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Orthogonal and Biorthogonal FIR Hexagonal Filter
Banks with Sixfold Symmetry

Qingtang Jiang

Abstract�Recently hexagonal image processing has attracted
attention. The hexagonal lattice has several advantages in com-
parison with the rectangular lattice, the conventionally used
lattice for image sampling and processing. For example, a
hexagonal lattice needs fewer sampling points; it has better
consistent connectivity; it has higher symmetry; its structure is
plausible to human vision systems. The multiresolution analysis
method has been used for hexagonal image processing. Since the
hexagonal lattice has high degree of symmetry, it is desirable that
the hexagonal �lter banks designed for multiresolution hexagonal
image processing also have high order of symmetry which is
pertinent to the symmetry structure of the hexagonal lattice. The
orthogonal or prefect reconstruction (PR) hexagonal �lter banks
which are available in the literature have only 3-fold symmetry.
In this paper we investigate the construction of orthogonal
and PR FIR hexagonal �lter banks with 6-fold symmetry. We
obtain block structures of 7-size re�nement (7-channel 2-D)
orthogonal and PR FIR hexagonal �lter banks with 6-fold
rotational symmetry.

√
7-re�nement orthogonal and biorthogonal

wavelets based on these block structures are constructed. In
this paper, we also consider FIR hexagonal �lter banks with
axial (line) symmetry, and we present a block structure of FIR
hexagonal �lter banks with pseudo 6-fold axial symmetry.

Index Terms�Hexagonal lattice, hexagonal image, �lter bank
with 6-fold symmetry, orthogonal hexagonal �lter bank, biorthog-
onal hexagonal �lter bank,

√
7-re�nement wavelet, 7-size re�ne-

ment multiresolution decomposition/reconstruction.

EDICS Category: MRP-FBNK

I. INTRODUCTION

Image processing is commonly carried out on the rectangu-
lar lattice since images are conventionally sampled on such a
lattice. Image processing on the hexagonal lattice has attracted
attention recently. See a square and hexagonal lattices in the
left and right parts of Fig. 1. The hexagonal lattice has several
advantages in comparison with the rectangular lattice. For
example, a hexagonal lattice needs fewer sampling points; it
has better consistent connectivity; it has higher symmetry; its
structure is plausible to human vision systems [1]-[8]. Thus,
the hexagonal lattice has been used in many areas such as
edge detection [9], [10] and pattern recognition [11]-[15]. It
has also been used in geoscience [16]-[19].

When a hexagonal lattice L is used for image sampling,
each node (site) on L represents a small hexagonal cell, called
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Fig. 1. Square lattice (left) and hexagonal lattice (right)

the elementary cell. A node b and the hexagonal elementary
cell (shadowed) it represents are shown in Fig. 2. All the
hexagonal elementary cells form a hexagonal tessellation of
the plane (see Fig. 2). We call this tessellation to be the
hexagonal tessellation associated with L.

b

Fig. 2. Hexagonal lattice and associated hexagonal tessellation

It was shown in [20], [21] that a hexagonal lattice allows
three interesting re�nements (subdivisions): 4-size (4-branch),
3-size (3-branch) and 7-size (7-branch) re�nements. As an ex-
ample, we describe 7-size re�nement (

√
7-re�nement) below.

In the left part of Fig. 3, the nodes of the unit regular hexagonal
lattice G are denoted by black dots • and the nodes with circles
◦ form a new lattice, which is called the 7-size (7-branch)
sublattice of G here and it is denoted by G7. G7 is also a regular
hexagonal lattice. From G to G7, the nodes are reduced by a
factor 1

7 . So G7 is a coarse lattice of G, and G is a re�nement
of G7. Since G7 is also a regular hexagonal lattice, we can
repeat the same procedure to G7, and we then have a high-
order (coarse) regular hexagonal lattice with fewer nodes than
G7. Repeating this procedure, we have a set of lattices with
fewer and fewer nodes. This set of lattices form a �pyramid�
or �tree� where a high-order lattice has fewer nodes than its
predecessor by a factor of 1

7 . The hexagonal tessellation (with
thick hexagon edges) associated with G7 is shown in the right
part of Fig. 3, where the hexagonal tessellation (with thin
hexagon edges) associated with G is also provided to give
us a picture on how these two tessellations are related to each
other. The subdivisions associated with 4-size, 3-size and 7-
size re�nements are called resp. the dyadic (1-to-4 split),

√
3

and
√

7 re�nements in the area of Computer Aided Geometry
Design [22]-[29], while they are called aperture 4, aperture 3
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Fig. 3. Hexagonal lattice G and its 7-size sublattice G7 (left) and
hexagonal tessellations associated with G7 and G (right)

and aperture 7 (re�nements) in discrete global grid systems in
[19].

The re�nements of the hexagonal lattice allow the multires-
olution (multiscale) analysis method to be used to process
hexagonally sampled data. The 4-size re�nement is the most
commonly used re�nement for multiresolution image process-
ing, see e.g. [11], [12], [30] for multiresolution hexagonal
image processing applications and [30]-[36] for the construc-
tion of hexagonal �lter banks. The 3-size re�nement is most
appealing among these re�nements since the 3-size re�nement
generates more resolutions and, hence, gives applications
more resolutions from which to choose. Compared with 4-
size and 3-size re�nements, the 7-size re�nement is not so
appealing for multiresolution processing since this re�nement
results in a reduction in resolution by a factor 7 which is
coarse. However, observe from the right picture of Fig. 3
that the hexagonal elementary cells (with thin hexagon edges)
associated with G can be aggregated in groups of seven to
form objects which are almost the coarse-resolution hexagonal
cells (with thick hexagon edges) associated with G7, while
neither G4 nor G3 has such a property. Therefore, the 7-
size re�nement was widely used in planar multiresolution and
hexagon-based grid, see [19]. On the other hand, though the 7-
size re�nement multiresolution image processing is considered
(see e.g. [37]), the 7-tap orthogonal �lter banks in [38] are
the only 7-size re�nement orthogonal/biorthogonal �lter banks
available in the literature. These �lters were constructed for
the purpose of image coding, and their associated wavelets
are not continuous, which means that those �lters are not
suitable for multiresolution image processing since certain
smoothness of wavelets is required when the �lters are used
for multiresolution image processing applications. Therefore,
the construction/design of 7-size re�nement hexagonal �lter
banks deserves our investigation.

A regular hexagonal lattice has 6-fold symmetry, while a
square lattice has 4-fold symmetry. The feature of higher
symmetry for the hexagonal lattice makes image processing
more accurate, see [7]. The symmetry of hexagonal �lter
banks which is closely related to the symmetry structure of
the hexagonal lattice is also important for image processing.
For example, the symmetry of the hexagonal �lter banks in
[30] leads to simpler algorithms and ef�cient computations,
see [30]. Therefore, for the hexagonal lattice, it is desirable
that the �lter banks along it also have 6-fold symmetry.
The lowpass �lters considered in [30]-[32] do have 6-fold
symmetry, but the �nite impulse response (FIR) �lter banks

constructed in these papers are not perfect reconstruction �lter
banks. The �lter banks constructed in [33]-[36] are orthogonal
or perfect reconstruction �lter banks, but they have only 3-fold
symmetry. In our study of 7-size re�nement �lter banks, we
�nd that it is possible to construct 7-size re�nement orthogonal
FIR hexagonal �lter banks with 6-fold symmetry, while one
can check directly that it is impossible to construct 6-fold
symmetric 4-size or 3-size re�nement orthogonal FIR �lter
banks with reasonable large �lter length. The main objective
of this paper is to construct 7-size re�nement orthogonal and
biorthogonal FIR hexagonal �lter banks with 6-fold symmetry.

This paper is organized as follows. In Section II, we provide
7-size re�nement multiresolution decomposition and recon-
struction algorithms and some basic results on the orthogonal-
ity/biorthogonality of 7-size re�nement �lter banks. In Section
III, we present a block structure of FIR �lter banks with 6-
fold rotational symmetry. The construction of orthogonal and
biorthogonal FIR �lter banks of 6-fold rotational symmetry
are discussed in Sections IV and V, resp. Finally, in Section
VI, we consider FIR �lter banks with 6-fold axial symmetry.
We provide a condition for a �lter bank to have 6-fold axial
symmetry. We �nd it is hard to obtain a block structure
of orthogonal or biorthogonal �lter banks with 6-fold axial
symmetry. Because of this, we consider in Section VI another
type of symmetry, called pseudo 6-fold axial symmetry, and
obtain a block structure of FIR �lter banks with such a
symmetry.

