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FIR Filter Banks for Hexagonal Data Processing
Qingtang Jiang

Abstract—Images are conventionally sampled on a rectangular
lattice. Thus, traditional image processing is carried out on the
rectangular lattice. The hexagonal lattice was proposed more
than four decades ago as an alternative method for sampling.
Compared with the rectangular lattice, the hexagonal lattice has
certain advantages which include that it needs less sampling
points; it has better consistent connectivity and higher symmetry;
the hexagonal structure is also pertinent to the vision process.
In this paper we investigate the construction of symmetric FIR
hexagonal filter banks for multiresolution hexagonal image pro-
cessing. We obtain block structures of FIR hexagonal filter banks
with 3-fold rotational symmetry and 3-fold axial symmetry. These
block structures yield families of orthogonal and biorthogonal
FIR hexagonal filter banks with 3-fold rotational symmetry
and 3-fold axial symmetry. In this paper, we also discuss the
construction of orthogonal and biorthogonal FIR filter banks
with scaling functions and wavelets having optimal smoothness.
In addition, we present a few of such orthogonal and biorthogonal
FIR filters banks.

Index Terms—Hexagonal lattice, hexagonal data, 3-fold rota-
tional symmetry, 3-fold axial symmetry, orthogonal and biorthog-
onal FIR hexagonal filter banks, orthogonal and biorthogonal
hexagonal wavelets.

EDICS Category: MRP-FBNK

I. I NTRODUCTION

Traditional 2-D data (image) processing is carried out on the
rectangular lattice since 2-D data is conventionally sampled
at the sites (points) on a square or rectangular lattice. Seea
square lattice in the left part of Fig. 1. The hexagonal lattice
(in the right part of Fig. 1) was proposed more than four
decades ago in [1] as an alternative method for sampling,
and since then, it has been used in numerous applications.
Compared with a rectangular lattice, a hexagonal lattice has
certain advantages, see e.g. [1]-[9]. It was shown in [1] that,
for functions band-limited in a circular region in the frequency
domain, the hexagonal lattice needs a smaller number (about
13.4% smaller) of sampling points to maintain equally high
frequency information than the square lattice. The hexagonal
structure has better consistent connectivity: each elementary
cell of a hexagonal lattice has six neighbors of the same
type while an elementary cell of a square lattice has two
different types of neighbors. The hexagonal structure possesses
higher symmetry: a regular hexagonal lattice has 12-fold
symmetry while a square lattice has 8-fold symmetry. Other
advantages of the hexagonal structure over the square structure
include that it offers greater angular resolution of images
and it is closely related to the human visual system. Hence,
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Fig. 1. Rectangular lattice (left) and hexagonal lattice (right)

the hexagonal lattice has been used in many areas such as
edge detection [10], [11] and pattern recognition [12]-[16].
The hexagonal lattice has also been applied in Geoscience
and other fields. For example, in the Soil Moisture and
Ocean Salinity (SMOS) space mission led by the European
Space Agency, the data collected by the Y-shaped antenna of
the SMOS space mission is hexagonal data (sampled on a
hexagonal lattice) [17], [18]. A hexagon-based grid has been
adopted by the U.S. Environmental Protection Agency for
global sampling problems [19], [20].

Despite numerous advantages of the hexagonal lattice,
multiresolution (multiscale) hexagonal image processingis a
research area with slow pace of activity, as pointed out in [7].
One probable reason for this could be that most researchers in
the “Wavelets” community are accustomed to the traditional
rectangular lattice. Another reason is probably that current
approaches have encountered difficulties in the construction
and design of desirable hexagonal filter banks to be used
for multiresolution image processing. To the author’s best
knowledge, [4], [21]-[26] are the papers available on the con-
struction/design of hexagonal filter banks with both lowpass
and highpass filters constructed. [21] presents a few FIR (finite
impulse response) hexagonal filter banks which achieved near
orthogonality. [22] provides one 7-channel (

√
7-refinement)

FIR hexagonal filter bank for image coding. The authors
in [23] designed FIR hexagonal filter banks by minimizing
the filter bank error and intra-band aliasing error function
and applied their filters to image compression and orientation
analysis. The highpass filters used in [23] are suitable spatial
shifting and frequency modulations of the lowpass filter. FIR
hexagonal filter banks was also designed in [24] by the
same method as in [23] but with a different filter bank error
and intra-band aliasing error function. The FIR filter banks
designed in [21], [23], [24] are not perfect reconstructionfilter
banks. Construction of biorthogonal hexagonal filter banks
was fully investigated in [25] and a few biorthogonal FIR
filter banks were constructed there. However, it is difficult
to construct biorthogonal filter banks with smooth wavelets
by their approach which also results in filters with large filter
lengths. The author in [4] (also in [26]) proposed a novel
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block structure of orthogonal/biorthogonal FIR hexagonalfilter
banks with certain symmetry. However, a rigorously mathe-
matical proof of the symmetry and the (bi)orthogonality of the
filter banks in [4] is desired, and the issue of how to select the
free parameters in these filter banks needs to be addressed.

Though the hexagonal filter banks designed in [23] are
not perfect reconstruction filter banks, experimental results
on their applications to image compression and orientation
analysis carried out in [23] and their applications to digital
mammographic feature enhancement and the recognition of
complex annotations in [12], [13] are appealing. Therefore, the
construction/design of hexagonal filter banks deserves further
investigation. The main objective of this paper is to construct
orthogonal and biorthogonal FIR hexagonal filter banks with
certain symmetry which is pertinent to the symmetry structure
of the hexagonal lattice.

This paper is organized as follows. In Section II, we first
briefly show that the problem of filter construction along
the hexagonal lattice can be transformed into that along the
square lattice ofZ2. After that we discuss the symmetry
of filter banks and review some basic results on orthogo-
nal/biorthogonal filter banks. In Section III, we present block
structures of orthogonal and biorthogonal FIR filter banks with
3-fold rotational symmetry. In Section IV, we provide block
structures of orthogonal and biorthogonal FIR filter banks with
3-fold axial symmetry. These structures include that in [4].
In both Sections III and IV, we also discuss the construction
of orthogonal and biorthogonal FIR filter banks with scaling
functions and wavelets having optimal smoothness.

