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Orthogonal and Biorthogonal
√

3-refinement
Wavelets for Hexagonal Data Processing

Qingtang Jiang

Abstract—The hexagonal lattice was proposed as an alternative
method for image sampling. The hexagonal sampling has certain
advantages over the conventionally used square sampling. Hence,
the hexagonal lattice has been used in many areas.

A hexagonal lattice allows
√

3, dyadic and
√

7 refinements,
which makes it possible to use the multiresolution (multiscale)
analysis method to process hexagonally sampled data. The

√
3-

refinement is the most appealing refinement for multiresolution
data processing due to the fact that it has the slowest progression
through scale, and hence, it provides more resolution levels from
which one can choose. This fact is the main motivation for the
study of

√
3-refinement surface subdivision, and it is also the

main reason for the recommendation to use the
√

3-refinement
for discrete global grid systems. However, there is little work on
compactly supported

√
3-refinement wavelets. In this paper we

study the construction of compactly supported orthogonal and
biorthogonal

√
3-refinement wavelets. In particular, we present

a block structure of orthogonal FIR filter banks with 2-fold
symmetry and construct the associated orthogonal

√
3-refinement

wavelets. We study the 6-fold axial symmetry of perfect recon-
struction (biorthogonal) FIR filter banks. In addition, we obtain
a block structure of 6-fold symmetric

√
3-refinement filter banks

and construct the associated biorthogonal wavelets.

Index Terms—Hexagonal lattice, hexagonal image, filter
bank with 6-fold symmetry,

√
3-refinement hexagonal filter

bank, orthogonal
√

3-refinement wavelet, biorthogonal
√

3-
refinement wavelet,

√
3-refinement multiresolution decomposi-

tion/reconstruction.

EDICS Category: MRP-FBNK

I. INTRODUCTION

Images are conventionally sampled at the nodes on a square
or rectangular lattice (array), and hence, traditional image pro-
cessing is carried out on a square lattice. The hexagonal lattice
(see the left part of Fig. 1) was proposed four decades ago
as an alternative method for image sampling. The hexagonal
sampling has certain advantages over the square sampling (see
e.g. [1]-[8]), and it has been used in many areas [9]-[20].

For images/data sampled on a hexagonal lattice, each node
on the hexagonal lattice represents a hexagonal cell with that
node as its center. A node b and the hexagonal cell (called
the elementary hexagonal cell) it represents are shown in the
right part of Fig. 1. All the hexagonal elementary cells form
a hexagonal tessellation of the plane.

It was shown in [21], [22] that a hexagonal lattice allows
three interesting types of refinements: 3-size (3-branch, or
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Fig. 1. Hexagonal lattice (left) and its associated hexagonal tessel-
lation (right)

3-aperture), 4-size (4-branch, or 4-aperture) and 7-size (7-
branch, or 7-aperture) refinements. In the left part of Fig. 2, the
nodes with circles © form a new coarse lattice, which is called
the 3-size (3-branch, or 3-aperture) sublattice of G here, and
it is denoted by G3. From G to G3, the nodes are reduced by a
factor 1/3. So G3 is a coarse lattice of G, and G is a refinement
of G3. Since G3 is also a regular hexagonal lattice, we can
repeat the same procedure to G3, and we then have a high-
order (coarse) regular hexagonal lattice with fewer nodes than
G3. Repeating this procedure, we have a set of lattices with
fewer and fewer nodes. This set of lattices forms a “pyramid”
or “tree” with a high-order lattice has fewer nodes than its
predecessor by a factor of 1/3. The hexagonal tessellation
associated with G3 (nodes of G3 are the centroids of hexagons
(with thick edges) to form the tessellation) is shown in the right
picture of Fig. 2, where the hexagonal tessellation associated
with G (with thin hexagon edges) is also provided.

Fig. 2. Left: Hexagonal lattice G (consisting of nodes •) and its 3-size
sublattice G3 (consisting of nodes ©); Right: Hexagonal tessellations
associated with G and G3

Notice that the distance between any two (nearest) adjoint
nodes in G3 is

√
3. Thus, the 3-size refinement is called

√
3

refinement in the area of Computer Aided Geometry Design
[23]-[29], while they are called aperture 3 (refinement) in
discrete global grid systems in [20].

The refinements of the hexagonal lattice allow the multires-
olution (multiscale) analysis method to be used to process
hexagonally sampled data. The dyadic (4-size) refinement is
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the most commonly used refinement for multiresolution image
processing, and there are many papers on the construction
and/or applications of dyadic hexagonal filter banks and
wavelets, see e.g. [11], [12], [18], [30]-[36]. Though

√
7-

refinement (7-size refinement) has some special properties,
the

√
7-refinement multiresolution data processing results in

a reduction in resolution by a factor 7 which may be too
coarse and is undesirable. The reader refers to [37] for the
construction of compactly supported

√
7-refinement wavelets.

The
√

3 (3-size) refinement is the most appealing refinement
for multiresolution data processing due to the fact that

√
3-

refinement has the slowest progression through scale and,
hence, it gives applications more resolution levels from which
to choose. This fact is the main motivation for the study of√

3-refinement subdivision in [23]-[29] and it is also the main
reason for the recommendation to use the

√
3-refinement for

discrete global grid systems in [20], where
√

3-refinement
is called 3 aperture. The

√
3-refinement has been used by

engineers and scientists of the PYXIS innovation Inc. to
develop The PYXIS Digital Earth Reference Model [38].
However, there is little work on

√
3-refinement wavelets. [39],

[40] are the only articles available in the literature on this
topic. The authors of [39] construct

√
3, dyadic and

√
7

refinement complex pre-wavelets (semi-orthogonal wavelets)
on the hexagonal lattice with the scaling functions being the
elementary polyharmonic hexagonal B-splines introduced in
[39]. Though their filters are not FIR, the wavelets in [39]
have a very nice property that they are rotation-covariant.
(The reader refers to [41] for rotation covariant quincunx
wavelets on the square lattice.) The authors of [40] construct
compactly supported biorthogonal

√
3-refinement wavelets by

adopting the method in [34] for the construction of dyadic
wavelets. The wavelets in [34] and [40] are constructed
for the purpose of surface multiresolution processing which
involves both regular and extraordinary nodes (vertices) in
the surfaces. It is hard to calculate the L2 inner product
of the scaling functions (also called basis functions) and
wavelets associated with extraordinary nodes. Thus, when
considering the biorthogonality, [34] and [40] do not use
the L2 inner product. Instead, they use a “discrete inner
product” related to the discrete filters. That discrete inner
product may result in basis functions and wavelets which
are not L2(IR2) functions. Indeed, the