In this paper we use the following notations. For a positive
integer n, In denotes the n× n identity matrix. For a matrix
M , we use M∗ to denote its conjugate transpose MT , and
for a nonsingular matrix M , M−T denotes (M−1)T . We
use bold-faced letters such as x, ω to denote elements of
IR2. x · y denotes the dot (inner) product xT y of x =
[x1, x2]T ,y = [y1, y2]T ∈ IR2. For x = [x1, x2]T ∈ IR2,
denote dx = dx1dx2, and for a function f on IR2, f̂ denotes
its Fourier transform: f̂(ω) =

∫
IR2 f(x)e−ix·ωdx.

II. MULTIRESOLUTION IMAGE PROCESSING WITH 7-SIZE
REFINEMENT FILTER BANKS

In this section, we provide 7-size re�nement multiresolution
decomposition and reconstruction algorithms and present some
basic results on the orthogonality/biorthogonality of 7-size
re�nement �lter banks.

A. 7-size re�nement multiresolution algorithms
Recall that G7 is the coarse lattice of G after one 7-size

re�nement iteration, where G is the unit regular hexagonal
lattice given by

G = {n1v1 + n2v2 : (n1, n2) ∈ Z2},
where v1 = [1, 0]T , v2 = [− 1

2 ,
√

3
2 ]T . In general, let G7n

denote the coarse lattice after n steps of 7-size re�nement
iterations. For an (input) image sampled on G, the nodes
of G7n can be considered as the sampling points of the
subsampled image when the multiresolution decomposition
algorithm is applied n times to the input image. To provide
the multiresolution image decomposition and reconstruction
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algorithms, we need to choose a 2 × 2 matrix N , called the
dilation matrix, such that it maps the hexagonal lattice G7j−1

onto its coarse lattice G7j , namely, NG7j−1 = G7j , where
NG7j−1 = {Ng : g ∈ G7j−1}. One may choose N to be a
matrix that maps A = {v1,v2,v1 +v2,−v1,−v2,−v1−v2}
onto B = {V1,V2,V1+V2,−V1,−V2,−V1−V2}, where
V1 = 2v1 − v2,V2 = v1 + 3v2. (A and B are subsets of
G and G7 resp. with their elements forming hexagons.) There
are several choices for such a matrix N . For example, we may
choose N to be one of the matrices:

N1 =

[
5
2

√
3

2

−
√

3
2

5
2

]
, N2 =

[
− 1

2
3
√

3
2

3
√

3
2

1
2

]
. (1)

As sets, both N1G7j−1 and N2G7j−1 are the coarse lattice
G7j . But considering the elements of N1G7j−1 and N2G7j−1 ,
one observes that N1G7j−1 keeps the orientation but is rotated
clockwise about 19.1◦ with respect to the axes of G7j−1 (see
the left part of Fig. 4, where a1, · · · , f1 are the images of
a, · · · , f with N1), while the axes of N2G7j−1 are rotated and
re�ected from those of G7j−1 (see the right part of Fig. 4,
where a2, · · · , f2 are the images of a, · · · , f with N2). One
also observes that the axes of (N2)2G7j−1 are the same as
those of G7j−1 since (N2)2 is 7I2. In [39], the subsampling
with N1 (N2 resp.) is called the spiraling (toggling resp.)
subsampling. For 7-size re�nement multiresolution hexagonal
image processing, one chooses one of such dilation matrices
(and then, keeps using this matrix during the procedure of
multiresolution processing). It should be up to one's speci�c
application to use N1, N2 or another dilation matrix.
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Fig. 4. Hexagonal lattice with spiraling re�nement (left) and
hexagonal lattice with toggling re�nement (right)

For a sequence {Hg}g∈G of real numbers associated with
G, let H(ω) denote the �lter with its impulse response coef�-
cients being Hg (here a factor 1/7 is added for convenience):
H(ω) = (1/7)

∑
g∈G Hge−ig·ω . Such a �lter is called a

hexagonal �lter. For 7-size re�nement multiresolution image
processing, a lowpass hexagonal �lter P (ω) has 6 associated
highpass �lters Q(1)(ω), · · · , Q(6)(ω).

Let N be a dilation matrix which maps G7j−1 onto G7j .
If we use one �lter bank {P,Q(1), · · · , Q(6)} as the analysis
�lter bank, and use another �lter bank {P̃ , Q̃(1), · · · , Q̃(6)}
as the synthesis �lter bank, then the multiresolution (subband)
decomposition algorithm with dilation matrix N for an input
image Cg,0,g ∈ G sampled on G is

{
Ch,j+1 = (1/

√
7)

∑
g∈G Pg−NhCg,j ,

D
(`)
h,j+1 = (1/

√
7)

∑
g∈G Q

(`)
g−NhCg,j ,

with ` = 1, · · · , 6, h ∈ G for j = 0, 1, · · · , J − 1, where J is
a positive integer; and the reconstruction algorithm is

Ĉg,j =
1√
7
(
∑

h∈G
P̃g−NhĈh,j+1 +

∑

1≤`≤6

∑

h∈G
Q̃

(`)
g−NhD

(`)
h,j+1)

for j = J − 1, J − 2, · · · , 0, where Ĉh,J = Ch,J . If
Ĉg,j = Cg,j , 0 ≤ j ≤ J − 1 for any input image
Cg,0,g ∈ G, then we say that {P, Q(1), · · · , Q(6)} and
{P̃ , Q̃(1), · · · , Q̃(6)} are perfect reconstruction �lter banks
(PR), or that they are biorthogonal �lter banks. We say a �lter
bank {P,Q(1), · · · , Q(6)} to be orthogonal if it is biorthogonal
to itself.

Assume that {P, Q(1), · · · , Q(6)} and {P̃ , Q̃(1), · · · , Q̃(6)}
are two FIR hexagonal �lter banks. Let Φ and Φ̃ be the
scaling functions (with dilation matrix N ) associated with
lowpass �lters P (ω) and P̃ (ω) resp., namely, Φ, Φ̃ satisfy
the re�nement (two-scale) equations:

Φ(x) =
∑

g∈G
PgΦ(Nx−g), Φ̃(x) =

∑

g∈G
P̃gΦ̃(Nx−g). (2)

Let Ψ(`), Ψ̃(`), 1 ≤ ` ≤ 6, be the functions de�ned by

Ψ(`)(x) =
∑

g∈G Q
(`)
g Φ(Nx− g),

Ψ̃(`)(x) =
∑

g∈G Q̃
(`)
g Φ̃(Nx− g).

(3)

If {P,Q(1), · · · , Q(6)} and {P̃ , Q̃(1), · · · , Q̃(6)} are biorthog-
onal to each other, then under certain mild conditions (see
the next subsection), Φ and Φ̃ are biorthogonal duals:∫
IR2 Φ(x)Φ̃(x− g) dx = δg, g ∈ G, where δg is the

kronecker-delta sequence: δg = 1 if g = (0, 0), and δg = 0 if
g 6= (0, 0). In this case, Ψ(`), Ψ(`), 1 ≤ ` ≤ 6, are biorthogonal
wavelets, namely, {Ψ(`)

j,g : 1 ≤ ` ≤ 6, j ∈ Z,g ∈ G} and
{Ψ̃(`)

j,g : 1 ≤ ` ≤ 6, j ∈ Z,g ∈ G} are Riesz bases of L2(IR2)
and they are biorthogonal to each other:

∫

IR2
Ψ(`)

j,g(x)Ψ̃(`′)
j′,g′(x)dx = δj−j′δ`−`′δg−g′ ,

for j, j′ ∈ Z, 1 ≤ `, `′ ≤ 6, g,g′ ∈ G, where

Ψ(`)
j,g(x) = 7

j
2 Ψ(`)(N jx− g), Ψ̃(`)

j,g(x) = 7
j
2 Ψ̃(`)(N jx− g).

For the 7-size re�nement, one can obtain biorthogonality
condition for the scaling functions Φ, Φ̃ and orthogonal-
ity/biorthogonality conditions for hexagonal �lter banks. The
reader refers to [30], [40] for the biorthogonality conditions
for 4-size re�nement hexagonal �lter banks. Considering that
most multiresolution analysis theory and algorithms for image
processing are developed along the square lattice Z2 and
that most people are more familiar with �lter banks on the
square lattice, in the next subsection, we give biorthogonality
conditions for a pair of Φ and Φ̃ and for a pair of 7-size
re�nement hexagonal �lter banks after we transform them into
scaling functions φ, φ̃ and �lter banks along Z2.

In the rest of this subsection, we give the de�nitions of the
symmetries of �lter banks considered in this paper.