In this paper we use the following notations. Forx =
[x1, x2]

T ,y = [y1, y2]
T , x ·y denotes their dot (inner) product

xT y. For a functionf on IR2, f̂ denotes its Fourier transform:
f̂(ω) =

∫
IR2 f(x)e−ix·ωdx. For a matrixM , we useM∗

to denote its conjugate transposeMT , and for a nonsingular
matrix M , M−T denotes(M−1)T . For ω = [ω1, ω2]

T , let

z1 = e−iω1 , z2 = e−iω2 . (1)

II. PRELIMINARIES

In this section, after showing that the problem of filter
construction along the hexagonal lattice can be transformed
into that along the square lattice, we provide some basic results
on the symmetry and the orthogonality/biorthogonality of filter
banks.

A. Transforming the hexagonal lattice to the square latticeZ2

Most multiresolution analysis theory and algorithms for
image processing are developed along the square lattice with
sitesk ∈ Z2, though they could be established along general
lattices (see e.g. [27] for the shift-invariant theory along
general lattices). To design hexagonal filter banks, here we
transform the hexagonal lattice to the square lattice so that
we can use the well-developed integer-shift multiresolution
analysis theory and methods.

Let G be the regular unit hexagonal lattice defined by

G = {n1v1 + n2v2 : n1, n2 ∈ Z}, (2)

U

U
−1
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Fig. 2. Regular unit hexagonal lattice (left) and square latticeZ
2

(right)
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Fig. 3. Symmetric axesS1, S2, S3 in hexagonal lattice

where v1 = [1, 0]T ,v2 = [− 1
2 ,

√
3

2 ]T . Let U be the matrix
defined by

U =

[
1

√
3

3

0 2
√

3
3

]
. (3)

ThenU transforms the regular unit hexagonal lattice into the
square latticeZ2. See Fig. 2.

For a hexagonal filterH(ω) = 1
4

∑
g∈G Hge

−ig·ω with
(real) impulse responseHg (in this paper a factor14 is added
for convenience), by the transformation with the matrixU , we
have a corresponding filterh(ω) = 1

4

∑
k∈Z2 hke

−ik·ω for
square data (squarely sampled data) with its impulse response
hk = HU−1k. Conversely, corresponding to a square filter
(filter for square data)h(ω) = 1

4

∑
k∈Z2 hke

−ik·ω, we have a
hexagonal filterH(ω) = 1

4

∑
g∈G hUge

−ig·ω.
The matrix U also transforms the scaling functions and

wavelets along the hexagonal lattice to those along the square
latticeZ2. For example, ifΦ is the scaling function associated
with a lowpass hexagonal filterH(ω) = 1

4

∑
g∈G Hge

−ig·ω,
namely, it satisfies

Φ(x) =
∑

g∈G
HgΦ(2x − g), x ∈ IR2,

then φ defined byφ(x) = Φ(U−1x) is the scaling function
associated with square filterh(ω) = 1

4

∑
k∈Z2 hke

−ik·ω,
wherehk = HU−1k. Therefore, to design hexagonal filters,
we need only to construct filters along the traditional lattice
Z2. Then the matrixU will transform the filters, scaling
functions and wavelets along the latticeZ2 into those along
the hexagonal lattice.

B. Symmetry of filter banks

Since the hexagonal lattice has the highest degree of sym-
metry, it is desirable that hexagonal filter banks designed also
have certain symmetry pertinent to the symmetric structureof
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the hexagonal lattice. In this paper, we consider two types
of symmetry: 3-fold rotational symmetry and 3-fold axial
symmetry which are defined below.

Definition 1: A hexagonal filter bank{P,Q(1), Q(2), Q(3)}
is said to have3-fold rotational symmetryif its lowpass filter
P (ω) is invariant under the23π and 4

3π rotations, and its high-
pass filtersQ(2) andQ(3) are the2

3π and 4
3π (anticlockwise)

rotations of highpass filterQ(1), resp.
Let S1, S2 andS3 be the lines in the regular unit hexagonal

lattice shown in Fig. 3.
Definition 2: A hexagonal filter bank{P,Q(1), Q(2), Q(3)}

is said to have3-fold axial symmetryif P (ω) is symmetric
aroundS1, S2 andS3, andQ(1) is symmetric around the axis
S1 and Q(2) and Q(3) are the 2

3π and 4
3π (anticlockwise)

rotations ofQ(1), resp.
Let R̃1, R̃2, Ñe, W̃ and S̃e be the matrices defined by

R̃1 =

[
− 1

2

√
3

2

−
√

3
2 − 1

2

]
, R̃2 =

[
− 1

2 −
√

3
2√

3
2 − 1

2

]
,

Ñe =

[
− 1

2

√
3

2√
3

2
1
2

]
, W̃ =

[
1 0
0 −1

]
,

S̃e =

[
− 1

2 −
√

3
2

−
√

3
2

1
2

]
.

Then one can easily show that{P,Q(1), Q(2), Q(3)} has3-fold
rotational symmetry if and only if for allg ∈ G,

P
R̃1g

= P
R̃2g

= Pg, Q
(2)
g = Q

(1)

R̃1g
, Q(3)

g = Q
(1)

R̃2g
; (4)

and that{P,Q(1), Q(2), Q(3)} has 3-fold axial symmetry if
and only if for all g ∈ G,

{
P

Ñeg
= P

W̃g
= P

S̃eg
= Pg,

Q
(1)

Ñeg
= Q

(1)
g , Q

(2)
g = Q

(1)

R̃1g
, Q

(3)
g = Q

(1)

R̃2g
.

(5)

Observe that R̃1 = W̃ Ñe, R̃2 = S̃eÑe. Thus if
{P,Q(1), Q(2), Q(3)} satisfies (5), then it satisfies (4). There-
fore, if a hexagonal filter bank has 3-fold axial symmetry, then
it has 3-fold rotational symmetry.

The3-fold rotational symmetry is considered in [25], where
it is called the hexagonal symmetry. Both the 3-fold rotational
symmetry and the 3-fold axial symmetry are closely related to
the symmetry structure of the hexagonal lattice. In this paper
we consider filter banks with these two types of symmetry.
Compared with filter banks with 3-fold axial symmetry, filter
banks with 3-fold rotational symmetry have less symmetry but
they provide more flexibility for the construction of filters. It
should be up to one’s specific application to choose filter banks
with 3-fold rotational or axial symmetry.