√
3-refinement analysis

basis functions and wavelets (even associated with regular
nodes) constructed in [40] are not in L2(IR2), and hence they
cannot generate Riesz bases for L2(IR2). In this paper we
study the construction of compactly supported orthogonal and
biorthogonal

√
3-refinement wavelets (for regular nodes) with

the conventional L2 inner product.
The rest of this paper is organized as follows. In §II,

we provide
√

3-refinement multiresolution algorithms and
some basic results on the orthogonality/biorthogonality of

√
3-

refinement filter banks. In §III, we study the construction of
compactly supported orthogonal

√
3-refinement wavelets. In

§IV, we address the construction of
√

3-refinement perfect
reconstruction (biorthogonal) filter banks with 6-fold axial
symmetry and the associated biorthogonal wavelets.

In this paper we use bold-faced letters such as k,x,ω to

denote elements of Z2 and IR2. A multi-index k of Z2 and a
point x in IR2 will be written as row vectors

k = (k1, k2), x = (x1, x2).

However, k and x should be understood as column vectors
[k1, k2]T and [x1, x2]T when we consider Ak and Ax, where
A is a 2×2 matrix. For a matrix M , we use M∗ to denote its
complex conjugate and transpose MT , and for a nonsingular
matrix M , M−T denotes (M−1)T .

II. MULTIRESOLUTION PROCESSING WITH√
3-REFINEMENT FILTER BANKS

In this section, we review
√

3-refinement multiresolu-
tion algorithms and some basic results on the orthogonal-
ity/biorthogonality of

√
3-refinement filter banks.

Let G denote the regular unit hexagonal lattice defined by

G = {k1v1 + k2v2 : k1, k2 ∈ Z}, (1)

where
v1 = [1, 0]T , v2 = [−1/2,

√
3/2]T .

To a node g = k1v1 + k2v2 of G, we use (k1, k2) to indicate
g, see the left part of Fig. 3 for the labelling of G. Thus,
for hexagonal data c sampled on G, instead of using cg, we
use ck1,k2 to denote the pixel of c at g = k1v1 + k2v2.
Therefore, we write c, data hexagonally sampled on G, as
c = {ck1,k2}k1,k2∈Z, see the right part of Fig. 3 for ck1,k2 .

00
v2

v1

02 12

20−20 −10

01−11 11 21

22

−2−1 0−1 1−1

0−2−1−2

−1−1

−2−2

10

12

−20

01

22

11

201000−10

−1−1 0−1

−2−2

c c

cc

ccccc

c

c cc 0−2−1−2

c c1−1−2−1c

c−11 21c

02c

Fig. 3. Left: Indices for hexagonal nodes; Right: Indices for
hexagonally sampled data c

Denote V1 = 2v1 + v2, V2 = −v1 + v2. Then the coarse
lattice G3 is generated by V1 and V2:

G3 = {k1V1 + k2V2 : k1, k2 ∈ Z}.
Observe that k1V1+k2V2 = (2k1−k2)v1+(k1+k2)v2. Thus,
the indices for nodes of G3 are {(2k1− k2, k1 + k2), k1, k2 ∈
Z} and hence, the data c associated with G3 is given by
{c(2k1−k2,k1+k2)}k1,k2∈Z.

To provide the multiresolution image decomposition and
reconstruction algorithms, we need to choose a 2 × 2 matrix
M , called the dilation matrix, such that it maps the indices for
the nodes of G onto those for the nodes of the coarse lattice
G3, namely, we need to choose M such that

M : (k1, k2) → (2k1 − k2, k1 + k2), k1, k2 ∈ Z.

One may choose M to be a matrix that maps
A = {(1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0,−1)} onto
B = {(2, 1), (1, 2), (−1, 1), (−2,−1), (−1,−2), (1,−1)}.
Notice that k1v1 + k2v2 with (k1, k2) ∈ A form a hexagon,
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while k1v1 + k2v2 with (k1, k2) ∈ B form a hexagon with
vertices in G3. There are several choices for such a matrix
M . Here we consider two of such matrices (refer to [28] for
other choices of M ):

M1 =
[

2 −1
1 1

]
, M2 =

[
2 −1
1 −2

]
(2)

For a sequence {pk}k∈Z2 of real numbers with finitely many
pk nonzero, let p(ω) denote the finite impulse response (FIR)
filter with its impulse response coefficients pk (here a factor
1/3 is added for convenience):

p(ω) = (1/3)
∑

k∈Z2

pke−ik·ω.

When k,k ∈ Z2, are considered as indices for nodes g =
k1v1 + k2v2 of G, p(ω) is a hexagonal filter, see Fig. 4 for
the coefficients pk1,k2 . In this paper, a filter means a hexagonal
filter though the indices of its coefficients are given by k with
k in the square lattice Z2.
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Fig. 4. Indices for impulse response coefficients pk1,k2

For a pair of filter banks {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)},
the multiresolution decomposition algorithm with a dilation
matrix M for an input hexagonally sampled image c0

k is
{

cj+1
n = (1/3)

∑
k∈Z2 pk−Mncj

k,

d
(`,j+1)
n = (1/3)

∑
k∈Z2 q

(`)
k−Mncj

k,
(3)

with ` = 1, 2,n ∈ Z2 for j = 0, 1, · · · , J − 1, and the
multiresolution reconstruction algorithm is given by

ĉj
k =

∑

n∈Z2

p̃k−Mnĉj+1
n +

∑

1≤`≤2

∑

n∈Z2

q̃
(`)
k−Mnd(`,j+1)

n (4)

with k ∈ Z2 for j = J − 1, J − 2, · · · , 0, where ĉn,J =
cn,J . We say hexagonally filter banks {p, q(1), q(2)} and
{p̃, q̃(1), q̃(2)} to be the perfect reconstruction (PR) filter banks
if ĉj

k = cj
k, 0 ≤ j ≤ J − 1 for any input hexagonally sampled

image c0
k. {p, q(1), q(2)} is called the analysis filter bank and

{p̃, q̃(1), q̃(2)} the synthesis filter bank.
From (3) and (4), we know when the indices of hexagonally

sampled data are labelled by (k1, k2) ∈ Z2 as in Fig. 3, the de-
composition and reconstruction algorithms for hexagonal data
with hexagonal filter banks are the conventional multiresolu-
tion decomposition and reconstruction algorithms for squarely
sampled images. Thus, {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} are