De�nition 1: A hexagonal �lter bank {P, Q(1), · · · , Q(6)}
is said to have 6-fold rotational symmetry if its lowpass �lter
P (ω) is invariant under π

3 , 2π
3 , π, 4π

3 , 5π
3 rotations, and its
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�ve highpass �lters Q(2), · · · , Q(6) are π
3 , 2π

3 , π, 4π
3 and 5π

3

(anticlockwise) rotations of the highpass �lter Q(1), resp.
Some functions such as 3-direction box-splines

B[v1,··· ,v1,v2,··· ,v2,−v1−v2,··· ,−v1−v2] along the hexagonal
lattice G have 6-fold axial (line) symmetry, namely, they
are symmetric around axes S0, · · · , S5 in G shown in Fig.
5 (see the symmetry of 3-direction box-splines in [41] at
p.114-116, where 6-fold axial symmetry is called the full
set of symmetries). It is natural that one considers the
construction of scaling functions with such a symmetry. To
this regard, we consider hexagonal �lter banks with 6-fold
axial symmetry.

v1

v2

S4

S3

S2

S1

S0

S5

Fig. 5. 6 axes (lines) of symmetry in regular hexagonal lattice

De�nition 2: A hexagonal �lter bank {P, Q(1), · · · , Q(6)}
is said to have 6-fold axial symmetry or 6-fold line symmetry if
its lowpass �lter P (ω) is symmetric around S0, · · · , S5, and
its highpass �lter Q(1) is symmetric around the axis S0 and
other �ve highpass �lters Q(2), · · · , Q(6) are π

3 , 2π
3 , π, 4π

3

and 5π
3 (anticlockwise) rotations of highpass �lter Q(1), resp.

We �nd that if {P,Q(1), · · · , Q(6)} has 6-fold axial sym-
metry, then it has 6-fold rotational symmetry, see Section VI.
We also �nd that it is hard to obtain a family of orthogonal or
biorthogonal �lter banks with 6-fold axial symmetry. Because
of this, we consider in Section VI another type of symmetry,
called pseudo 6-fold axial symmetry, and provide a family of
FIR �lter banks with such a symmetry.

B. Transforming the hexagonal lattice to the square lattice Z2

Let U be the matrix de�ned by

U =

[
1

√
3

3

0 2
√

3
3

]
. (4)

Then U transforms the regular unit hexagonal lattice G
into the square lattice Z2. For a hexagonal �lter H(ω) =
1
7

∑
g∈G Hge−ig·ω , after the transformation with the matrix U ,

we have a corresponding �lter h(ω) = 1
7

∑
k∈Z2 hke−ik·ω for

squarely sampled data with its impulse response hk = HU−1k.
Conversely, for a square �lter (�lter on the square lattice)
h(ω) = 1

7

∑
k∈Z2 hke−ik·ω , we have a corresponding hexag-

onal �lter H(ω) = 1
7

∑
g∈G Hge−ig·ω with Hg = hUg.

The matrix U also transforms the scaling functions and
wavelets along the hexagonal lattice to those along the square
lattice Z2. More precisely, suppose {P,Q(1), · · · , Q(6)} and
{P̃ , Q̃(1), · · · , Q̃(6)} are a pair of FIR hexagonal �lter banks.
Let Φ and Φ̃ be the scaling functions (with dilation matrix
N ) associated with P (ω) and P̃ (ω) resp., and Ψ(`) and
Ψ̃(`), 1 ≤ ` ≤ 6, are the functions de�ned by (3). Let

{p, q(1), · · · , q(6)} and {p̃, q̃(1), · · · , q̃(6)} be the correspond-
ing square �lter banks. De�ne

φ(x) = Φ(U−1x), ψ(`)(x) = Ψ(`)(U−1x),
φ̃(x) = Φ̃(U−1x), ψ̃(`)(x) = Ψ̃(`)(U−1x).

(5)

Then φ and φ̃ are scaling functions satisfying the following
re�nement equations:
φ(x) =

∑

k∈Z2

pkφ(Mx−k), φ̃(x) =
∑

k∈Z2

p̃kφ̃(Mx−k), (6)

and ψ(`), ψ̃(`), 1 ≤ ` ≤ 6 are given by
ψ(`)(x) =

∑
k∈Z2 q

(`)
k φ(Mx− k),

ψ̃(`)(x) =
∑

k∈Z2 q̃
(`)
k φ̃(Mx− k),

(7)

where pk, p̃k, q
(`)
k , q̃

(`)
k are exactly the impulse response coef-

�cients of p(ω), p̃(ω), q(`)(ω), q̃(`)(ω), resp., and
M = UNU−1.

Observe that for dilation matrices N1 and N2 de�ned by (1),
the dilation matrices M1 = UN1U

−1 and M2 = UN2U
−1

for φ and φ̃ are integer matrices:

M1 =
[

2 1
−1 3

]
, M2 =

[
1 2
3 −1

]
. (8)

Equations (6) are the standard (traditional) re�nement equa-
tions for scaling functions along the commonly used integer
lattice Z2 with a (general) integer dilation matrix M , and (7)
are the standard formulas to de�ne the corresponding wavelets.

For a pair of square �lter banks {p, q(1), · · · , q(6)} and
{p̃, q̃(1), · · · , q̃(6)}, the traditional multiresolution decomposi-
tion and reconstruction algorithms with a dilation matrix M
for an input squarely sampled image ck,0 are (refer to [42]){

cn,j+1 = (1/
√

7)
∑

k∈Z2 pk−Mnck,j ,

d
(`)
n,j+1 = (1/

√
7)

∑
k∈Z2 q

(`)
k−Mnck,j ,

with ` = 1, · · · , 6, n ∈ Z2 for j = 0, 1, · · · , J − 1, and

ĉk,j =
1√
7
(
∑

n∈Z2

p̃k−Mnĉn,j+1 +
∑

1≤`≤6

∑

n∈Z2

q̃
(`)
k−Mnd

(`)
n,j+1)

with k ∈ Z2 for j = J − 1, J − 2, · · · , 0, where
ĉn,J = cn,J . We say square �lter banks {p, q(1), · · · , q(6)}
and {p̃, q̃(1), · · · , q̃(6)} to be PR �lter banks if ĉk,j = ck,j ,
0 ≤ j ≤ J − 1 for any input squarely sampled image ck,0.

Clearly, {P,Q(1), · · · , Q(6)} and {P̃ , Q̃(1), · · · , Q̃(6)} are
PR �lter banks (with N ) if and only if their counter-
parts {p, q(1), · · · , q(6)} and {p̃, q̃(1), · · · , q̃(6)} are PR �lter
banks (with M = UNU−1). From the integer-shift in-
variant multiresolution analysis theory, we can obtain that
{p, q(1), · · · , q(6)} and {p̃, q̃(1), · · · , q̃(6)} are PR �lter banks
if and only if∑

0≤k≤6

p(ω + 2πM−T ηk)p̃(ω + 2πM−T ηk) = 1, (9)

∑

0≤k≤6

p(ω + 2πM−T ηk)q̃(`)(ω + 2πM−T ηk) = 0,(10)

∑

0≤k≤6

q(`′)(ω + 2πM−T ηk)q̃(`)(ω + 2πM−T ηk)

= δ`′−`, (11)
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for 1 ≤ `, `′ ≤ 6, ω ∈ IR2, where ηj , 0 ≤ j ≤ 6 are the
representatives of the group Z2/(MT Z2) with η0 = [0, 0]T .
When M is the dilation matrix M1 or M2 in (8), ηj , 1 ≤ j ≤ 6
are

η1 = [−1,−1]T , η2 = [0,−1]T , η3 = [1, 0]T ,
η4 = [1, 1]T , η5 = [0, 1]T , η6 = [−1, 0]T .

(12)

Square �lter banks {p, q(1), · · · , q(6)} and {p̃, · · · , q̃(6)} are
commonly said to be biorthogonal if they satisfy (9)-(11); and
a �lter bank {p, q(1), · · · , q(6)} is commonly referred to be
orthogonal if it satis�es (9)-(11) with p̃ = p, q̃(`) = q(`), 1 ≤
` ≤ 6.

For an FIR lowpass �lter p(ω) = 1
7

∑
k∈Z2 pke−ik·ω , let

Tp denote its transition operator matrix (with dilation matrix
M ):

Tp = [AMk−j]k,j∈[−K,K]2 , (13)

where Aj = (1/7)
∑

n∈Z2 pn−jpn and K is a suitable positive
integer depending on the �lter length of p and the dilation
matrix M . We say that Tp satis�es Condition E if 1 is its
simple eigenvalue and all other eigenvalues λ of Tp satisfy
|λ| < 1. From the integer-shift invariant multiresolution
analysis theory (see e.g. [43], [44], [42]), if {p, q(1), · · · , q(6)}
and {p̃, q̃(1), · · · , q̃(6)} are biorthogonal to each other and the
transition operator matrices Tp and Tep associated with p and
p̃ satisfy Condition E, then φ and φ̃ are biorthogonal duals:∫
IR2 φ(x)φ̃(x− k) dx = δk,k ∈ Z2; and ψ(`), ψ(`), 1 ≤

` ≤ 6, de�ned by (7) are biorthogonal wavelets, namely,
{ψ(`)

j,k : 1 ≤ ` ≤ 6, j ∈ Z,k ∈ Z2} and {ψ̃(`)
j,k : 1 ≤ ` ≤

6, j ∈ Z,k ∈ Z2} are biorthogonal bases of L2(IR2), where
ψ

(`)
j,k(x) = 7

j
2 ψ(`)(M jx− k), ψ̃

(`)
j,k(x) = 7

j
2 ψ̃(`)(M jx− k).