For a hexagonal filter bank{P,Q(1), Q(2), Q(3)}, let
{p, q(1), q(2), q(3)} be the corresponding square filter bank
after the transformation by the matrixU in (3). Let
R1, R2, Ne,W and Se denote the matricesUR̃1U

−1,
UR̃2U

−1, UÑeU
−1, UW̃U−1 andUS̃eU

−1 resp., namely,

R1 =

[
−1 1
−1 0

]
, R2 =

[
0 −1
1 −1

]
, (6)

Ne =

[
0 1
1 0

]
,W =

[
1 −1
0 −1

]
, Se =

[
−1 0
−1 1

]
. (7)

Then one can show thatP,Q(1), Q(2), Q(3) satisfy (4) if and
only if

pR1k = pR2k = pk, q
(2)
k = q

(1)
R1k

, q
(3)
k = q

(1)
R2k

, k ∈ Z2; (8)

and thatP,Q(1), Q(2), Q(3) satisfy (5) if and only if
{
pNek = pWk = pSek = pk,

q
(1)
Nek

= q
(1)
k , q

(2)
k = q

(1)
R1k

, q
(3)
k = q

(1)
R2k

, k ∈ Z2.
(9)

To summarize, we have the following proposition.
Proposition 1: Let {P,Q(1), Q(2), Q(3)} be a hexagonal

filter bank and{p, q(1), q(2), q(3)} be its corresponding square
filter bank. Then{P,Q(1), Q(2), Q(3)} has 3-fold rotational
symmetry if and only if{p, q(1), q(2), q(3)} satisfies (8); and
{P,Q(1), Q(2), Q(3)} has3-fold axial symmetry if and only if
{p, q(1), q(2), q(3)} satisfies (9).

In the following, for the convenience, we say a square filter
bank{p, q(1), q(2), q(3)} has3-fold rotational symmetry(3-fold
axial symmetryresp.) if it satisfies (8) ( (9) resp.).

C. Biorthogonality, sum rule order and smoothness

In this subsection, we review some results on orthogo-
nal/biorthogonal (square) filter banks. Denote

η0 = [0, 0]T , η1 = [π, π]T , η2 = [π, 0]T , η3 = [0, π]T .
(10)

FIR filter banks{p, q(1), q(2), q(3)} and{p̃, q̃(1), q̃(2), q̃(3)} are
said to bebiorthogonalor they are perfect reconstruction filter
banks if

∑

0≤k≤3

p(ω + ηk)p̃(ω + ηk) = 1, (11)

∑

0≤k≤3

p(ω + ηk)q̃(`)(ω + ηk) = 0, (12)

∑

0≤k≤3

q(`
′)(ω + ηk)q̃(`)(ω + ηk) = δ`′−`, (13)

for 1 ≤ `, `′ ≤ 3, ω ∈ IR2, whereδ` is the kronecker-delta
sequence. A filter bank{p, q(1), q(2), q(3)} is said to beorthog-
onal if it satisfies (11)-(13) with̃p = p, q̃(`) = q(`), 1 ≤ ` ≤ 3.

Let φ and φ̃ be the scaling function associated withp and
p̃ resp. Then (11) is the necessary condition forφ andφ̃ to be
biorthogonal duals:

∫

IR2

φ(x)φ̃(x − k) dx = δk1
δk2

, (14)

for all k = [k1, k2]
T ∈ Z2. We sayφ is orthogonal if it

satisfies (14) withφ̃ = φ. Under certain mild conditions, the
condition (11) is also sufficient for the biorthogonality ofφ
andφ̃ (see e.g. [28]-[30] for the details). For biorthogonal FIR
filter banks{p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)}, if the
associated scaling functionsφ and φ̃ are biorthogonal duals,
thenψ(`), ψ̃(`) defined by

ψ̂(`)(ω) = q(`)(
ω

2
)φ̂(

ω

2
),

̂̃
ψ(`)(ω) = q̃(`)(

ω

2
)
̂̃
φ(

ω

2
),
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are biorthogonal wavelets, namely,{ψ(`)
j,k : 1 ≤ ` ≤ 3, j ∈

Z,k ∈ Z2} and {ψ̃(`)
j,k : 1 ≤ ` ≤ 3, j ∈ Z,k ∈ Z2} are

biorthogonal bases ofL2(IR2), where

ψ
(`)
j,k(x) = 2jψ(`)(2jx − k), ψ̃

(`)
j,k(x) = 2jψ̃(`)(2jx − k).

Similarly, for an orthogonal filter bank{p, q(1), q(2), q(3)},
if the associated scaling functionφ is orthogonal, thenψ(`)

defined above are orthogonal wavelets, namely,{ψ(`)
j,k : 1 ≤

` ≤ 3, j ∈ Z,k ∈ Z2} is an orthogonal basis ofL2(IR2).
The reader is referred to [31] and [32] for the multiresolution
analysis theory and its applications.

For a (lowpass) filterp(ω) = 1
4

∑
k∈Z2 pke

−ik·ω, we say
that p(ω) has sum rules of orderm if

∑
k pk = 4, and

∑

k

(2k1)
α1(2k2)

α2p(2k1,2k2)

=
∑

k

(2k1 + 1)α1(2k2)
α2p(2k1+1,2k2)

=
∑

k

(2k1)
α1(2k2 + 1)α2p(2k1,2k2+1)

=
∑

k

(2k1 + 1)α1(2k2 + 1)α2p(2k1+1,2k2+1),

for all nonnegative integersα1, α2 with 0 ≤ α1 + α2 < m.
Under certain mild conditions, sum rule order ofp(ω) is
equivalent to the approximation order and accuracy of the
scaling functionφ associated withp(ω). The reader may see
in [33] for the details. High sum rule order ofp(ω) is also a
necessary condition for the high smoothness order ofφ under
certain conditions such as the stability ofφ. For example,
for a stableφ, if it is in the Sobolev spaceWn(IR2) (see
the definition of the Sobolev space below), then its associated
lowpass filterp(ω) must have sum rules of order at leastn+1.

In the following two sections we obtain block structures
of orthogonal/biorthogonal FIR filter banks with 3-fold ro-
tational symmetry and with 3-fold axial symmetry. These
orthogonal/biorthogonal filter banks are given by some free
parameters. When a family of filter banks is available (given
by free parameters), one can design the filters with desirable
properties for one’s specific applications. In this paper we
consider the filters based on the smoothness of the associated
scaling functionsφ.