PR filter banks if and only if
∑

0≤k≤2

p(ω + 2πM−T ηk)p̃(ω + 2πM−T ηk) = 1 (5)

∑

0≤k≤2

p(ω + 2πM−T ηk)q̃(`)(ω + 2πM−T ηk) = 0(6)

∑

0≤k≤2

q(`′)(ω + 2πM−T ηk)q̃(`)(ω + 2πM−T ηk)

= δ`′−`, (7)

for 1 ≤ `, `′ ≤ 2, ω ∈ IR2, where ηj , 0 ≤ j ≤ 2 are the
representatives of the group Z2/(MT Z2), δk is the kronecker-
delta sequence: δk = 1 if k = 0, and δk = 0 if k 6= 0. When
M is the dilation matrix M1 or M2 in (2), we may choose
ηj , 0 ≤ j ≤ 2 to be

η0 = (0, 0),η1 = (1, 0),η2 = (−1, 0). (8)

Filter banks {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} are also said
to be biorthogonal if they satisfy (5)-(7); and a filter bank
{p, q(1), q(2)} is said to be orthogonal if it satisfies (5)-(7)
with p̃ = p, q̃(`) = q(`), 1 ≤ ` ≤ 2.

Let {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} be a pair of FIR filter
banks. Let φ and φ̃ be the scaling functions (with dilation
matrix M ) associated with lowpass filters p(ω) and p̃(ω)
respectively, namely, φ, φ̃ satisfy the refinement equations:

φ(x) =
∑

k∈Z2

pkφ(Mx−k), φ̃(x) =
∑

k∈Z2

p̃kφ̃(Mx−k), (9)

and ψ(`), ψ̃(`), 1 ≤ ` ≤ 2 are given by

ψ(`)(x) =
∑

k∈Z2 q
(`)
k φ(Mx− k),

ψ̃(`)(x) =
∑

k∈Z2 q̃
(`)
k φ̃(Mx− k),

(10)

where pk, p̃k, q
(`)
k , q̃

(`)
k are the impulse response coefficients

of p(ω), p̃(ω), q(`)(ω), q̃(`)(ω), respectively
If {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} are biorthogonal to each

other (with dilation M ), then under certain mild conditions
(see e.g. [42], [43], [44]), φ and φ̃ are biorthogonal duals:∫
IR2 φ(x)φ̃(x− k) dx = δk, k ∈ Z2, where δk = δk1δk2 .

In this case, ψ(`), ψ̃(`), ` = 1, 2, are biorthogonal wavelets,
namely, {ψ(`)

j,k : ` = 1, 2, j ∈ Z,k ∈ Z2} and {ψ̃(`)
j,k : ` =

1, 2, j ∈ Z,k ∈ Z2} are Riesz bases of L2(IR2) and they are
biorthogonal to each other:

∫

IR2
ψ

(`)
j,k(x)ψ̃(`′)

j′,k′(x)dx = δj−j′δ`−`′δk−k′ ,

for j, j′ ∈ Z, 1 ≤ `, `′ ≤ 2, k,k′ ∈ Z2, where

ψ
(`)
j,k(x) = 3j/2ψ(`)(M jx−k), ψ̃

(`)
j,k(x) = 3j/2ψ̃(`)(M jx−k).

Remark 1: One can verify that {M−T
1 ηj : j = 0, 1, 2} =

{M−T
2 ηj : j = 0, 1, 2}, where ηj , j = 0, 1, 2 are the

representatives for both Z2/MT
1 Z2 and Z2/MT

2 Z2 given in
(8). Thus, {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} are biorthogonal
with one of M1, M2, say M1, then they are also biorthogonal
to each other with the other dilation matrix, M2.



4 IEEE TRANS. SIGNAL PROC., VOL.57, NO. 11, 4304-4313, NOV. 2009

φ and φ̃ are refinable functions along Z2. φ, φ̃ and
ψ(`), ψ̃(`), ` = 1, 2 are the conventional scaling functions and
wavelets. Let U be the matrix defined by

U =
[

1
√

3/3
0 2

√
3/3

]
.

Then U transforms the regular unit hexagonal lattice G onto
the square lattice Z2. Define

Φ(x) = φ(Ux), Ψ(`)(x) = ψ(`)(Ux),
Φ̃(x) = φ̃(Ux), Ψ̃(`)(x) = ψ̃(`)(Ux), ` = 1, 2.

(11)

Then Φ and Φ̃ are refinable along G with the same coefficients
pk and p̃k for φ and φ̃, and Ψ(`) and Ψ̃(`), ` = 1, 2 are
hexagonal biorthogonal wavelets (along the hexagonal lattice
G).

In the rest of this section, we give the definitions of the
symmetries of filter banks considered in this paper.

Definition 1: A hexagonal filter bank {p, q(1), q(2)} is said
to have 2-fold rotational symmetry if p is invariant under π
rotation, and q(2) is the π rotation of q(1).

v1

v2

S4

S3

S2

S1

S0

S5

0−1

4

S2

S0"

"

00 10

20

11

S

Fig. 5. Left: 6 axes (lines) of symmetry for lowpass filter p; Right:
3 axes (lines) of symmetry for highpass filter q(1)

Definition 2: Let Sj , 0 ≤ j ≤ 5 be the axes on the left
of Fig. 5. A hexagonal filter bank {p, q(1), q(2)} is said to
have 6-fold axial symmetry or 6-fold line symmetry if (i) p is
symmetric around S0, · · · , S5, (ii) e−iω1q(1)(ω) is symmetric
around S0, S2, S4, and (iii) q(2) is the π rotation of q(1).