From the above discussion, we know that to design
orthogonal/biorthogonal hexagonal �lter banks, we need
only to construct square �lter banks {p, q(1), · · · , q(6)} and
{p̃, q̃(1), · · · , q̃(6)} such that they satisfy (9)-(11). As a con-
sequence, {P, Q(1), · · · , Q(6)} and {P̃ , Q̃(1), · · · , Q̃(6)} with
impulse responses Pg = pUg, Q

(`)
g = q

(`)
Ug, P̃g = p̃Ug, Q̃

(`)
g =

q̃
(`)
Ug are orthogonal/biorthogonal hexagonal �lter banks. Fur-

thermore, if the transition operator matrices Tp and Tep associ-
ated with the square lowpass �lters p and p̃ satisfy Condition E
(and, hence, scaling functions φ, φ̃ associated with p(ω), p̃(ω)
form biorthogonal duals and ψ(`), ψ̃(`), 1 ≤ ` ≤ 6 de�ned
by (7) generate biorthogonal wavelets systems), then the
hexagonal scaling functions Φ, Φ̃ associated with P (ω), P̃ (ω)
form biorthogonal duals and Ψ(`), Ψ̃(`), 1 ≤ ` ≤ 6 de�ned
by (3) generate biorthogonal wavelet systems. In addition,
if one wants to design hexagonal �lters such that the cor-
responding (hexagonal) scaling functions Φ, Φ̃ and wavelets
Ψ(`), Ψ̃(`), 1 ≤ ` ≤ 6 have desirable certain properties such as
approximation power, smoothness and nice time-frequency lo-
calizations, then one needs only to consider such properties for
the scaling functions φ, φ̃ and wavelets ψ(`), ψ̃(`), 1 ≤ ` ≤ 6
associated with square �lters since they are related as in (5).

Remark 1: Since Z2/MT
1 Z2 and Z2/MT

2 Z2 have the same
representatives ηj , 0 ≤ j ≤ 6, if {p, q(1), · · · , q(6)} and
{p̃, q̃(1), · · · , q̃(6)} are biorthogonal with one of M1, M2, say
M1, then they are also biorthogonal to each other with the

other dilation matrix, M2. Consequently, if a pair of hexagonal
�lter banks are biorthogonal with one of dilation matrices
N1, N2, then they are also biorthogonal to each other with
the other dilation matrix.

In the following sections, we consider construction of
orthogonal/biorthogonal �lter banks with 6-fold symmetry.
From Remark 1, we need only to consider one of the dilation
matrices M1,M2. In the rest of this paper, without loss of
generality, we choose M to be M1.

III. FILTER BANKS WITH 6-FOLD ROTATIONAL SYMMETRY

In this section we consider �lter banks with 6-fold rotational
symmetry. Let R(θ) =

[
cos θ sin θ
− sin θ cos θ

]
denote the rotation

matrix. Denote

R̃1 = R(
π

3
), R̃j = (R̃1)j , 1 ≤ j ≤ 5. (14)

In other words, R̃1, · · · , R̃5 are the (clockwise) rotation matri-
ces of π

3 , 2π
3 , π, 4π

3 , 5π
3 resp. Then 6-fold rotational symmetry

of a �lter bank {P,Q(1), · · · , Q(6)} means that

P eRjg
= Pg, Q(j+1)

g = Q
(1)eRjg

, 1 ≤ j ≤ 5, g ∈ G. (15)

For a hexagonal �lter bank {P, Q(1), · · · , Q(6)}, let
{p, q(1), · · · , q(6)} be its corresponding square �lter bank by
the transformation with the matrix U in (4). Namely, the
impulse responses pk, q

(`)
k of p(ω), q(`)(ω), 1 ≤ ` ≤ 6 are

PU−1k, Q
(`)
U−1k, resp. Let R1, R2, · · · , R5 denote the matrices

UR̃1U
−1, UR̃2U

−1, · · · , UR̃5U
−1, resp. More precisely,

R1 =
[

0 1
−1 1

]
, R2 =

[ −1 1
−1 0

]
,

R3 = −I2, R4 = −R1, R5 = −R2.
(16)

Then one can show that P, Q(1), · · · , Q(6) satisfy (15) if and
only if p, q(1), · · · , q(6) satisfy

pRjk = pk, q
(j+1)
k = q

(1)
Rjk

, 1 ≤ j ≤ 5, k ∈ Z2. (17)

To summarize, we have the following proposition.
Proposition 1: Let {P,Q(1), · · · , Q(6)} be a hexagonal �l-

ter bank and {p, q(1), · · · , q(6)} be its corresponding square
�lter bank. Then {P, Q(1), · · · , Q(6)} has 6-fold rotational
symmetry if and only if {p, q(1), · · · , q(6)} satis�es (17).

In the following, for convenience, we say a square �lter
bank {p, q(1), · · · , q(6)} has 6-fold rotational symmetry if it
satis�es (17).

Clearly, (17) is equivalent to

p(R−T
j ω) = p(ω), q(j+1)(ω) = q(1)(R−T

j ω), 1 ≤ j ≤ 5.

This and the facts that Rj = Rj
1, 1 ≤ j ≤ 5 and R6

1 = I2,
imply the following proposition.

Proposition 2: A �lter bank {p, q(1), · · · , q(6)} has 6-fold
rotational symmetry if and only if it satis�es

[
p, q(1), · · · , q(6)

]T
(R−T

1 ω) =
M0

[
p(ω), q(1)(ω), · · · , q(6)(ω)

]T
,

(18)
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where

M0 =




1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0




. (19)

Next, we construct the �lter bank {p, q(1), · · · , q(6)}
as the product of appropriate block matrices. Assume
that we can write [p(ω), q(1)(ω), · · · , q(6)(ω)]T as
B(MT ω)[ps(ω), q(1)

s (ω), · · · , q
(6)
s (ω)]T , where M is

M1 de�ned in (8), B(ω) is a 7 × 7 matrix whose entries
are trigonometric polynomials, and {ps, q

(1)
s , · · · , q

(6)
s } is

another FIR �lter bank with shorter �lter lengths. If both
{p, q(1), · · · , q(6)} and {ps, q

(1)
s , · · · , q

(6)
s } have 6-fold

rotational symmetry, then Proposition 2 implies that B(ω)
satis�es

B(MT R−T
1 ω) = M0B(MT ω)M−1

0 , (20)

where M0 is the matrix de�ned by (19).
Denote

I0(ω) = [1, ei(ω1+ω2), eiω2 , e−iω1 , e−i(ω1+ω2), e−iω2 , eiω1 ]T .
(21)

Then, from R−T
1 ω = [ω1 +ω2,−ω1]T , we have I0(R−T

1 ω) =
[1, eiω2 , e−iω1 , e−i(ω1+ω2), e−iω2 , eiω1 , ei(ω1+ω2)]T . Thus,
I0(ω) satis�es (18). Therefore, 1-tap �lter bank
{1, ei(ω1+ω2), eiω2 , e−iω1 , e−i(ω1+ω2), e−iω2 , eiω1} has 6-
fold rotational symmetry, and it could be used as the initial
�lter bank with 6-fold rotational symmetry.

Denote

D(ω) = diag(1, ei(ω1+ω2), eiω2 , e−iω1 , e−i(ω1+ω2), e−iω2 , eiω1).
(22)

Then D(MT ω) = diag(1, ei(3ω1+2ω2), ei(ω1+3ω2), e−i(2ω1−ω2),
e−i(3ω1+2ω2), e−i(ω1+3ω2), ei(2ω1−ω2)). On the other hand,
with MT R−T

1 =
[

3 2
−2 1

]
, one has that D(MT R−T

1 ω) =

diag(1, ei(ω1+3ω2), e−i(2ω1−ω2), e−i(3ω1+2ω2), e−i(ω1+3ω2),
ei(2ω1−ω2), ei(3ω1+2ω2)). Therefore D(ω) satis�es (20) and
it could be used to build the block matrices. Next we use
B(ω) = BD(ω) as the block matrix, where B is a 7 × 7
(real) constant matrix. Based on the above discussion, we
know that B(ω) = BD(ω) satis�es (20) if and only if B
satis�es M0BM−1

0 = B, which is equivalent to the fact that
B has the form:

B =




b11 b12 b12 b12 b12 b12 b12

b21 b22 b23 b24 b25 b26 b27

b21 b27 b22 b23 b24 b25 b26

b21 b26 b27 b22 b23 b24 b25

b21 b25 b26 b27 b22 b23 b24

b21 b24 b25 b26 b27 b22 b23

b21 b23 b24 b25 b26 b27 b22




. (23)

Based on the above discussion, we reach the following result
on the �lter banks with 6-fold rotational symmetry.