In the consideration of smoothness, we will compute the
Sobolev smoothness of scaling functions. Fors ≥ 0, denote
by W s(IR2) the Sobolev space consisting of functionsf(x)
on IR2 with

∫
IR2(1 + |ω|2)s|f̂(ω)|2dω <∞. If f ∈W s(IR2)

with s > k+1 for some positive integerk, thenf ∈ Ck(IR2).
We use the smoothness formula in [34] to compute the
Sobolev smoothness order of scaling functions. See [35] for
the detailed formulas for the Sobolev smoothness of scaling
functions/vectors and [36] for algorithms and Matlab routines
to find the Sobolev smoothness order.

For an FIR lowpass filterp(ω) given by some free pa-
rameters, the procedures to construct the scaling functionφ

with the (locally) optimal Sobolev smoothness are described as
follows: (1) Solve the linear equations for the sum rule orders
such thatp(ω) has the desired sum rule order. The resulting

p(ω) is still given by some (but less) free parameters. (2)
Adjust the free parameters for the resultingp(ω) by applying
the algorithms/software in [35]/[36] to achieve the optimal
Sobolev smoothness forφ.

III. O RTHOGONAL AND BIORTHOGONAL FIR FILTER

BANKS WITH 3-FOLD ROTATIONAL SYMMETRY

In this section we consider the construction of orthogonal
and biorthogonal filter banks with 3-fold rotational symmetry.
The 3-fold rotational symmetry of filter banks is discussed in
§III. A, and block structures of orthogonal and biorthogonal
FIR filter banks with 3-fold rotational symmetry are presented
in §III. B and §III. C, resp.

A. FIR filter banks with 3-fold rotational symmetry

Suppose p(ω), q(1)(ω), q(2)(ω), q(3)(ω) are FIR filters.
Then filter bank{p, q(1), q(2), q(3)} has 3-fold rotational sym-
metry, namely it satisfies (8), if and only if

{
p(ω) = p(R−T

1 ω) = p(R−T
2 ω),

q(2)(ω) = q(1)(R−T
1 ω), q(3)(ω) = q(1)(R−T

2 ω).

This, together with the facts thatR2 = R2
1, R

3
1 = I2, leads to

the following proposition.
Proposition 2: A filter bank {p, q(1), q(2), q(3)} has 3-fold

rotational symmetry if and only if it satisfies
[
p, q(1), q(2), q(3)

]T

(R−T
1 ω) =

M0

[
p(ω), q(1)(ω), q(2)(ω), q(3)(ω)

]T

,

where

M0 =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 . (15)

Next, we consider the filter bank{p, q(1), q(2), q(3)}
to be given by the product of block matrices. As-
sume that we can write[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T

asA(2ω)[p0(ω), q
(1)
0 (ω), q

(2)
0 (ω), q

(3)
0 (ω)]T , whereA(ω) is

a 4 × 4 matrix with trigonometric polynomial entries,
and {p0, q

(1)
0 , q

(2)
0 , q

(3)
0 } is another FIR filter bank. If both

{p, q(1), q(2), q(3)} and {p0, q
(1)
0 , q

(2)
0 , q

(3)
0 } have 3-fold rota-

tional symmetry, then Proposition 2 leads to thatA(ω) satisfies

A(R−T
1 ω) = M0A(ω)M−1

0 , (16)

where M0 is the matrix defined by (15). Clearly
{1, ei(ω1+ω2), e−iω1 , e−iω2} has 3-fold rotational symmetry
and it could be used as the initial symmetric filter
bank, while both diag(1, ei(ω1+ω2), e−iω1 , e−iω2) and
diag(1, e−i(ω1+ω2), eiω1 , eiω2) satisfy (16) and they could be
used to build the block matrices. In the following we denote

I0(ω) = [1, ei(ω1+ω2), e−iω1 , e−iω2 ]T , (17)

D(ω) = diag(1, ei(ω1+ω2), e−iω1 , e−iω2). (18)
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Next we useAD(ω) and AD(−ω) as the block matrices,
whereA is a 4× 4 (real) constant matrix. One can verify that
for AD(±ω) satisfies (16) if and only ifA has the form:

A =




a11 a12 a12 a12

a21 a22 a23 a24

a21 a24 a22 a23

a21 a23 a24 a22


 . (19)

From the above discussion, we have the following result.
Theorem 1:If {p, q(1), q(2), q(3)} is given by

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T = (20)
1

2
AnD(±2ω) · · ·A1D(±2ω)A0I0(ω),

for somen ∈ Z+, whereI0(ω) andD(ω) are defined by (17)
and (18) resp., eachAk is a constant matrix of the form (19),
then {p(ω), q(1)(ω), q(2)(ω), q(3)(ω)} is an FIR filter bank
with 3-fold rotational symmetry.

In the next two subsections, we show that the block structure
in (20) will yield orthogonal and biorthogonal FIR filter banks
with 3-fold rotational symmetry.

B. Orthogonal filter banks with 3-fold rotational symmetry

In this subsection, we provide a block structure of orthog-
onal filter banks with 3-fold rotational symmetry. For an FIR
filter bank{p, q(1), q(2), q(3)}, denoteq(0)(ω) = p(ω). Let

U(ω) =
[
q(`)(ω + ηk)

]
0≤`,k≤3

,

where ηk, 0 ≤ k ≤ 3 are given in (10). Then
{p, q(1), q(2), q(3)} is orthogonal if and only ifU(ω) satisfies

U(ω)U(ω)∗ = I4, ω ∈ IR2. (21)

Write q(`)(ω), 0 ≤ ` ≤ 3 as

q(`)(ω) =
1

2
(q

(`)
0 (2ω) + q

(`)
1 (2ω)ei(ω1+ω2) +

q
(`)
2 (2ω)e−iω1 + q

(`)
3 (2ω)e−iω2).

Let V (ω) denote the polyphase matrix of{p(ω), q(1)(ω),
q(2)(ω), q(3)(ω)}:

V (ω) =
[
q
(`)
j (ω)

]
0≤`,j≤3

. (22)

Clearly,

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T =
1

2
V (2ω)I0(ω).

Furthermore, one can show that (21) is equivalent to

V (ω)V (ω)∗ = I4, ω ∈ IR2. (23)

Therefore, to construct orthogonal{p, q(1), q(2), q(3)}, we need
only to constructV (ω) such that it satisfies (23).

