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FIR Filter Banks for Hexagonal Data Processing
Qingtang Jiang

Abstract�Images are conventionally sampled on a rectangular
lattice, and they are also commonly stored as such a lattice. Thus,
traditional image processing is carried out on the rectangular
lattice. The hexagonal lattice was proposed more than four
decades ago as an alternative method for sampling. Compared
with the rectangular lattice, the hexagonal lattice has certain
advantages which include that it needs less sampling points; it
has better consistent connectivity and higher symmetry; and that
the hexagonal structure is pertinent to the vision process. In this
paper we investigate the construction of symmetric FIR hexago-
nal �lter banks for multiresolution hexagonal image processing.
We obtain block structures of FIR hexagonal �lter banks with 3-
fold rotational symmetry and 3-fold axial symmetry. These block
structures yield families of orthogonal and biorthogonal FIR
hexagonal �lter banks with 3-fold rotational symmetry and 3-fold
axial symmetry. In this paper, we also discuss the construction
of orthogonal and biorthogonal FIR �lter banks with scaling
functions and wavelets having optimal smoothness. In addition,
we present some of such orthogonal and biorthogonal FIR �lters
banks.

Index Terms�Hexagonal lattice, hexagonal data, 3-fold ro-
tational symmetry, 3-fold axial symmetry, orthogonal FIR
hexagonal �lter bank, biorthogonal FIR hexagonal �lter bank,
compactly supported orthogonal and biorthogonal hexagonal
wavelets.

EDICS Category: MRP-FBNK

I. INTRODUCTION

Traditional 2-D data (image) processing is carried out on the
rectangular lattice since 2-D data is conventionally sampled
at the sites (points) on a square or rectangular lattice and
it is also commonly stored as such a lattice. See a square
lattice in the left part of Fig. 1. The hexagonal lattice (in the
right part of Fig. 1) was proposed more than four decades
ago as an alternative method for sampling. Compared with a
rectangular lattice, a hexagonal lattice has certain advantages
[1]-[9]. It was shown in [1] that, for functions band-limited in a
circular region in the frequency domain, the hexagonal lattice
needs a smaller number (about 13.4% smaller) of sampling
points to maintain equally high frequency information than
the square lattice. The hexagonal structure has better consistent
connectivity: each elementary cell of a hexagonal lattice has
six neighbors of the same type while an elementary cell of a
square lattice has two different types of neighbors. The hexag-
onal structure possesses higher symmetry: a regular hexagonal
lattice has 12-fold symmetry while a square lattice has 8-
fold symmetry. Other advantages of the hexagonal structure
over the square structure include that it offers greater angular
resolution of images and it is closely related to the human
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Fig. 1. Rectangular lattice (left) and hexagonal lattice (right)

visual system. Hence, the hexagonal lattice has been used
in many areas such as edge detection [10], [11] and pattern
recognition [12]-[16]. The hexagonal lattice has also been
applied in Geoscience and other �elds. For example, in the
Soil Moisture and Ocean Salinity (SMOS) space mission led
by the European Space Agency, the data collected by the Y-
shaped antenna of the SMOS space mission is hexagonal data
(sampled on a hexagonal lattice) [17], [18]. A hexagon-based
grid has been adopted by the U.S. Environmental Protection
Agency for global sampling problems [19], [20].

Research on hexagonal image processing goes back to
Petersen and Middleton [1] over 40 years ago. Since then,
researchers in different areas have made many contributions in
the study of hexagonal image processing on various topics, see
[7]-[9] and the references therein. Multiscale (multiresolution)
image processing has been one of the most popular areas
of research investigation in various scienti�c and engineering
disciplines during the decade of the 1990's, and it has been
used in many applications. However, as it was pointed out in
[7], multiresolution hexagonal image processing is a research
area with a slow pace of activity. One probable reason for this
could be that most researchers in the �Wavelets� community
are accustomed to the traditional rectangular lattice. Another
reason is probably that current approaches have encoun-
tered dif�culties in the construction and design of desirable
hexagonal �lter banks to be used for multiresolution image
processing. To the author's best knowledge, [21]-[25], [4],
[26] are the papers available on the construction/design of
hexagonal �lter banks with both lowpass and highpass �lters
constructed. [21] presented a few FIR (�nite impulse response)
hexagonal �lter banks which achieved near orthogonality. [22]
provided one 7-channel (