Theorem 1: If {p, q(1), · · · , q(6)} is given by

[p(ω), q(1)(ω), · · · , q(6)(ω)]T = (24)
1√
7
BnD(MT ω)Bn−1D(MT ω) · · ·B1D(MT ω)B0I0(ω)

for some n ∈ Z+, where I0(ω) is de�ned by (21), and
Bk, 0 ≤ k ≤ n are constant matrices of the form (23), then
{p, q(1), · · · , q(6)} is an FIR �lter bank with 6-fold rotational
symmetry.

In the next two sections, we show that the block structure in
(24) yields orthogonal and biorthogonal FIR �lter banks with
6-fold rotational symmetry.

IV. ORTHOGONAL FILTER BANKS WITH 6-FOLD
ROTATIONAL SYMMETRY

In this section, we study the construction of orthogonal �lter
banks with 6-fold rotational symmetry. For an FIR �lter bank
{p, q(1), · · · , q(6)}, denote q(0)(ω) = p(ω). Let U(ω) be a
7×7 matrix de�ned by U(ω) =

[
q(`)(ω + ηj)

]
0≤`,j≤6

,where
η0, η1, · · · ,η6 are given in (12). Then {p, q(1), · · · , q(6)} is
orthogonal if U(ω) is unitary for all ω ∈ IR2, that is it satis�es

U(ω)U(ω)∗ = I7, ω ∈ IR2. (25)

Next, we write q(`)(ω), 0 ≤ ` ≤ 6 as

q(`)(ω) =
1√
7

(
q
(`)
0 (MT ω) + q

(`)
1 (MT ω)ei(ω1+ω2)

+q
(`)
2 (MT ω)eiω2 + q

(`)
3 (MT ω)e−iω1 + q

(`)
4 (MT ω)e−i(ω1+ω2)

+q
(`)
5 (MT ω)e−iω2 + q

(`)
6 (MT ω)eiω1

)
,

where q
(`)
k (ω) are trigonometric polynomials. Let V (ω)

denote the polyphase matrix (with dilation matrix M ) of
{p(ω), q(1)(ω), · · · , q(6)(ω)}:

V (ω) =
[
q
(`)
k (ω)

]
0≤`,k≤6

. (26)

Clearly,

[p(ω), q(1)(ω), · · · , q(6)(ω)]T =
1√
7
V (MT ω)I0(ω),

where I0(ω) is de�ned by (21). One can verify that
the 7 × 7 matrix 1√

7
[I0(ω + 2πM−T η0), I0(ω +

2πM−T η1), · · · , I0(ω + 2πM−T η6)] is unitary for all
ω ∈ IR2, which implies that (25) holds if and only if V (ω)
is unitary for all ω ∈ IR2, namely, V (ω) satis�es

V (ω)V (ω)∗ = I7, ω ∈ IR2. (27)

Therefore, to construct an orthogonal �lter bank
{p, q(1), · · · , q(6)}, we need only to construct a trigonometric
polynomial matrix V (ω) which satis�es (27).

If {p, q(1), · · · , q(6)} is given by (24), then its polyphase
matrix V (ω) is

V (ω) = BnD(ω)Bn−1D(ω) · · ·B1D(ω)B0.

Since D(ω) = diag(1, ei(ω1+ω2), eiω2 , e−iω1 , e−i(ω1+ω2), e−iω2 ,
eiω1) is unitary, we know that if constant matrices
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Bk, 0 ≤ k ≤ n, are orthogonal, then V (ω) satis�es
(27).

Next, we consider the orthogonality of a matrix B of the
from (23). To this regard, let W1 denote the unitary matrix:
W1 = (

√
6/6)

[
wkj

]
0≤k,j≤5

, where w = e
2πi
6 = 1

2 +
√

3
2 i.

With W = diag(1,W1), one can get that

WBW ∗ =




b11

√
6b12 0 · · · 0√

6b21 b̃22 0 · · · 0
0 0 b̃33 · · · 0
...

...
... . . . ...

0 0 0 · · · b̃77




,

where
b̃22 = b22 + b23 + b24 + b25 + b26 + b27,

b̃33 = b22 − b25 + 1
2 (b23 − b24 − b26 + b27)

−
√

3
2 i(b23 + b24 − b26 − b27),

b̃44 = b22 + b25 − 1
2 (b23 + b24 + b26 + b27)

−
√

3
2 i(b23 − b24 + b26 − b27),

b̃55 = b22 − b23 − b25 + b24 + b26 − b27,

b̃66 = b̃44, b̃77 = b̃33.

Thus B is orthogonal if and only if
[

b11

√
6b12√

6b21 b̃22

]
is

orthogonal and |̃bjj | = 1, 3 ≤ j ≤ 7, which implies that
b11, b12, b̃22 and b̃jj , j = 3, 4, 5 can be written as

b11 = s0 cos θ,
√

6b12 = sin θ,
√

6b21 = s0 sin θ,

b̃22 = − cos θ, b̃33 = cos γ − i sin γ,

b̃44 = cos ζ − i sin ζ, b̃55 = s1,

where s0 = ±1, s1 = ±1, θ, γ, ζ ∈ IR. From these equations,
we have
b11 = s0 cos θ, b12 =

√
6

6 sin θ, b21 = s0

√
6

6 sin θ,
b22 = 1

6 (s1 − cos θ + 2 cos γ + 2 cos ζ),
b23 = 1

6 (−s1 − cos θ + cos γ +
√

3 sin γ − cos ζ +
√

3 sin ζ),
b24 = 1

6 (s1 − cos θ − cos γ +
√

3 sin γ − cos ζ −√3 sin ζ),
b25 = 1

6 (−s1 − cos θ − 2 cos γ + 2 cos ζ),
b26 = 1

6 (s1 − cos θ − cos γ −√3 sin γ − cos ζ +
√

3 sin ζ),
b27 = 1

6 (−s1 − cos θ + cos γ −√3 sin γ − cos ζ −√3 sin ζ).
(28)

Thus an orthogonal matrix B of the form (23) has three
parameters. We have therefore the following theorem.

Theorem 2: Suppose {p, q(1), · · · , q(6)} is given by (24). If
each Bk, 0 ≤ k ≤ n is of the form (23) and its entries bij are
given by (28) for some θk, γk, ζk, then {p, q(1), · · · , q(6)} is
an orthogonal FIR �lter bank with 6-fold rotational symmetry.

Transforming {p, q(1), · · · , q(6)} given in Theorem 2 with
the matrix U to the �lter banks along the hexagonal lattice,
we have a family of orthogonal FIR hexagonal �lter banks
with 6-fold rotational symmetry and a block structure. With
such a family of orthogonal �lter banks, by selecting the
free parameters, one can design the �lters with desirable
properties for one's speci�c applications. For example, one
may consider to design �lters with optimum time-frequency
localization (refer to [45]-[47] for the design of 1-D matrix-
valued �lters with optimum time-frequency localization). Here

we consider the �lters based on the Sobolev smoothness of
the associated scaling functions φ. For s ≥ 0, let W s denote
the Sobolev space consisting of functions f(x) on IR2 with∫
IR2(1 + |ω|2)s|f̂(ω)|2dω < ∞.

The Sobolev smoothness of a scaling function φ can be
given by the eigenvalues of the transition operator matrix Tp

de�ned in (13), where p(ω) is the lowpass �lter associated
with φ. More precisely, assume that an FIR lowpass �lter p(ω)
has sum rule order m (with dilation matrix M ):

p(0, 0) = 1, Dα1
1 Dα2

2 p(2πM−T ηj) = 0, 1 ≤ j ≤ 6, (29)

for all (α1, α2) ∈ Z2
+ with α1+α2 < m, where ηj , 1 ≤ j ≤ 6

are de�ned by (12), D1 and D2 denote the partial derivatives
with the �rst and second variables of p(ω) resp. Under some
condition, sum rule order is equivalent to the approximation
order of φ, see [48]. Let σ1, σ2 be the eigenvalues of the
dilation matrix M . (When M is M1 in (8), σ1 = 5

2+
√

3
2 i, σ2 =

5
2 −

√
3

2 i.) Denote

S̄m := {σ−α1
1 σ−α2

2 : α1, α2 ∈ Z+, α1 + α2 < m},
and Sm := spec(Tp)\S̄m. Then φ is in Sobolev space
W log7 ρ−1

0 , where

ρ0 = max{|λ| : λ ∈ Sm}. (30)

See [49], [50] for the details and refer to [24] for algorithms
and Matlab routines to �nd the Sobolev smoothness order.