If {p, q(1), q(2), q(3)} is given by (20), thenV (ω) =
AnD(±ω)An−1D(±ω) · · ·A1D(±ω)A0. Furthermore, since
D(ω)D(ω)∗ = I4, we have that if the constant matri-
ces Ak, 0 ≤ k ≤ n, are orthogonal, thenV (ω) sat-
isfies (23). One can obtain that if a constant matrixAk

of the form (19) is orthogonal, then it can be written as

diag(s1, s2, s2, s2)Ckdiag(s3, s4, s4, s4), wheres` = ±1, 1 ≤
` ≤ 4, and

Ck =




αk βk βk βk

βk γk ηk ζk
βk ζk γk ηk

βk ηk ζk γk


 , (24)

with

αk =
3t2k − 1

1 + 3t2k
, βk =

2tk
1 + 3t2k

, γk = −αk − ηk − ζk,

ηk =
1

2
(−ζk − αk ±

√
α2

k + 4β2
k − 3ζ2

k − 2ζkαk). (25)

Thus an orthogonal matrixCk of the form (19) is given by
two free parameterstk andζk.

Theorem 2:If {p, q(1), q(2), q(3)} is given by (20) with each
Ak being diag(s1, s2, s2, s2)Ckdiag(s3, s4, s4, s4) for some
Ck given in (24), then{p, q(1), q(2), q(3)} is an orthogonal
FIR filter bank with 3-fold rotational symmetry.

Transforming{p, q(1), q(2), q(3)} given in Theorem 2 with
the matrixU to filter banks on the hexagonal lattice, we have
a family of orthogonal FIR hexagonal filter banks with 3-fold
rotational symmetry given by a block structure. For this family
of orthogonal filter banks given by free parameterstk, ζk, 0 ≤
k ≤ n, one can design the filters with desirable properties for
one’s specific applications. Here we consider the filters based
on the smoothness of the associated scaling functionsφ. Next
we consider two examples based on this structure.

Example 1:Let {p, q(1), q(2), q(3)} be the orthogonal filter
bank with 3-fold rotational symmetry given by

C1diag(1, e−2i(ω1+ω2), e2iω1 , e2iω2)C0I0(ω), (26)

whereI0(ω) is defined by (17),C0 andC1 are given by (24)
for somet0, ζ0, t1, ζ1. The lowpass filterp(ω) is given by three
free parameterst0, ζ0 and t1. With the choice of+ in ± for
η0 in (25), and

t0 =
2 +

√
13

3
, ζ0 =

5 −
√

13

24
, t1 = −4 +

√
13

3
,

the correspondingp(ω) has sum rule order 2, and the scaling
function φ is in W 0.9425(IR2). For p(ω) given by (26), the
maximum order of sum rules it can have is 2. From the
numerical calculations, we also find that0.94254 is almost
the highest Sobolev smoothness orderφ can gain.

Example 2:Let {p, q(1), q(2), q(3)} be the orthogonal filter
bank with 3-fold rotational symmetry given by

C2D(2ω)C1D(−2ω)C0I0(ω),

where I0(ω) andD(ω) are defined by (17) and (18) resp.,
C0, C1, C2 are matrices defined by (24) with free parameters
tk, ζk, k = 0, 1, 2. With the choice+ in ± for ηk in (25), and

t0 = 2.22285908185090, ζ0 = 0.02319874938139,

t1 = 0.18471231877448, ζ1 = 0.60189976981183,

t2 = 0.04160159358460

(ζ2 is a free parameter), we get the smoothestφ with φ ∈
W 1.1388(IR2).
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We have considered orthogonal filters with more non-
zero impulse response coefficients by using more blocks
AkD(±2ω) in (20). Unfortunately, in term of the smoothness
of the scaling functions, using a few more blocksAkD(±2ω)
does not yield orthogonal scaling functions with significantly
higher smoothness order. In the next section, we consider 3-
fold rotational symmetric biorthogonal filter banks, whichgive
us more flexility for the construction of perfect reconstruction
filter banks.

C. Biorthogonal filter banks with 3-fold rotational symmetry

Let {p, q(1), q(2), q(3)} and{p̃, q̃(1), q̃(2), q̃(3)} be two filter
banks,V (ω) andṼ (ω) be their polyphase matrices defined by
(22). Then one can shows as in§III.B that {p, q(1), q(2), q(3)}
and {p̃, q̃(1), q̃(2), q̃(3)} are biorthogonal to each other if and
only if V (ω) and Ṽ (ω) satisfy

V (ω)Ṽ (ω)∗ = I4, ω ∈ IR2.

If {p, q(1), q(2), q(3)} is the FIR filter bank given by
(20) for some 4 × 4 real nonsingular matrixAk, then
V (ω) = AnD(±ω)An−1D(±ω) · · ·A1D(±ω)A0. Hence,
(V (ω)∗)−1 = A−T

n D(±ω)A−T
n−1D(±ω) · · ·A−T

1 D(±ω)A−T
0 .

One can easily show that ifAk has the form of (19), then so
doseA−T

k . Thus, by Proposition 1,{p̃, q̃(1), q̃(2), q̃(3)} with
its polyphase matrixṼ (ω) = (V (ω)∗)−1 also has 3-fold
rotational symmetry. Therefore, we have the following result.

Theorem 3:Let {p, q(1), q(2), q(3)} be the FIR filter bank
given by (20) for some nonsingularAk of the form (19).
Suppose{p̃, q̃(1), q̃(2), q̃(3)} is given by

[p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)]T = (27)
1

2
A−T

n D(±2ω) · · ·A−T
1 D(±2ω)A−T

0 I0(ω),

where I0(ω) and D(ω) are defined by (17) and (18) resp.
Then{p̃, q̃(1), q̃(2), q̃(3)} is an FIR filter bank biorthogonal to
{p, q(1), q(2), q(3)} and it has 3-fold rotational symmetry.

Theorem 3 provides a family of biorthogonal FIR filter
banks with 3-fold rotational symmetry. Compared with the
orthogonal filter banks given in Theorem 2, this family of
biorthogonal filter banks has more flexibility for the designof
desired filters.

Example 3:Let {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)}
be the biorthogonal filter banks with 3-fold rotational symme-
try given by Theorem 3 withn = 1:

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T = A1D(−2ω)A0I0(ω),

[p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)]T =

A−T
1 D(−2ω)A−T

0 I0(ω).

whereA0 andA1 are nonsingular matrices of the form (19).
We can choose the free parameters forA0 and A1 such
that the resulting scaling functionsφ ∈ W 1.1860(IR2), φ̃ ∈
W 0.5212(IR2) and the lowpass filtersp(ω) andp̃(ω) have sum
rules of order 2 and order 1 resp. Since smoothness order of
the scaling functions is still low, the selected parametersare
not provided here.