The right part of Fig. 5 shows the symmetry of q(1), namely,
q(1) is symmetric around the axes S′′0 , S2, S

′′
4 , where S′′0 and

S′′4 are the 1-unit right shifts of S0 and S4 respectively.
The symmetry of hexagonal filter banks is important for

image/data processing, and it leads to simpler algorithms and
efficient computations. Unlike the orthogonal dyadic refine-
ment and

√
7-refinement hexagonal filter banks which may

have 3-fold and 6-fold symmetry respectively, it seems hard
to construct orthogonal

√
3-refinement filter banks with high

symmetry (only 2-fold symmetry can be obtained here). While
for biorthogonal filter banks, we have more flexibility for
their construction and very high symmetry can be gained.
Some 3-direction box-splines in [45] are symmetric around
Sj , 0 ≤ j ≤ 5, and such box-splines are called to have the full
set of symmetries. For the biorthogonal filter banks considered
in this paper, the lowpass filters have the full set of symmetries,
and the highpass filters also have certain symmetry as well.
Such a symmetry of our filter banks not only results in efficient
computations, but also makes it possible to design surface
multiresolution algorithms for extraordinary nodes when the

filters constructed in this paper are used for the multiresolution
algorithms for regular nodes.

In the next two sections, we discuss the construction of 2-
fold symmetric orthogonal and 6-fold symmetric biorthogonal√

3-refinement wavelets. When we consider orthogonal and
biorthogonal wavelets, from Remark 1, we need only to
consider one of the dilation matrices M1,M2. In the rest of
this paper, without loss of generality, we choose M to be M1.

III. ORTHOGONAL
√

3-REFINEMENT WAVELETS

In this section we construct compactly supported orthogonal√
3-refinement wavelets with 2-fold rotational symmetry. First

we give a family of 2-fold symmetric filter banks.
By the definition of the symmetry, we know that an FIR

filter bank {p, q(1), q(2)} has 2-fold rotational symmetry if and
only if p−k = pk, q

(2)
k = q

(1)
−k,k ∈ Z2, namely,

p(−ω) = p(ω), q(2)(ω) = q(1)(−ω), ω ∈ IR2,

or equivalently,
[
p, q(1), q(2)

]T
(−ω)

= M0

[
p(ω), q(1)(ω), q(2)(ω)

]T
,

(12)

where

M0 =




1 0 0
0 0 1
0 1 0


 .

We hope to construct filter banks {p, q(1), q(2)} given by
the product of appropriate block matrices. If we can write
a symmetric FIR filter bank [p(ω), q(1)(ω), q(2)(ω)]T as a
product B(MT ω)[ps(ω), q(1)

s (ω), q
(2)
s (ω)]T , where M is M1

defined in (2), B(ω) is a 3 × 3 matrix whose entries are
trigonometric polynomials, and {ps, q

(1)
s , q

(2)
s } is another FIR

filter bank with 2-fold rotational symmetry, then (12) implies
that B(ω) satisfies

B(−MT ω) = M0B(MT ω)M−1
0 . (13)

Denote
I0(ω) = [1, e−iω1 , eiω1 ]T . (14)

Clearly, I0(ω) satisfies (12). Therefore, 1-tap filter bank
{1, e−iω1 , eiω1} has 2-fold rotational symmetry, and it could
be used as the initial symmetric filter bank.

Denote
D1(ω) = diag(1, e−iω2 , eiω2),
D2(ω) = diag(1, e−i(ω1+ω2), ei(ω1+ω2)),
D3(ω) = diag(1, e−iω1 , eiω1).

(15)

Then one can easily verify that Dj(ω), Dj(−ω), j = 1, 2, 3
satisfy (13), and thus they could be used to build the block
matrices. Next we use B(ω) = BD(ω) as the block matrix,
where B is a 3×3 (real) constant matrix, and D(ω) is Dj(ω)
or Dj(−ω) for some j, 1 ≤ j ≤ 3. Based on the above
discussion, we know that B(ω) = BD(ω) satisfies (13) if
and only if B satisfies M0BM−1

0 = B, which is equivalent
to that B has the form:

B =




b11 b12 b12

b21 b22 b23

b21 b23 b22


 . (16)
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Thus we conclude that if {p, q(1), q(2)} is given by

[p(ω), q(1)(ω), q(2)(ω)]T =
(1/
√

3)BnD(MT ω) · · ·B1D(MT ω)B0I0(ω)
(17)

where n ∈ Z+, I0(ω) is defined by (14), Bk, 0 ≤ k ≤ n are
constant matrices of the form (16), and each D(ω) is Dj(ω)
or Dj(−ω) for some j, 1 ≤ j ≤ 3, then {p, q(1), q(2)} is an
FIR filter bank with 2-fold rotational symmetry.

Next, we show that the block structure in (17) yields 2-fold
symmetric orthogonal FIR filter banks.

For an FIR filter bank {p, q(1), q(2)}, denote q(0)(ω) =
p(ω). Let U(ω) be a 3 × 3 matrix defined by U(ω) =[
q(`)(ω + ηj)

]
0≤`,j≤2

,where η0,η1,η2 are given in (8).
Then {p, q(1), q(2)} is orthogonal if U(ω) is unitary for all
ω ∈ IR2, that is it satisfies

U(ω)U(ω)∗ = I3, ω ∈ IR2. (18)

Write q(`)(ω), 0 ≤ ` ≤ 2 as

q(`)(ω) = (1/
√

3)(q(`)
0 (MT ω) + q

(`)
1 (MT ω)e−iω1

+q
(`)
2 (MT ω)eiω1),

where q
(`)
k (ω) are trigonometric polynomials. Let V (ω)

denote the polyphase matrix (with dilation matrix M ) of
{p(ω), q(1)(ω), q(2)(ω)}:

V (ω) =




p0(ω) p1(ω) p2(ω)
q
(1)
0 (ω) q

(1)
1 (ω) q

(1)
2 (ω)

q
(2)
0 (ω) q

(2)
1 (ω) q

(2)
2 (ω)


 . (19)

From the fact that

[p(ω), q(1)(ω), q(2)(ω)]T = (1/
√

3)V (MT ω)I0(ω),

where I0(ω) is defined by (14), and that the 3 × 3 ma-
trix (1/

√
3)[I0(ω + 2πM−T η0), I0(ω + 2πM−T η1), I0(ω +

2πM−T η2)] is unitary for all ω ∈ IR2, we know that (18)
holds if and only if V (ω) is unitary for all ω ∈ IR2.

If {p, q(1), q(2)} is given by (17), then its polyphase matrix
V (ω) is V (ω) = BnD(ω)Bn−1D(ω) · · ·B1D(ω)B0. Since
each D(ω) is unitary, we know that if constant matrices
Bk, 0 ≤ k ≤ n, are orthogonal, then V (ω) is unitary.