Remark 2: Observe that sum rule order of a lowpass �lter
p(ω) with a dilation matrix M is characterized by the values of
p(0, 0) and Dα1

1 Dα2
2 p(ω) at 2πM−T ηj , 1 ≤ j ≤ 6. Observe

that {M−T
1 ηj : 1 ≤ j ≤ 6} = {M−T

2 ηj : 1 ≤ j ≤ 6}. Thus
if p(ω) has sum rule order m with dilation matrix M1, then
it also has sum rule order m with dilation matrix M2.

Example 1: Let {p, q(1), · · · , q(6)} be the orthogonal �lter
bank with 6-fold rotational symmetry given by (24) with n =
0: B0I0(ω). This is a 7-tap �lter bank. The lowpass �lter
p(ω) depends on one free parameter θ0. We can choose this
parameter such that the resulting p(ω) has sum rule order 1.
The nonzero coef�cients pk of the resulting p(ω) are

p00 = p−1−1 = p0−1 = p10 = p11 = p01 = p−10 = 1.

We �nd that the leading eigenvalues of Tp (with M = M1)
are 1, 3

7 , σ1, σ2. Thus, ρ0 = 3
7 . With − log7(

3
7 ) = 0.4354, we

know that the corresponding scaling function φ is in W 0.4354.
We can also choose other parameters γ0, η0 for highpass �lters
such that the nonzero coef�cients q

(1)
k of q(1)(ω) are

q
(1)
00 = 1, q

(1)
−1−1 = −1 + 5

√
7

6
,

q
(1)
0−1 = q

(1)
10 = q

(1)
11 = q

(1)
01 = q

(1)
−10 =

√
7− 1
6

.

The resulting scaling function φ is a charactersitic function of
a region with fractal boundary. φ can be approximated by φn

de�ned by

φn(x) =
∑

k∈Z2

pkφn−1(Mx− k), n = 1, 2, · · · ,
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where φ0 is a suitable compactly supported function with∑
k∈Z2 φ0(x − k) = 1. We show the support of φ3 on the

left of Fig. 6 with φ0(x) = χ[− 1
2 , 1

2 )2(x).
From Remarks 1 and 2, this �lter bank is orthogonal with

dilation matrix M2 and the resulting p(ω) has sum rule order
1 with M2. We check that the associated scaling function, de-
noted by ϕ, is also in W 0.4354. ϕ is a characteristic function of
a region with fractal boundary. The support of ϕ3(x) is shown
on the right of Fig.6, where ϕn(x) =

∑
k∈Z2 pkϕn−1(M2x−

k), n = 1, 2, 3, and ϕ0(x) = χ[− 1
2 , 1

2 )2(x). See [51], [52]
for the regions with fractal boundary called dragon and twin
dragon sets generated by the quincunx matrices.
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Fig. 6. Approximated support of φ with dilation M1 (left) and that
of ϕ with dilation M2 (right)
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Fig. 7. Impulse responses Pg (left) and Q
(1)
g with a =

√
7−1
6

, b =

− 1+5
√

7
6

(right), while Q
(j+1)
g are πj

3
rotations of Q

(1)
g , 1 ≤ j ≤ 5

Let {P0, Q
(1)
0 , · · · , Q

(6)
0 } be the corresponding orthogonal

hexagonal �lter bank. The nonzero impulse response coef�-
cients Pg, Q

(1)
g of P0(ω), Q(1)

0 (ω) are displayed in Fig. 7,
while Q

(j+1)
g are πj

3 rotations of Q
(1)
g , 1 ≤ j ≤ 5. Notice that

the lowpass �lter P0(ω) has 6-fold axial symmetry, namely, it
is symmetric around axes S0, · · · , S5 shown in Fig. 5, and
that Q

(1)
0 (ω) is symmetric around axis S0. Therefore, this

orthogonal �lter bank has 6-fold axial symmetry. In [38], three
7-tap orthogonal hexagonal �lter banks were constructed for
image coding with all �lter banks having the same lowpass
�lter which is exactly P0(ω). The highpass �lters in [38] are
different from Q

(`)
0 (ω), 1 ≤ ` ≤ 6. Three of their highpass

�lters are symmetric around the axis S1 and the other three
are anti-symmetric around S1.

Example 2: Let {p, q(1), · · · , q(6)} be the orthogonal �lter
bank with 6-fold rotational symmetry given by (24) for n = 1:
B1D(MT ω)B0I0(ω) with s0, s1 in (28) being 1. The lowpass
�lter p(ω) depends on four parameters θ0, γ0, η0, θ1. By
solving the equations for sum rule order 2, we get

θ0 = tan−1(7
√

6−√258), γ0 = − tan−1(
√

3
5 ),

θ1 = − sin−1(
√

6
7 );

(31)

or
θ0 = tan−1(7

√
6 +

√
258), γ0 = π − tan−1(

√
3

5 ),
θ1 = sin−1(

√
6

7 ).
(32)

Thus, we have a lowpass �lter p(ω) depending on one free
parameter η0. Then we select this free parameter such that
ρ0 in (30) as small as possible. With η0 = π − tan−1( 20

21 )
and θ0, γ0, θ1 given in (31), we have the (numerically) most
smooth scaling function φ which is in W 0.9202. There are
two free parameters γ1, η1 left for the highpass �lters of this
orthogonal �lter bank. Here we simply set γ1 = η1 = 0. In
Fig. 8 we show the pictures of the resulting φ and ψ(1).

Fig. 8. φ (left) and ψ(1) (right)

Let {P,Q(1), · · · , Q(6)} be the corresponding orthogonal
hexagonal �lter bank. We apply this �lter bank to a hexago-
nally sampled image in Fig. 9. This is a part of the hexagonal
image re-sampled from a 512× 512 squarely sampled image
Lena by the bilinear interpolation in [6]. The decomposed
images with the lowpass �lter and highpass �lters are shown
on the left of Fig. 10 and in Fig. 11 resp. These images are
indeed rotated about 19.1◦ with respect to the original image.
The decomposed image with the lowpass �lter applied twice
is shown on the right of Fig. 10.

Fig. 9. Original (hexagonal) image

Fig. 10. Decomposed images with lowpass �lter P with one (left)
and two (right) iterations

We also consider orthogonal �lter banks given (24)
with a few more blocks BkD(MT ω). We �nd that
it is hard to construct orthogonal scaling functions
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Fig. 11. Decomposed images with highpass �lters Q(1), Q(2), Q(3)

(top row from left) and Q(4), Q(5), Q(6) (bottom row from left)

with high smoothness order. For example, it seems that
B2D(MT ω)B1D(MT ω)B0I0(ω) cannot lead to an orthog-
onal scaling function in W 1. Thus, to construct orthogonal
scaling and wavelets with nice smoothness order, we need to
use more blocks BkD(MT ω). In the next section, we consider
6-fold rotational symmetric biorthogonal �lter banks, which
give us some �exility for the construction of PR �lter banks.

V. BIORTHOGONAL FILTER BANKS WITH 6-FOLD
ROTATIONAL SYMMETRY

In this section we consider biorthogonal �lter banks with
6-fold rotational symmetry. Suppose {p, q(1), · · · , q(6)} and
{p̃, q̃(1), · · · , q̃(6)} are a pair of �lter banks. Let V (ω) and
Ṽ (ω) be their polyphase matrices de�ned as in (26). Then
one can obtain as in the above section that {p, q(1), · · · , q(6)}
and {p̃, q̃(1), · · · , q̃(6)} are biorthogonal to each other if and
only if V (ω) and Ṽ (ω) satisfy V (ω)Ṽ (ω)∗ = I7, ω ∈
IR2. If {p, q(1), · · · , q(6)} is the FIR �lter bank given by
(24) for some 7 × 7 real matrices Bk, then V (ω) =
BnD(ω)Bn−1D(ω) · · ·B1D(ω)B0. If the constant matrices
Bk, 0 ≤ k ≤ n are nonsingular, then from the fact that
(D(ω)∗)−1 = D(ω), we know

(V (ω)∗)−1 = B−T
n D(ω)B−T

n−1D(ω) · · ·B−T
1 D(ω)B−T

0 .