Here and in the next example, we intently construct the
scaling functions with one smoother than the other so that

one filter bank can be used as the analysis filter bank and the
other can be used as the synthesis filter bank which requires
smoother scaling function and wavelets.

Example 4:Let {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)}
be the biorthogonal filter banks with 3-fold rotational symme-
try given by Theorem 3 withn = 2:

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T =

A2D(2ω)A1D(−2ω)A0I0(ω),

[p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)]T =

A−T
2 D(2ω)A−T

1 D(−2ω)A−T
0 I0(ω),

whereA0, A1 andA2 are nonsingular matrices of the form
(19). In this case, we can select the free parameters for
A0, A1 and A2 such that the resulting scaling functions
φ ∈ W 1.5294(IR2), φ̃ ∈ W 0.3859(IR2) and the lowpass filters
p(ω) and p̃(ω) have sum rules of order 2 and order 1 resp.
The selected parameters are provided in Appendix A.

IV. ORTHOGONAL AND BIORTHOGONAL FIR FILTER

BANKS WITH 3-FOLD AXIAL SYMMETRY

In this section we study the construction of orthogonal and
biorthogonal filter banks with 3-fold axial symmetry. The 3-
fold axial symmetry of filter banks is discussed in§VI.A,
and block structures of orthogonal and biorthogonal FIR filter
banks with 3-fold axial symmetry are presented in§VI.B and
§VI.C, resp.

A. FIR filter banks with 3-fold axial symmetry

Let {p, q(1), q(2), q(3)} be an FIR filter bank. Then it has
3-fold axial symmetry, that is it satisfies (9), if and only if

{
p(ω) = p(Neω) = p(W−T

ω) = p(Se
−T

ω),
q(1)(ω) = q(1)(Neω) = q(2)(RT

1 ω) = q(3)(RT
2 ω).

(28)

Before we derive a block structure of filter banks with 3-fold
axial symmetry, we first have the following proposition about
the 3-fold axial symmetry property of a filter bank.

Proposition 3: A filter bank {p, q(1), q(2), q(3)} has 3-fold
axial symmetry if and only if it satisfies

[
p, q(1), q(2), q(3)

]T

(Neω) = (29)

M1

[
p(ω), q(1)(ω), q(2)(ω), q(3)(ω)

]T

,

[
p, q(1), q(2), q(3)

]T

(W−T
ω) = (30)

M2

[
p(ω), q(1)(ω), q(2)(ω), q(3)(ω)

]T

,

[
p, q(1), q(2), q(3)

]T

(Se
−T

ω) = (31)

M3

[
p(ω), q(1)(ω), q(2)(ω), q(3)(ω)

]T

,
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where

M1 =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 , M2 =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 ,

M3 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

The proof of Proposition 3 is given in Appendix B.
Next, we consider the filter bank{p, q(1), q(2), q(3)} which
can be given by the product of block matrices. As-
sume that [p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T can be writ-
ten asB(2ω)[p0(ω), q

(1)
0 (ω), q

(2)
0 (ω), q

(3)
0 (ω)]T , whereB(ω)

is a 4 × 4 matrix with trigonometric polynomial entries
and {p0, q

(1)
0 , q

(2)
0 , q

(3)
0 } is another FIR filter bank. If both

{p, q(1), q(2), q(3)} and {p0, q
(1)
0 , q

(2)
0 , q

(3)
0 } have 3-fold axial

symmetry, then Proposition 3 implies thatB(ω) satisfies
{
B(Neω) = M1B(ω)M1, B(W−T

ω) = M2B(ω)M2,

B(Se
−T

ω) = M3B(ω)M3.
(32)

I0(ω) defined in (17) has 3-fold axial symmetry and it could
be used again as the initial filter bank. ForD(ω) defined by
(18), since bothD(ω) andD(−ω) satisfy (32), they could be
used to build the block matrices. Next we will useBD(ω)
andBD(−ω) as the block matrices, whereB is a4×4 (real)
constant matrix. One can verify thatBD(±ω) satisfies (32)
if and only if B has the form:

B =




b11 b12 b12 b12
b21 b22 b23 b23
b21 b23 b22 b23
b21 b23 b23 b22


 . (33)

Based on the above discussion, we reach the following
theorem on the filter banks with 3-fold axial symmetry.

Theorem 4:If {p, q(1), q(2), q(3)} is given by

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T = (34)
1

2
BnD(±2ω) · · ·B1D(±2ω)B0I0(ω)

for somen ∈ Z+, whereI0(ω) andD(ω) are defined by (17)
and (18) resp., and eachBk is a 4× 4 constant matrix of the
form (33), then{p, q(1), q(2), q(3)} has 3-fold axial symmetry.

B. Allen’s orthogonal filter banks

In this subsection, we show that the block structure in
(34) will yield 3-fold axial symmetric orthogonal FIR filter
banks, which were studied in [4], [26]. For an FIR filter
bank{p, q(1), q(2), q(3)}, let V (ω) denote its polyphase matrix
defined in (22). If{p, q(1), q(2), q(3)} is given by (34), then
V (ω) = BnD(±ω)Bn−1D(±ω) · · ·B1D(±ω)B0. Thus, if
the constant matricesBk are orthogonal, thenV (ω) satisfies
(23), and hence, (34) gives a family of orthogonal filter banks.

One can check that if a constant matrixBk of the form (33)
is orthogonal, then it can be written as (refer to [4])

G =
1

1 + 3g2




3g2 − 1 2g 2g 2g
2g 1 + g2 −2g2 −2g2

2g −2g2 1 + g2 −2g2

2g −2g2 −2g2 1 + g2


 (35)

or as diag(±1,−1,−1,−1)G, whereg ∈ IR.
Theorem 5:If {p, q(1), q(2), q(3)} is given by (34), where

eachBk is Gk or diag(±1,−1,−1,−1)Gk with Gk given by
(35) forgk ∈ IR, then{p, q(1), q(2), q(3)} is an orthogonal filter
bank with 3-fold axial symmetry.