Next, we consider the orthogonality of a matrix B of the
from (16). To this regard, let U denote the unitary matrix:

U =




1 0 0
0 1/

√
2 1/

√
2

0 1/
√

2 −1/
√

2


 .

Then

UBU∗ =




b11

√
2b12 0√

2b21 b22 + b23 0
0 0 b22 − b23


 .

Thus B is orthogonal if and only if
[

b11

√
2b12√

2b21 b22 + b23

]
is

orthogonal and b22 + b23 = ±1, which implies that bij can be
written as

b11 = s0 cos θ, b12 = (1/
√

2) sin θ, b21 = (1/
√

2)s0 sin θ,
b22 + b23 = − cos θ, b22 − b23 = s1,

(20)

where s0 = ±1, s1 = ±1, θ ∈ IR. Thus an orthogonal
matrix B of the form (16) has one parameter. If we choose
s0 = 1, s1 = 1 and write cos θ = (1− t2)/(1 + t2),
sin θ = (2t)/(1 + t2), then we have

b11 = 1−t2

1+t2 , b12 = b21 =
√

2t
1+t2 , b22 = t2

1+t2 , b23 = 1
1+t2 .

(21)
We have therefore the following theorem.

Theorem 1: Suppose {p, q(1), q(2)} is given by (17). If each
Bk, 0 ≤ k ≤ n is of the form (16) and its entries bij are given
by (20) for some θk, then {p, q(1), q(2)} is an orthogonal FIR
filter bank with 2-fold rotational symmetry.

With such a family of orthogonal filter banks, by selecting
the free parameters, one can design the filters with desirable
properties. Here we consider the filters based on the Sobolev
smoothness of the associated scaling functions φ. We say φ
to be in the Sobolev space W s for some s > 0 if φ satisfies∫
IR2(1 + |ω|2)s|φ̂(ω)|2dω < ∞. To assure that φ ∈ W s, the

associated FIR lowpass filter p(ω) has sum rules of certain
order. p(ω) is said to have sum rule order m (with dilation
matrix M ) provided that p(0, 0) = 1 and

Dα1
1 Dα2

2 p(2πM−T ηj) = 0, j = 1, 2, (22)

for all (α1, α2) ∈ Z2
+ with α1 + α2 < m, where ηj , j = 1, 2,

are defined by (8), D1 and D2 denote the partial derivatives
with the first and second variables of p(ω) respectively. The
Sobolev smoothness of φ can be given by the eigenvalues of
the so-called transition operator matrix Tp associated with the
lowpass filter p, see [46], [47].

We find that if the orthogonal filter bank {p, q(1), q(2)} is
given by (17) with n = 0 or n = 1, then the lowpass filter p(ω)
cannot achieve sum rule order 2, and hence, the smoothness
order of φ is very low. In the following two examples, we
consider the filter banks with n = 2 and n = 3.

Example 1: Let {p, q(1), q(2)} be the orthogonal filter bank
with 2-fold rotational symmetry given by (17) for n = 2:
B2D2(MT ω)B1D1(MT ω)B0I0(ω), where D1, D2 are de-
fined in (15), B0, B1 and B2 are orthogonal matrices of the
form (16) with their entries bij given by (21) for parameters
t0, t1 and t2. The lowpass filter p(ω) depends on these three
parameters t0, t1 and t2. By solving the system of equations
for sum rule order 2, we get

t0 = −(
√

2/2)(3 +
√

19), t1 = (
√

2/6)(−5 +
√

19),
t2 = −(

√
2/2)(5 + 3

√
3).

The resulting scaling function φ with M = M1 is in W 0.79282.
The resulting coefficients pk, q

(1)
k , q

(2)
k and the pictures for

φ and ψ(1) are provided in the long version of this paper
downloadable at author’s web site.

From Remark 1, this resulting filter bank is orthogonal
with dilation matrix M2. Furthermore, one can verify that the
resulting p(ω) also has sum rule order 2 with M2, and the
associated scaling function (with M2) is in W 0.80115. ♦

Example 2: Let {p, q(1), q(2)} be the orthogonal filter bank
with 2-fold rotational symmetry given by (17) for n =
3: B3D1(MT ω)B2D2(MT ω)B1D1(MT ω)B0I0(ω), where
D1, D2 are defined in (15), B0, B1, B2 and B3 are orthogonal
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matrices of the form (16) with their entries bij given by (21)
for parameters t0, t1, t2 and t3. If we choose,

t0 = −3.96188283176253, t1 = −0.09286132100086,

t2 = −5.26430640532092, t3 = 0.04994199850331,

then the resulting p(ω) has sum rule order 2 (with both M1

and M2). The corresponding scaling function φ with M = M1

is in W 0.84094, and that with M = M2 is in W 1.06523. ♦
The orthogonal FIR filter banks given by (17) with more

blocks BkD(MT ω) will produce wavelets with small in-
crements of smoothness order. Similar to orthogonal dyadic
refinement and

√
7-refinement hexagonal wavelets, we find it

is also hard to construct orthogonal
√

3-refinement wavelets
with high smoothness order. In the next section, we consider
biorthogonal filter banks, which give us some flexility for the
construction of PR filter banks.

In the rest of this section, we apply the filter bank in
Example 1 to a hexagonally sampled image in the left part
of Fig. 6. This is a part of the hexagonal image re-sampled
from a 512×512 squarely sampled image Lena by the bilinear
interpolation in [6]. The decomposed images (when M = M1)
with the lowpass filter p and highpass filters q(1), q(2) are
shown on the right of Fig. 6 and in Fig. 7 respectively. These
images are rotated 30◦ with respect to the original image.

Fig. 6. Left: Original (hexagonal) image; Right: Decomposed image
with lowpass filter p

Fig. 7. Decomposed images with highpass filters q(1) (left) and q(2)

(right)

IV. BIORTHOGONAL
√

3-REFINEMENT WAVELETS WITH
6-FOLD SYMMETRY

In this section we consider the construction of biorthogonal√
3-refinement FIR filter banks with 6-fold symmetry and the

associated wavelets. In §IV.A, we present a characterization
of symmetric filter banks. In §IV.B, we provide a family of
6-fold symmetric biorthogonal

√
3-refinement FIR filter banks

and discuss the construction of the associated wavelets.