Clearly if Bk has the form of (23), namely, M0BkM−1
0 =

Bk, then M0B
−T
k M−1

0 = B−T
k since MT

0 = M−1
0 . Thus

B−T
k also has the form of (23). Hence, by Proposition 1,

{p̃, q̃(1), · · · , q̃(6)} given by

[p̃(ω), q̃(1)(ω), · · · , q̃(6)(ω)]T = (33)
1√
7
B−T

n D(MT ω) · · ·B−T
1 D(MT ω)B−T

0 I0(ω)

with I0(ω) de�ned by (21), has 6-fold rotational symmetry.
For this �lter bank {p̃, q̃(1), · · · , q̃(6)}, since its polyphase
matrix Ṽ (ω) is (V (ω)∗)−1, we know it is biorthogonal to
{p, q(1), · · · , q(6)}. To summarize, we have the following
theorem.

Theorem 3: Suppose that {p, q(1), · · · , q(6)} are the FIR
�lter bank given by (24) where Bk, 0 ≤ k ≤ n are nonsingular
constant matrices of the form (23). Let {p̃, q̃(1), · · · , q̃(6)} be
the FIR �lter bank given by (33). Then {p̃, q̃(1), · · · , q̃(6)} is

an FIR �lter bank biorthogonal to {p, q(1), · · · , q(6)} and it
has 6-fold rotational symmetry.

Theorem 3 provides a family of biorthogonal FIR �lter
banks with 6-fold rotational symmetry. Compared with the or-
thogonal �lter banks in Theorem 2, this family of biorthogonal
�lter banks allows for some �exibility in �lter design.

Example 3: Let {p, q(1), · · · , q(6)} and {p̃, q̃(1), · · · , q̃(6)}
be the biorthogonal �lter banks with 6-fold rotational sym-
metry given by Theorem 3 with n = 1. We can choose the
free parameters for B0 and B1 such that the resulting scaling
functions φ ∈ W 1.3801, φ̃ ∈ W 0.6187 with the corresponding
lowpass �lters p(ω) and p̃(ω) having sum rule orders 2 and
1 resp. The selected parameters are provided in Appendix A.

Example 4: Let {p, q(1), · · · , q(6)} and {p̃, q̃(1), · · · , q̃(6)}
be the biorthogonal �lter banks with 6-fold rotational sym-
metry given by Theorem 3 with n = 2. In this case, we can
choose the free parameters for B0, B1 and B2 such that the
resulting scaling functions φ ∈ W 1.9877, φ̃ ∈ W 0.3562. We
can also select other parameters such that φ ∈ W 1.8019, φ̃ ∈
W 0.7422, and we use Bio 2 to denote the resulting pair of
biorthogonal �lter banks. In either case, the corresponding
lowpass �lters p(ω) and p̃(ω) having sum rule orders 2 and
1 resp. The select other parameters for Bio 2 are provided in
Appendix B.

VI. ORTHOGONAL/BIORTHOGONAL FILTER BANKS WITH
PSEUDO 6-FOLD AXIAL SYMMETRY

In Sections III-V, we discuss the construction of �lter banks
with 6-fold rotational symmetry. In this section we consider
�lter banks with 6-fold axial symmetry.

Denote

L̃0 =

[
− 1

2

√
3

2√
3

2
1
2

]
, L̃1 =

[
1
2

√
3

2√
3

2 − 1
2

]
,

L̃2 =
[

1 0
0 −1

]
, L̃3 = −L̃0, L̃4 = −L̃1, L̃5 = −L̃2.

Let R̃j , 1 ≤ j ≤ 5 be the rotational matrices de�ne in (14).
Then 6-fold axial symmetry of {P,Q(1), · · · , Q(6)} means that
for 0 ≤ k ≤ 5, 1 ≤ j ≤ 5,

PeLkg = Pg, Q
(1)eL0g

= Q(1)
g , Q(j+1)

g = Q
(1)eRjg

, g ∈ G. (34)

One can verify that R̃1 = L̃1L̃0. This, together with the fact
R̃j = (R̃1)j , 2 ≤ j ≤ 5, implies that if {P, Q(1), · · · , Q(6)}
has 6-fold axial symmetry, then it has 6-fold rotational sym-
metry. On the other hand, from the fact that

L̃1 = R̃1L̃0, L̃2 = L̃1L̃0L̃1, L̃3 = L̃2L̃0L̃1,

L̃4 = L̃0L̃2L̃0, L̃5 = L̃0L̃1L̃0,

we know that the condition PeL0g
= Pg and P eR1g

= Pg for
P (ω) is equivalent to the condition PeLkg = Pg, 0 ≤ k ≤ 5.
Thus we have simpler conditions for the 6-fold axial symmetry
of a �lter bank as summarized in the next proposition.

Proposition 3: A hexagonal �lter bank {P, Q(1), · · · , Q(6)}
has 6-fold axial symmetry if and only if for 1 ≤ j ≤ 5, g ∈ G,

PeL0g
= P eR1g

= Pg, Q
(1)eL0g

= Q(1)
g , Q(j+1)

g = Q
(1)eRjg

. (35)
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For a hexagonal �lter bank {P, Q(1), · · · , Q(6)}, let
{p, q(1), · · · , q(6)} be the corresponding square �lter bank by
the transformation with the matrix U in (4). Let L0 denote the
matrix UL̃0U

−1, namely,

L0 =
[

0 1
1 0

]
.

Then P, Q(1), · · · , Q(6) satisfy (35) if and only if
p, q(1), · · · , q(6) satisfy

pL0k = pR1k = pk, q
(1)
L0k

= q
(1)
k , q

(j+1)
k = q

(1)
Rjk

,

for 1 ≤ j ≤ 5, k ∈ Z2, which is equivalent to

p(L0ω) = p(R−T
1 ω) = p(ω),

q(1)(L0ω) = q(1)(ω), q(j+1)(ω) = q(1)(R−T
j ω),

(36)

for 1 ≤ j ≤ 5. From Proposition 2, (36) and the relationship
among L0, Rj , 1 ≤ j ≤ 5, one can obtain the following
proposition (the detail of derivation is omitted here).

Proposition 4: A hexagonal �lter bank {P, Q(1), · · · , Q(6)}
has 6-fold axial symmetry if and only if its corresponding
square �lter bank {p, q(1), · · · , q(6)} satis�es (18) and

[
p, q(1), · · · , q(6)

]T

(L0ω) = (37)

N0

[
p(ω), q(1)(ω), · · · , q(6)(ω)

]T

,

where

N0 =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0




. (38)

Suppose {p, q(1), · · · , q(6)} can be written

[p(ω), q(1)(ω), · · · , q(6)(ω)]T =
C(ω)[ps(ω), q(1)

s (ω), · · · , q
(6)
s (ω)]T ,

where C(ω) is a 7× 7 matrix with trigonometric polynomial
entries, and {ps, q

(1)
s , · · · , q

(6)
s } is another FIR �lter bank. If

both {p, q(1), · · · , q(6)} and {ps, q
(1)
s , · · · , q

(6)
s } satisfy (36),

then Proposition 3 implies that C(ω) satis�es

C(R−T
1 ω) = M0C(ω)M−1

0 , C(L0ω) = N0C(ω)N−1
0 , (39)

where M0 and N0 are the matrices de�ned by (19) and (38)
resp.

For I0(ω) de�ned by (21), we show in Section III that I0(ω)
satis�es (18). On the other hand,

I0(L0ω) = [1, ei(ω1+ω2), eiω1 , e−iω2 , e−i(ω1+ω2), e−iω1 , eiω2 ]T

Thus I0(ω) also satis�es (37). That is, �lter bank

{1, ei(ω1+ω2), eiω2 , e−iω1 , e−i(ω1+ω2), e−iω2 , eiω1}
has 6-fold axial symmetry, and hence, this 1-tap �lter bank
should be used as the initial symmetric �lter bank. Let D(ω)
be the diagonal matrix de�ned by (22). Then one can verify

that D(ω) satis�es (39). Therefore, if {p, q(1), · · · , q(6)} is
given by

[p(ω), q(1)(ω), · · · , q(6)(ω)]T = (40)
1√
7
CnD(ω)Cn−1D(ω) · · ·C1D(ω)C0I0(ω),

where n ∈ Z+, and each Ck, 0 ≤ k ≤ n, satisfy (39), or
equivalently, it has the form of

C =




c11 c12 c12 c12 c12 c12 c12

c21 c22 c23 c24 c25 c24 c23

c21 c23 c22 c23 c24 c25 c24

c21 c24 c23 c22 c23 c24 c25

c21 c25 c24 c23 c22 c23 c24

c21 c24 c25 c24 c23 c22 c23

c21 c23 c24 c25 c24 c23 c22




, (41)

then {p, q(1), · · · , q(6)} satis�es (37). Therefore, the corre-
sponding hexagonal �lter bank has 6-fold axial symmetry.