Transforming{p, q(1), q(2), q(3)} given in Theorem 5 with
the matrixU to hexagonal filter banks, we have a family of
orthogonal hexagonal filter banks with 3-fold axial symmetry
given by a block structure. This structure is the one given by
Allen in [4], and it is referred here as Allen’s structure. [4]
and [26] constructed several orthogonal filter banks based on
the compaction of filters. Here we consider the filters based
on the smoothness of the associated scaling functions.

Example 5:Let {p(ω), q(1)(ω), q(2)(ω), q(3)(ω)} be the
orthogonal filter bank given by

G1diag(1, e−2i(ω1+ω2), e2iω1 , e2iω2)G0I0(ω),

with G0, G1 given by (35) for someg0, g1 ∈ IR. The
hexagonal filter bank corresponding to this filter bank is called
the L-Trigon of the R-Trigon in [4]. Then with the choices of

g0 =
1

9
(2 −

√
13), g1 =

1

3
(4 −

√
13),

the resulting lowpass filterp(ω) has sum rule order 2, and the
scaling functionφ is in W 0.9425(IR2). Actually, this resulting
p(ω) is the lowpass filter of sum rule order 2 in Example
1. The non-zero impulse response coefficientspk, q

(`)
k of the

filters are

p00 =
13 + 3

√
13

16
, p10 = p01 = p−1−1 =

13 −
√

13

16
,

p11 = p0−1 = p−10 =
19 +

√
13

48
,

p22 = p0−2 = p−20 =
1 −

√
13

16
,

p23 = p32 = p1−2 = p−21 = p−1−3 = p−3−1 =
−5 +

√
13

48
,

q
(1)
00 = −3 +

√
13

16
, q

(1)
11 =

55 + 9
√

13

48
,

q
(1)
10 = q

(1)
01 = q

(1)
−1−1 =

1 −
√

13

16
,

q
(1)
0−1 = q

(1)
−10 =

−21 + 5
√

13

48
, q

(1)
22 = −5 + 7

√
13

48
,

q
(1)
0−2 = q

(1)
−20 =

−17 + 5
√

13

48
,

q
(1)
32 = q

(1)
23 =

−9 +
√

13

48
,

q
(1)
1−2 = q

(1)
−21 = q

(1)
−1−3 = q

(1)
−3−1 =

11 − 3
√

13

48
,

andq(2)k , q(3)k are given by (8).
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Fig. 4. Non-zero impulse response coefficients of filters with Allen’s
structure (left) and those with new structure (right)

We have also considered orthogonal filters with more non-
zero impulse response coefficients by using more blocks
BkD(±2ω) in (34). Again, we find that using a few more
blocksBkD(±2ω) does not yield orthogonal scaling functions
with significantly higher smoothness order.

Let {p, q(1), q(2), q(3)} be the FIR filter bank given by (34),
whereBk, 0 ≤ k ≤ n are4×4 nonsingular constant real matri-
ces of the form (33). Then{p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)}
given by

1

2
B−T

n D(±2ω) · · ·B−T
1 D(±2ω)B−T

0 I0(ω),

is biorthogonal to{p, q(1), q(2), q(3)} and it has 3-fold axial
symmetry. Therefore, by choosing nonsingular matricesBk

of the form (33), one has a family of biorthogonal FIR filter
banks given by free parameters. Compared with the orthogonal
filter banks of 3-fold axial symmetry given in Theorem 5, these
biorthogonal filter banks give us more flexibility for the design
of desired filters. However, in terms of the smoothness of the
scaling functionsφ andφ̃, they do not yield smoothφ, φ̃ with
reasonable supports. Because of this, we introduce in the next
subsection another family of biorthogonal filter banks with3-
fold axial symmetry.

C. Biorthogonal filter banks with 3-fold axial symmetry

In this subsection we introduce another family of biorthog-
onal filter banks with 3-fold axial symmetry which is based
on the following block matrix:

E(ω) = (36)

1

2




a b+ cz1z2 b+ cz−1
1 b+ cz−1

2

t1 t5 + t3z1z2 t2 + t4z
−1
1 t2 + t4z

−1
2

t1 t2 + t4z1z2 t5 + t3z
−1
1 t2 + t4z

−1
2

t1 t2 + t4z1z2 t2 + t4z
−1
1 t5 + t3z

−1
2


 ,

where a, b, c, tj , 1 ≤ j ≤ 5, are real numbers, and
z1, z2 are given by (1). One can verify thatE(ω) satis-
fies (32).E(ω) yields primal filter banks{p, q(1), q(2), q(3)}
with denser non-zero impulse response coefficients (and
hence, they will produce smoother scaling functions and
wavelets). For example, the black dots in the left part of
Fig. 4 indicate the non-zero impulse response coefficients of
p(ω) from B1D(−2ω)B0[1, e

iω1eiω2 , e−iω1 , e−iω2 ]T , while
the non-zero impulse response coefficients ofp(ω) from
E1(2ω)E0(2ω)[1, eiω1eiω2 , e−iω1 , e−iω2 ]T are shown in the
right part of Fig. 4 as the black dots.

We can choose some specialtj such that det(E(ω)) is a
constant and hencẽE(ω) = (E(ω)∗)

−1 is a matrix with each

entry being a (Laurent) polynomial ofz1, z2. The possible
choices are

t2 = t5 =
bt1

a
, (37)

or

t3 = t4 =
ct1

a
. (38)

In these two cases, det(E(ω)) is 1
16 (t3 − t4)

2(at3 + 2at4 −
3ct1). With t2, t5 given in (37),Ẽ(ω) = (E(ω)∗)

−1 is

Ẽ(ω) =
2

(t3 − t4)(at3 + 2at4 − 3ct1)
· (39)




ã− bb̃
a

(z1z2 + 1
z1

+ 1
z2

) b̃z1z2
b̃
z1

b̃
z2

ẽ− b
a
(c̃z1z2 + d̃

z1

+ d̃
z2

) c̃z1z2
d̃
z1

d̃
z2

ẽ− b
a
(d̃z1z2 + c̃

z1

+ d̃
z2

) d̃z1z2
c̃
z1

d̃
z2

ẽ− b
a
(d̃z1z2 + d̃

z1

+ c̃
z2

) d̃z1z2
d̃
z1

c̃
z2



,

where

ã = (t3 + 2t4)(t3 − t4), b̃ = −t1(t3 − t4),

c̃ = at3 + at4 − 2ct1, d̃ = ct1 − at4, ẽ = −c(t3 − t4),

while if t3, t4 are given by (38), theñE(ω) = (E(ω)∗)
−1 is

Ẽ(ω) =
2

(t5 − t2)(at5 + 2at2 − 3bt1)
· (40)