A. 6-fold axial symmetry

Let

L0 =
[

0 1
1 0

]
, L1 =

[
1 0
1 −1

]
, L2 =

[
1 −1
0 −1

]

L3 = −L0, L4 = −L1, L5 = −L2.
(23)

Then for a j, 0 ≤ j ≤ 5, {pk} is symmetric around the
symmetry axis Sj in Fig. 5 if and only if pLjk = pk. Denote

R1 =
[

0 1
−1 1

]
.

Then {pR1k} is the π/3 (anticlockwise) rotation of {pk}.
Furthermore, from the fact

Lj = (R1)jL0, 0 ≤ j ≤ 5,

we know when we discuss the 6-fold axial symmetry of a filter
bank, we need only consider L0, R1 instead of all Lj , 0 ≤ j ≤
5.

Proposition 1: A filter bank {p, q(1), q(2)} has 6-fold axial
symmetry if and only if it satisfies

[p, q(1), q(2)]T (R−T
1 ω) = N1(ω)[p, q(1), q(2)]T (ω)(24)

[p, q(1), q(2)]T (L0ω) = N2(ω)[p, q(1), q(2)]T (ω), (25)

where

N1(ω) =




1 0 0
0 0 e−i(2ω1+ω2)

0 ei(2ω1+ω2) 0


 ,

N2(ω) =




1 0 0
0 ei(ω1−ω2)

0 0 e−i(ω1−ω2)


 .

(26)

Proof. For a filter bank {p, q(1), q(2)}, let h(1)(ω) =
eiω1q(1)(ω), h(2)(ω) = e−iω1q(2)(ω). Then with the fact
Lj = Rj

1L0, 0 ≤ j ≤ 5, we know {p, q(1), q(2)} has 6-fold
axial symmetry if and only if

p(R−T
1 ω) = p(L0ω) = p(ω), (27)

h(1)((R−T
1 )2ω) = h(1)((R−T

1 )4ω)
= h(1)(L0ω) = h(1)(ω),

(28)

h(2)(−ω) = h(1)(ω). (29)

Observe that R3
1 = −I2. This fact and (28) and (29) lead to

h(1)(R−T
1 ω) = h(1)(−(R−T

1 )4ω) = h(1)(−ω) = h(2)(ω),
h(2)(R−T

1 ω) = h(2)(−(R−T
1 )4ω) = h(1)((R−T

1 )4ω) = h(1)(ω)
h(2)(L0ω) = h(1)(−L0ω) = h(1)(−ω) = h(2)(ω).

Conversely, one can check that h(1)(R−T
1 ω) =

h(2)(ω), h(2)(R−T
1 ω) = h(1)(ω) and h(2)(L0ω) = h(2)(ω)

imply (28) and (29). Therefore, {p, q(1), q(2)} has 6-fold axial
symmetry if and only if

[p, h(1), h(2)]T (R−T
1 ω) = [p, h(2), h(1)]T (ω), (30)

[p, h(1), h(2)]T (L0ω) = [p, h(1), h(2)]T (ω). (31)

With h(1)(ω) = eiω1q(1)(ω), h(2)(ω) = e−iω1q(2)(ω), one
can easily show that (24) and (25) are equivalent to (30) and
(31). Hence, {p, q(1), q(2)} has 6-fold axial symmetry if and
only if (24) and (25) hold, as desired. ♦
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Let M = M1. For an FIR filter bank {p, q(1), q(2)}, let
V (ω) be its polyphase matrix (with M = M1) defined by (19).
Based on Proposition 1, we reach the following proposition
which gives the characterization of the 6-fold axial symmetry
of a filter bank in terms of the corresponding polyphase matrix.

Proposition 2: An FIR filter bank {p, q(1), q(2)} has 6-fold
axial symmetry if and only if its polyphase matrix V (ω) (with
dilation matrix M = M1) satisfies

V (R−T
1 ω) = N0(ω)V (ω)N0(ω), (32)

V (L0ω) = J0V (ω)J0, (33)

where

N0(ω) =




1 0 0
0 0 e−iω1

0 eiω1 0


 , J0 =




1 0 0
0 0 1
0 1 0


 . (34)

Proof. By the definition of V (ω), we have

[p, q(1), q(2)](R−T
1 ω) = (1/

√
3)V (MT R−T

1 ω)I0(R−T
1 ω)

= (1/
√

3)V (MT R−T
1 ω)N1(ω)I0(ω).

Thus (24) is equivalent to

V (MT R−T
1 ω)N1(ω)I0(ω) = N1(ω)V (MT ω)I0(ω),

or equivalently,

V (MT R−T
1 ω)N1(ω) = N1(ω)V (MT ω).

The fact MT R−T
1 = R−T

1 MT (M = M1) leads to that the
above equality is

V (R−T
1 MT ω)N1(ω) = N1(ω)V (MT ω),

or,
V (R−T

1 ω) = N1(M−T ω)V (ω)N1(M−T ω),

which is (32) because of the fact N1(M−T ω) = N0(ω).
Similarly as above, we have that (25) is equivalent to

V (MT L0ω) = N2(ω)V (MT ω)N2(ω)−1.

From MT L0 = R−T
1 L0M

T (when M = M1), we know that
the above equality is

V (R−T
1 L0M

T ω) = N2(ω)V (MT ω)N2(ω)−1,

or,

V (R−T
1 L0ω) = N2(M−T ω)V (ω)N2(M−T ω)T ,

which in turn is equivalent to (under the assumption (32))

V (L0ω) = N0(L0ω)V (R−T
1 L0ω)(L0ω)

= N0(L0ω)N2(M−T ω)V (ω)N2(M−T ω)T N0(L0ω)−1

= J0V (ω)J0.

Therefore, (24) and (25) are equivalent to (32) and (33). ♦
In the next subsection, based on the characterization in

Proposition 2 for the 6-fold symmetry of filter banks, we
provide a family of biorthogonal FIR filter banks with such a
type of symmetry.

B. Biorthogonal
√

3-refinement wavelets

In this subsection we use the notations: x = e−iω1 , y =
e−iω2 . Thus an FIR filter p(ω) can be written as a polynomial
of x, y. Denote

W (ω) =




d + c(x + xy + y + 1
x + 1

xy + 1
y ) a(1 + 1

x + y) a(1 + x + 1
y )

c
2a (1 + x + 1

y ) 1 0
c
2a (1 + 1

x + y) 0 1


 ,

(35)
where a, c, d are constants with a 6= 0, d 6= 3c. Next we use
W (ω) to build a block structure of biorthogonal FIR filter
banks with 6-fold symmetry. This filter bank {p, q(1), q(2)}
has 6-fold axial symmetry. (One may verify directly that
its polyphase matrix W (ω) satisfies (32) and (33)). If a =
1/3, d = 2/3, c = 1/(18), then the corresponding {pk} is the
subdivision mask constructed in [23].