The problem is that the structure in (40) hardly yields or-
thogonal or biorthogonal �lter banks. To obtain bi(orthogonal)
�lter banks, we should factorize [p(ω), q(1)(ω), · · · , q(6)(ω)]T

as C(MT ω)[ps(ω), q(1)
s (ω), · · · , q

(6)
s (ω)]T . However, if the

basic block matrix is C(MT ω) for some 7× 7 trigonometric
polynomial matrix C(ω), then it will be hard to �nd simple
C(ω) such that C(MT ω) satis�es (39). This is due to the
fact that there is 19.1◦ rotation of the axes of sublattice G7

with respect to the axes of G. Because of these dif�culties
to construct a block structure of �lter banks with 6-fold
axial symmetry, in the following we consider another type
of symmetry.

De�nition 3: A hexagonal �lter bank {P, Q(1), · · · , Q(6)}
is said to have pseudo 6-fold axial symmetry if the
polyphase matrix V (ω) of its corresponding square �lter bank
{p, q(1), · · · , q(6)} satis�es (39).

The left part of Fig. 12 shows a 49-tap lowpass �lter with
pseudo 6-fold axial symmetry, while the right part of Fig.
12 shows a 37-tap lowpass �lter with 6-fold axial symmetry.
Notice that the symmetry of the 49-tap lowpass �lter is not
only closely related to the symmetry structure of hexagonal
lattice G, but also related to the structure of sublattice G7. If the
polyphase matrix V (ω) of {p, q(1), · · · , q(6)} satis�es the �rst
equation in (39), namely, V (R−T

1 ω) = M0V (ω)M−1
0 , then

by the facts RT
1 MT R−T

1 = MT and I0(R−T
1 ω) = M0I0(ω),

we have

[p, q(1), · · · , q(6)](R−T
1 ω) =

1√
7
V (MT R−T

1 ω)I0(R−T
1 ω)

=
1√
7
(M0V (RT

1 MT R−T
1 ω)M−1

0 )M0I0(ω)

=
1√
7
M0V (MT ω)I0(ω) = M0[p, q(1), · · · , q(6)](ω).

This, together with Proposition 2, implies that
{p, q(1), · · · , q(6)} has 6-fold rotational symmetry. Therefore,
we also know that if a hexagonal �lter bank has pseudo
6-fold axial symmetry, then it has 6-fold rotational symmetry.

If the polyphase matrix V (ω) of {p, q(1), · · · , q(6)} is given
by the product of CkD(ω) for some Ck of the form (41),
then V (ω) = Vn(ω) · · ·V1(ω)V0 satis�es (39). Hence the
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Fig. 12. Impulse response of lowpass �lter with pseudo 6-fold axial
symmetry (left) and impulse response of lowpass �lter with 6-fold
axial symmetry (right)

corresponding hexagonal �lter bank {P, Q(1), · · · , Q(6)} has
pseudo 6-fold axial symmetry. In addition, if Ck, 0 ≤ k ≤ n
are orthogonal, then {P, Q(1), · · · , Q(6)} is orthogonal. To
summarize, we have the following result.

Theorem 4: If {p, q(1), · · · , q(6)} is given by
[p(ω), q(1)(ω), · · · , q(6)(ω)]T =

1√
7
CnD(MT ω) · · ·C1D(MT ω)C0I0(ω), (42)

where n ∈ Z+, I0(ω) is de�ned by (21), and Ck, 0 ≤
k ≤ n are constant matrices of the form (41), then the
FIR hexagonal �lter bank {P, Q(1), · · · , Q(6)} correspond-
ing to {p, q(1), · · · , q(6)} has pseudo 6-fold axial symme-
try. In addition, if Ck, 0 ≤ k ≤ n are orthogonal, then
{P, Q(1), · · · , Q(6)} is an orthogonal �lter bank.

For a matrix C of the form (41), if it is orthogonal, then one
can show directly or from (28) for the expression of orthogonal
B of the form (23) that the entries cij of C can be written as

c11 = s0 cos ξ, c12 =
√

6
6 sin ξ, c21 = s0

√
6

6 sin ξ,
c22 = 1

6 (s1 − cos ξ + 2s2 + 2s3),
c23 = 1

6 (−s1 − cos ξ + s2 − s3),
c24 = 1

6 (s1 − cos ξ − s2 − s3),
c25 = 1

6 (−s1 − cos ξ − 2s2 + 2s3),

(43)

where sj = ±1, j = 0, 1, 2, 3, and ξ ∈ IR.
The block structure in (42) also yields biorthogonal FIR

�lter banks with pseudo 6-fold axial symmetry as shown in
the next theorem.

Theorem 5: If {p, q(1), · · · , q(6)} and {p̃, q̃(1), · · · , q̃(6)}
are given by

[p(ω), q(1)(ω), · · · , q(6)(ω)]T =
1√
7
CnD(MT ω) · · ·C1D(MT ω)C0I0(ω),

[p̃(ω), q̃(1)(ω), · · · , q̃(6)(ω)]T =
1√
7
C−T

n D(MT ω) · · ·C−T
1 D(MT ω)C−T

0 I0(ω),

where n ∈ Z+, I0(ω) is de�ned by (21), and Ck, 0 ≤
k ≤ n are nonsingular constant matrices of the form (41),
then the FIR hexagonal �lter banks {P, Q(1), · · · , Q(6)} and
{P̃ , Q̃(1), · · · , Q̃(6)} corresponding to {p, q(1), · · · , q(6)} and
{p̃, q̃(1), · · · , q̃(6)} resp. are biorthogonal to each other and
both of them have pseudo 6-fold axial symmetry.

Example 5: Let {p, q(1), · · · , q(6)} be the orthogonal �lter
banks with pseudo 6-fold axial symmetry given by (42) with

n = 1: C1D(MT ω)C0I0(ω), where C0, C1 are orthogonal
matrices of the form (41) with their entries given by (43) for
some ξ0, ξ1 ∈ IR. With sj = 1, 0 ≤ j ≤ 3 for C0, C1, by
selecting ξ0 = .9197818411, ξ1 = −.2634177990, we have the
(numerically) most Sobolev smooth scaling function φ which
is in W 0.6523. In this case, the associated lowpass �lter p(ω)
has sum rule order 1. The contours of the pictures of φ and
ψ(1) are shown in Fig. 13 which may given us some idea about
the pseudo 6-fold axial symmetry.
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Fig. 13. Contours of φ (left) and ψ(1) (right)

Compared with �lter banks with 6-fold rotational symmetry,
�lter banks with pseudo 6-fold axial symmetry have higher
symmetry, and thus, they have fewer free parameters. There-
fore, the above block structure of orthogonal/biorthogonal
�lter banks with pseudo 6-fold axial symmetry leads to scaling
functions with less smoothness. Because of this, in this paper
we would not provide more examples on the design of such
�lter banks based on the smoothness of scaling functions.

APPENDIX A
Selected parameters in Example 3: the selected bij for B0

are

b11 = .6612620279, b12 = .4417207440,

b21 = .2268020352, b22 = .2993798006,

b23 = .1705704738, b24 = −.3949835111,

b25 = −1.0052173436, b26 = .2334910801,

b27 = .1629341515;

and the selected bij for B1 are

b11 = .7505582508, b12 = −.0869709994,

b21 = −.0675087754, b22 = .1148885367,

b23 = .0883847501, b24 = −.2784941222,

b25 = −.8412833742, b26 = .2934347543,

b27 = −.1050874592.

APPENDIX B
Selected parameters for Bio 2 in Example 4: the selected

bij for B0 are

b11 = .2431365209, b12 = .5340175677,

b21 = .8329155977, b22 = .2905157027,

b23 = .0087935205, b24 = −.7634995587,

b25 = −.9384099041, b26 = −.2165868980,

b27 = .2722450171;
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the selected bij for B1 are

b11 = .5365830002, b12 = −.1191592023,

b21 = −.3360950603, b22 = .0771447245,

b23 = −.1385489895, b24 = −.5902499286,

b25 = −.8324734053, b26 = −.6045485018,

b27 = −.1527809072;

and the selected bij for B2 are

b11 = 1.1918768947, b12 = −.0797323587,

b21 = .0102962235, b22 = 1.2596364364,

b23 = .5358680341, b24 = .7336434639,

b25 = .2152676640, b26 = .0555687397,

b27 = .7489785014.
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[41] C. de Boor, K. Höllig, and S. Riemenschneider, Box splines, Springer-
Verlag, New York, 1993.



Q. JIANG: ORTHOGONAL AND BIORTHOGONAL FIR HEXAGONAL FILTER BANKS WITH SIXFOLD SYMMETRY 13

[42] C.K. Chui and Q.T. Jiang, �Multivariate balanced vector-valued re�nable
functions�, in Mordern Development in Multivariate Approximation,
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