ã1 − cb̃1
a

(z−1
1 z−1

2 + z1 + z2) b̃1 b̃1 b̃1
ẽ1 − c

a
(c̃1z

−1
1 z−1

2 + d̃1z1 + d̃1z2) c̃1 d̃1 d̃1

ẽ1 − c
a
(d̃1z

−1
1 z−1

2 + c̃1z1 + d̃1z2) d̃1 c̃1 d̃1

ẽ1 − c
a
(d̃1z

−1
1 z−1

2 + d̃1z1 + c̃1z2) d̃1 d̃1 c̃1


 ,

where

ã1 = (t5 + 2t2)(t5 − t2), c̃1 = at2 + at5 − 2bt1,

b̃1 = −t1(t5 − t2), d̃1 = bt1 − at2, ẽ1 = −b(t5 − t2).

Theorem 6:Let {p, q(1), q(2), q(3)} be the filter bank:

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T = (41)
1

2
En(±2ω) · · ·E0(±2ω)I0(ω),

where I0(ω) is defined by (17),Ek(ω), 0 ≤ k ≤ n are
given by (36) with parameters satisfying (37) (or (38)). If
{p̃, q̃(1), q̃(2), q̃(3)} is the filter bank given by

[p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)]T = (42)
1

2
Ẽn(±2ω) · · · Ẽ0(±2ω)I0(ω),

whereẼk(ω) = (Ek(ω)∗)−1, are given by (39) (or by (40)),
then{p, q(1), q(2), q(3)} and{p̃, q̃(1), q̃(2), q̃(3)} are biorthogo-
nal FIR filter banks with 3-fold axial symmetry.

Again, with a family of symmetric biorthogonal FIR filter
banks available in Theorem 6, one can design biorthogonal
filter banks for one’s particular applications. Here we provide
two filter banks based on the smoothness of the associated
scaling functionsφ and φ̃.
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Example 6:Let

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T =
1

2
E1(−2ω)E0(2ω)I0(ω),

[p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)]T =
1

2
Ẽ1(−2ω)Ẽ0(2ω)I0(ω),

be the biorthogonal FIR filter banks given in Theorem 6 with
n = 1 and the parameters satisfying (37). Then we can
choose free parameters such that the resulting scaling functions
φ ∈ W 1.5105(IR2), φ̃ ∈ W 0.4067(IR2) and the lowpass filters
p(ω), p̃(ω) have sum rules of order 2 and order 1 resp. The
impulse response coefficients of these two resulting filter banks
are provided in the long version of this paper downloadable
at author’s web site.

Example 7:Let

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T =
1

2
E2(2ω)E1(−2ω)E0(2ω)I0(ω),

[p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)]T =
1

2
Ẽ2(2ω)Ẽ1(−2ω)Ẽ0(2ω)I0(ω),

be the biorthogonal FIR filter banks given in Theorem 6 with
n = 2 and the parameters satisfying (37). Then we can choose
free parameters such that the corresponding scaling functions
φ ∈ W 1.7055(IR2), φ̃ ∈ W 0.5869(IR2), and the lowpass filters
p(ω), p̃(ω) have sum rules of order 2 and order 1 resp. Again,
the corresponding impulse response coefficients are provided
in the long version of this paper.

V. CONCLUSION

In this paper we obtain block structures of FIR filter
banks with 3-fold rotational symmetry and FIR filter banks
with 3-fold axial symmetry. These block structures yield
orthogonal/biorthogonal hexagonal filter banks with 3-fold
rotational symmetry and orthogonal/biorthogonal hexagonal
filter banks with 3-fold axial symmetry. The construction of
orthogonal and biorthogonal FIR filters with scaling func-
tions having optimal smoothness is discussed and several
orthogonal/biorthogonal filters banks are presented. Our future
work is to apply these hexagonal filter banks for hexagonal
image processing applications such as image enhancement and
edge detection. In this paper we just consider the hexagonal
filters with the dyadic refinement. We will also consider the
hexagonal filter banks with the

√
3 and

√
7 refinements and

study the construction of idealized hexagonal tight frame filter
banks which contain the “idealized” highpass filters with nice
frequency localizations.

APPENDIX A

Selected parameters in Example 4: selectedaij for A0 are

a11 = 0.53418431122656, a12 = 0.26151738104791,

a21 = 0.01459363514388, a22 = 1.24160756693777,

a23 = 0.03247147746833, a24 = 0.03247589636386;

select parametersaij for A1 are

a11 = 1.74210812926244, a12 = 0.41721745109326,

a21 = −2.18192416765921, a22 = 2.51403080377387,

a23 = 0.55679974918931, a24 = 0.55661861238169;

and select parametersaij for A2 are

a11 = 0.51226668946537, a12 = −0.00417155767962,

a21 = −0.83390119661419, a22 = −0.33354163795606,

a23 = 1.76565003212551, a24 = 0.28836976159098.

APPENDIX B

Proof of Proposition 3.UsingR1 = WNe,R2 = SeNe, one
can easily show that (29)-(31) imply (28). On the other hand,
using the following facts (i)-(v) about relationship amongthe
matricesNe,W, Se, R1 andR2, one can show that (28) leads
to (29)-(31): (i).Ne = RT

1 NeR
−T
2 ; (ii). R−T

2 = NeW
−T ;

(iii). R−T
1 = NeSe

−T ; (iv). R−T
1 W−T = NeR

−T
1 ; (v).

R−T
2 W−T = NeR

−T
2 . Here we just show the formulas in

(29)-(31) for q(2). The proof of other formulas in (29)-(31)
for p, q(1) andq(3) is similar. Forq(2), we have

q(2)(Neω) = q(1)(R−T
1 Neω)

= q(1)(NeR
−T
2 ω)(by (i)) = q(1)(R−T

2 ω) = q(3)(ω);

q(2)(W−T
ω) = q(1)(R−T

1 W−T
ω)

= q(1)(NeR
−T
1 ω)(by (iv)) = q(1)(R−T

1 ω) = q(2)(ω);

q(2)(Se
−T

ω) = q(1)(R−T
1 Se

−T
ω)

= q(1)(NeR
−T
2 ω)(by (iii)) = q(1)(R−T

2 ω) = q(3)(ω),

as desired.
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