Except for the property that W (ω) produces a 6-fold
symmetry filter bank, W (ω) has another important property:
the determinant of W (ω) is d − 3c, a nonzero constant.
Thus, the inverse of W (ω) is a matrix whose entries are also
polynomials of x, y. More precisely, W̃ (ω) = (W (ω)−1)∗ is

W̃ (ω) = 1
d−3c×


1 − c

2a (1 + 1
x + y) − c

2a (1 + x + 1
y )

−a(1 + x + 1
y ) d− 3

2c + c
2 (x + xy + y + 1

x + 1
xy + 1

y ) c
2 (1 + x + 1

y )2

−a(1 + 1
x + y) c

2 (1 + 1
x + y)2 d− 3

2c + c
2 (x + xy + y + 1

x + 1
xy + 1

y )


 .

(36)
Hence, {p, q(1), q(2)} has a biorthogonal FIR filter
bank {p̃, q̃(1), q̃(2)} defined by [p̃(ω), q̃(1)(ω), q̃(2)(ω)]T

= W̃ (MT ω)I0(ω). In addition, one can check directly (or
from the fact W (ω) satisfies (32) and (33)) that W̃ (ω)
satisfies (32) and (33). Thus, {p̃, q̃(1), q̃(2)} also has 6-fold
axial symmetry. More general, we have the following result.

Theorem 2: Suppose FIR filter banks {p, q(1), q(2)} and
{p̃, q̃(1), q̃(2)} are given by

[p(ω), q(1)(ω), q(2)(ω)]T

= Un(MT ω) · · ·U0(MT ω)I0(ω),
(37)

[p̃(ω), q̃(1)(ω), q̃(2)(ω)]T

= (1/3)Ũn(MT ω) · · · Ũ0(MT ω)I0(ω)

where n ∈ Z+, I0(ω) is defined by (14), each Uk(ω) is
a W (ω) in (35) or a W̃ (ω) in (36) for some parameters
ak, bk, dk, and Ũk(ω) = (Uk(ω)−1)∗ is the corresponding
W̃ (ω) in (36) or W (ω) in (35), then {p, q(1), q(2)} and
{p̃, q̃(1), q̃(2)} are biorthogonal FIR filter bank with 6-fold
axial symmetry.

Next we consider the construction of biorthogonal
√

3-
refinement wavelets based on the symmetric biorthogonal FIR
filter banks given in (37). When we construct biorthogonal
wavelets, we will intently construct the synthesis scaling
function φ̃ to have a higher smoothness order. Smoothness
of φ̃ is in general more important than that for φ since
certain smoothness of φ̃ is required to assure the reconstructed
image/surface to have nice visual quality.

First, we consider the filter banks given by (37) with
n = 0. Let [p(ω), q(1)(ω), q(2)(ω)]T = W̃0(MT ω)I0(ω) and
[p̃(ω), q̃(1)(ω), q̃(2)(ω)]T = (1/3)W0(MT ω)I0(ω), where
W̃0(ω) and W0(ω) are given by (36) and (35) respectively for
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some parameters a0, c0, d0. By solving the system of equations
for sum rule order 1 of p̃(ω), we have

a0 = 1/3, d0 = 1− 6c0. (38)

The resulting p̃(ω) actually has sum rule order 2 (the condi-
tions in (22) for p̃(ω) with (α1, α2) = (1, 0) and (α1, α2) =
(0, 1) are automatically satisfied because of the symmetry of
p̃(ω)). If in addition, we choose c0 = 1/(18), then p̃(ω) has
sum rule order 3. This p̃(ω) is the subdivision mask in [23].
However, in this case the resulting p(ω) does not have sum
rule order 1, which implies the corresponding scaling function
φ is not in L2(IR2). With a0, d0 given by (38) for some c0, by
solving the system of equations for sum rule order 1 of p(ω),
we have c0 = −2/9. However, in this case the corresponding
φ̃ is not in L2(IR2). Thus, the filter banks in (37) with n = 0
cannot generate scaling functions φ and φ̃ such that both of
them are in L2(IR2), and hence, these filter banks cannot
generate biorthogonal wavelets.

Example 3: Let {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} be the
biorthogonal filter banks given by (37) for n = 1 with

[p(ω), q(1)(ω), q(2)(ω)]T = W1(MT ω)W̃0(MT ω)I0(ω),
[p̃(ω), q̃(1)(ω), q̃(2)(ω)]T

= (1/3)W̃1(MT ω)W0(MT ω)I0(ω),

where W̃0(ω), W̃1(ω), and W0(ω),W1(ω) are given by (36)
and (35) for some parameters a0, c0, d0 and a1, c1, d1.

We notice that the smoothness of φ, φ̃ is independent of
some parameters, e.g. d1. In the following we let d1 = 0. If

a = c1(1− 2a1)/(2a1), c = c1(9a1 − 1)(1− 2a1)/(3a1),
d = c1(36a2

1 + 2a1 − 1)/a1,

then both p(ω) and p̃(ω) have sum rule order 2. If we choose
a1 = 8/(81), c1 = 1, then the resulting φ is in W 0.1289, and
φ̃ in W 1.3474; while if we choose a1 = 1/(10), c1 = 1, then
the resulting φ ∈ W 0.0911, and φ̃ ∈ W 1.3777. One may choose
other values for a1, c1 such that the resulting φ̃ is smoother.
But φ̃ can only gain very slight increments of smoothness
order if its dual φ is in L2(IR2). ♦

Example 4: Let {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} be the
biorthogonal filter banks given by (37) for n = 1 with

[p(ω), q(1)(ω), q(2)(ω)]T = W̃1(MT ω)W̃0(MT ω)I0(ω),
[p̃(ω), q̃(1)(ω), q̃(2)(ω)]T

= (1/3)W1(MT ω)W0(MT ω)I0(ω),

where W̃0(ω), W̃1(ω), and W0(ω),W1(ω) are given by (36)
and (35) for some parameters a0, c0, d0 and a1, c1, d1. In
this case, p̃ has a larger filter length than p. We will use
{p̃, q̃(1), q̃(2)} as the analysis filter bank (for multiresolution
decomposition algorithm) and use {p, q(1), q(2)} as the synthe-
sis filter bank (for multiresolution reconstruction algorithm).
Hence, we will construct φ to be smoother than its dual φ̃.

