = {27 + 1,...,29%1} and for s < 0, W*([0,1])
means (W=%([0,1]))*, the dual of W=2([0,1]) with respect to the L?([0,1]) norm.

For the orthogonal multiwavelets on [0, 1], we have the similar result to that in
Theorem 5.3, and details are not provided here.
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6. APPENDIX: NUMERICAL RESULTS AND FIGURES

The matrix filters H;,G;,j = —1,0,1 for the orthogonal scaling function vector
and multiwavelet are given by (2.1) and (2.16) with
e 1/2 0
© | —.45468071806728 —.26628159762860 | ’

[ —.65516955124945 —.09084524817293
| —.15478756558925 —.40706090807325 |’

o 1 0 g 1/2 0
~ | .90936143613457 1/4 |’ ~ | —1.10713319281209 1/4 |’

w = % Y, 23642611454
| _ /34615 477 ’
| 262144 512
[ —.08817966722265 —.02537874177881
| .18838734274447 —.65456094462631 |’

fe [ —.02396881534188 —.00902548880016]

| -21498642874753 —.57093528403364

The matrices By, B for the boundary multiwavelets are not unique. Here we choose
Bi, By such that the second components ¢J-L are continuous on R.

B, = 1.00000000001851 —.09411319357463 —.13884178466033 —.96673409066909
e 0 —.78022635514195 —.51400379675387 .34983279839230 |’

B, = [—.04654898832974 .12836909088437 —.09001381625714 —.10267884247414] ‘
—.26830917494375 .65600469438857 —.48834736449517 —.51366216914375

The matrix filters H;, G, INI]-, C~¥j,j = —1,0, 1 for the primal scaling function ¢ :=

diag(1,28,25 2'2)¢. the dual scaling function ¢"e® := diag(1,25,25,2!2)s), the

wavelet function 9% := diag(1,27%,27%,2712)$, and the dual wavelet function

Prev = diag(1,2-6,275,2712)e) with ¢, ¢, 1), ¥ constructed in Sections 3.1 and 3.2

are given by the expressions in (3.2), (3.24), (3.16) and (3.25) with

1/2 0 p_ [ 1054073787 —512/3787
| 5932/3787 —4405/30296 |’ ~ | 9209728/2510781 —386564/836927 |’

[ —.07085112284136 .48497457820580
| .37186639437622 .18407568883484 |’

ISk
Il

- [.03043186232144 .51210505841283
[ .12868875149091 —.28051043186050 |’
5= [ —.17651325291088 —1.99059580472762
T | .04562063640325  .44445743874147 |’
]7_ [ —.44326459211764 —3.09657013747741
| .19860552584308  1.37397727410741 |’

e = diag(4/15,32/27),  f = diag(16/125,8/25),
[ —443/2048  221/4096 ]

YT 25/256  —1989/4096
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The matrices C; and 51 are not unigue. We choose 01,5'1 such that the second,
third and fourth components of ¢§“ , ¢f and the second and fourth components of

(¢7)', (<$JL )! are continuous on R.

1 .12213868011413 23.55798401371176 2.20138413721209
0, = 0 .30982146776962 0 .69017853223038

0 .59992163085174 16 4.70871839801238 |’

0 .68497680513495 0 —.68497680513495

.05203894626657 —.30431512234326 .00782769758447 .13660720156594
—.02045938821446 1.73409203069902 —.00307750089492 —.05398449308234
0 .09038744399097  .00126034979518  .09038744399097
0 .65066966768202 —.00106462060293 —.07928205659789

Ci =

The matrices Bi, Bs, ﬁl, §2 for the boundary multiwavelets are not unique. We
choose By, Bs, By, B> such that the second components of @bf,iﬁf are continuous
on R.

B — [6.96195979650562 .08108497396158 —82.00486879511919 1.39090847840064
e i 0 .07283055384749 —1.38478266392370 —.68720021815292 |’

B, — [.21559817693860 —.24145277751466 —.07021511127282 .12888104774905
> | .17151328069360 —.19673018205524 —.05631172839761 .10478534354032 |’

B = [.14363771541799 —.07889677818832 —.01080299159265 .05903520751900
T 0 9.82435846789804 .01573952134476 —.49420187843209 |’
B, = [ —.00946383319422 —.08794190565746 .09362091265444 .19992881379324
2 | —.48279739269897 —2.87774612632776 3.90613826483934 6.71176643508005 |

In the following we provide graphs of multigenerators ¢%, dp,1j, oL, 5[271], and

multiwavelets 1%, Y17, V5, 2 1jwith level j = 2.
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FIG. 2. Orthonormal boundary multigenerator ¢% (the left column) and orthonormal mid
multigenerator ¢z 1] (the right column)
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FIG. 3. Orthonormal boundary multiwavelet ¥4 (the first two in the left column) and

orthonormal mid multiwavelet 93 1] (the others)
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erator ¢y 17 (the right column)
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FIG. 5. Primal boundary multiwavelet 1% (the first two in the left column) and primal
mid multiwavelet %y5 1] (the others)
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FIG. 6. Dual boundary multigenerator ¢ (the left column) and dual mid multigenerator
#[2,1] (the right column)
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FIG. 7. Dual boundary multiwavelet 1 (the first two in the left column) and dual mid

multiwavelet 1’5[2,1] (the others)
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