If

a1 =
3a− d− 6c

3(3c− d)
, c1 =

(3c + 2a)(6c + d− 3a)
9a(3c− d)(6c + 6a + d)

,

d1 =
3c− 18acc1 + 6adc1 − a

a(3c− d)
,

then both p(ω) and p̃(ω) have sum rule order 2. If in addition,
d = −(3a)/(4a2 +11ca+9c2), then p(ω) has sum rule order
3. There are two free parameters a, c. (We cannot choose a, c
further such that p̃(ω) also has sum rule order 3.) With many
choices of different values for a, c, the resulting φ ∈ C1 while
φ̃ has certain smoothness order. For example, if we choose a =
−1/3, c = 2, then the corresponding φ̃ ∈ W 0.0758 and φ ∈
W 2.3426; with a = −1/3, c = 1, the resulting φ̃ ∈ W 0.3284

and φ ∈ W 2.2354; and if

a = −1/3, c = 1/2, (39)

then φ̃ ∈ W 1.0507, φ ∈ W 1.9145. The corresponding biorthog-
onal filter banks, denoted as Bio(6,8), when a, c are given by
(39) are provided in the long version of this paper. In this
case, the corresponding d, a1, c1, d1 defined above for sum
rule orders are

d =
31
4

, a1 =
47
75

, c1 =
94

1575
, d1 =

274
525

.♦

Except for W (ω) and W̃ (ω), we may use other matrices as
blocks to build the biorthogonal filter banks. For example, we
may use

Z(ω) =




1 e0(1 + 1
x + y) + e1(xy + 1

xy + y
x ) e0(1 + x + 1

y ) + e1(xy + 1
xy + x

y )
0 1 0
0 0 1


 ,

(40)
where e0, e1 are constants. For Z(ω) defined by (40), Z̃(ω) =
(Z(ω)−1)∗ is given by

Z̃(ω) =




1 0 0
−e0(1 + x + 1

y )− e1(xy + 1
xy + x

y ) 1 0
−e0(1 + 1

x + y)− e1(1 + 1
xy + y

x ) 0 1


 .

(41)
Clearly both Z(ω) and Z̃(ω) satisfy (32) and (33). Thus if
{p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} are given by (37) for some
n ∈ Z+ with each Uk(ω) is a W (ω) in (35), a W̃ (ω) in (36),
a Z(ω) in (40), or a Z̃(ω) in (41), and Ũk(ω) = (Uk(ω)−1)∗

is the corresponding W̃ (ω) (W (ω), Z̃(ω), or Z(ω) accord-
ingly), then {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} are biorthogonal
FIR filter bank with 6-fold axial symmetry. Next, as an ex-
ample, we show how W (ω) and Z(ω) reach some interesting
biorthogonal filter banks, including those constructed in [40]
(for regular nodes).

Example 5: Let {p, q(1), q(2)} and {p̃, q̃(1), q̃(2)} be the
biorthogonal filter banks given by

[p(ω), q(1)(ω), q(2)(ω)]T = Z(MT ω)W̃ (MT ω)I0(ω),
[p̃(ω), q̃(1)(ω), q̃(2)(ω)]T

= (1/3)Z̃(MT ω)W (MT ω)I0(ω),

where W (ω), W̃ (ω), Z(ω), and Z̃(ω) are given by (35), (36),
(40), and (41) for some parameters a, b, d and e0, e1.

By solving the system of equations for sum rule order 1 of
p̃(ω), we have

a = 1/3, d = 1− 6c. (42)

Again, the resulting p̃ actually has sum rule order 2 because of
the symmetry of p̃. Then by solving the system of equations
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for sum rule order 1 of p(ω), we have

e0 = 1/9 + c/2− e1. (43)

With (43), the resulting p also has sum rule order 2 because
of its symmetry. If in addition,

e1 = −5/(81)− c/3− c2, (44)

then p(ω) has sum rule order 3.
If c = 1/(18) (and a, d are given in (42)), then the

resulting p̃(ω) has sum rule order 3. As mentioned above, this
p̃(ω) is the subdivision mask in [23] for surface subdivision.
It was calculated in [25] that the corresponding φ̃ is in
W 2.9360. However, we find that for c = 1/(18), for any
value e1 (with e0 given in (43)), the corresponding φ is
not in L2(IR2). (Paper [40] chooses two groups of values:
c = 1/(18), e0 = 0.229537, e1 = 0, and c = 1/(18),
e0 = 0.279682, e1 = −0.142329.) In the following we may
choose other values for c. For example, if we choose c as
(with a, d, e0, e1 defined by (42)-(44)) c = 1/(37), then
the corresponding φ ∈ W 0.0027 and φ̃ ∈ W 1.9344; and
if c = 2/(81), then the corresponding φ ∈ W 0.0540 and
φ̃ ∈ W 1.9184. If we remove the requirement (44) for sum
rule order 3 of p(ω), then with c = 1/(27), e1 = −1/(10),
the resulting φ ∈ W 0.0104 and φ̃ ∈ W 1.9801. We check
numerically that all the resulting scaling functions φ̃ are in C1.
The resulting biorthogonal filter banks, denoted as Bio(8,4),
corresponding to c = 1/(27), e1 = −1/(10) are provided in
the long version of this paper. ♦

V. CONCLUSION

In this paper we introduce
√

3-refinement orthogonal hexag-
onal filter banks with 2-fold rotational symmetry and biorthog-
onal hexagonal filter banks with 6-fold axial symmetry. We
obtain block structures of these filter banks. Based on these
block structures, we construct compactly supported orthogonal
and biorthogonal

√
3-refinement hexagonal wavelets. Our fu-

ture work is to apply these hexagonal filter banks and wavelets
for hexagonal data processing applications such as image
enhancement and edge detection. We will also compare the
experiment results obtained by the

√
3-refinement wavelets

constructed in this paper with those obtained by the dyadic
and

√
7-refinement wavelets.

Acknowledgments. The author thanks Dale K. Pounds for
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