√
7-re�nement) FIR hexagonal �lter

bank for image coding. The authors in [23] designed FIR
hexagonal �lter banks by minimizing the �lter bank error
and intra-band aliasing error function and applied their �lters
to image compression and orientation analysis. The highpass
�lters used in [23] are suitable spatial shifting and frequency
modulations of the lowpass �lter. FIR hexagonal �lter banks
was also designed in [24] by the same method as in [23]
but with a different �lter bank error and intra-band aliasing



2 SUBMISSION TO IEEE TRANS. IMAGE PROC.

error function. The FIR �lter banks designed in [21], [23],
[24] are not perfect reconstruction �lter banks. Construction
of biorthogonal hexagonal �lter banks was fully investigated in
[25] and a few biorthogonal FIR �lter banks were constructed
there. However, it is dif�cult to construct biorthogonal �lter
banks with smooth wavelets by their approach which also
results in �lters with large �lter lengths. The author in [4]
(also in [26]) proposed a novel block structure of orthog-
onal/biorthogonal FIR hexagonal �lter banks with certain
symmetry. However, a rigorously mathematical proof of the
symmetry and the (bi)orthogonality of the �lter banks in [4]
is desired, and the issue of how to select the free parameters
in these �lter banks needs to be addressed.

Though the hexagonal �lter banks designed in [23] are
not perfect reconstruction �lter banks, experimental results
on their applications to image compression and orientation
analysis carried out in [23] and their applications to digital
mammographic feature enhancement and the recognition of
complex annotations in [12], [13] are appealing. Therefore, the
construction/design of hexagonal �lter banks deserves further
investigation. The main objective of this paper is to construct
orthogonal and biorthogonal FIR hexagonal �lter banks with
certain symmetry which is pertinent to the symmetry structure
of the hexagonal lattice.

This paper is organized as follows. In Section II, we �rst
brie�y show that the problem of �lter construction along
the hexagonal lattice can be transformed into that along the
square lattice of Z2. After that we discuss the symmetry
of �lter banks and review some basic results on orthogo-
nal/biorthogonal �lter banks. In Section III, we present block
structures of orthogonal and biorthogonal FIR �lter banks with
3-fold rotational symmetry. In Section IV, we provide block
structures of orthogonal and biorthogonal FIR �lter banks with
3-fold axial symmetry. These structures include that in [4].
In both Sections III and IV, we also discuss the construction
of orthogonal and biorthogonal FIR �lter banks with scaling
functions and wavelets having optimal smoothness.

In this paper we use the following notations. For x =
[x1, x2]T ,y = [y1, y2]T , x ·y denotes their dot (inner) product
xT y. For a function f on IR2, f̂ denotes its Fourier transform:
f̂(ω) =

∫
IR2 f(x)e−ix·ωdx. For a matrix M , we use M∗

to denote its conjugate transpose MT , and for a nonsingular
matrix M , M−T denotes (M−1)T . For ω = [ω1, ω2]T , let

z1 = e−iω1 , z2 = e−iω2 . (1)

II. PRELIMINARIES

In this section, after showing that the problem of �lter
construction along the hexagonal lattice can be transformed
into that along the square lattice, we provide some basic results
on the symmetry and the orthogonality/biorthogonality of �lter
banks.

A. Transforming the hexagonal lattice to the square lattice Z2

Most multiscale analysis theory and algorithms for image
processing are developed along the square lattice with sites
k ∈ Z2, though they could be established along general lattices

U

U
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Fig. 2. Regular unit hexagonal lattice (left) and square lattice Z2

(right)

(see e.g. [27] for the shift-invariant theory along general
lattices). To design hexagonal �lter banks, here we transform
the hexagonal lattice to the square lattice so that we can use
the well-developed integer-shift multiscale analysis theory and
methods.

Let G be the regular unit hexagonal lattice de�ned by

G = {n1v1 + n2v2 : n1, n2 ∈ Z}, (2)

where
v1 = [1, 0]T , v2 = [−1

2
,

√
3

2
]T .

Let U be the matrix de�ned by

U =

[
1

√
3

3

0 2
√

3
3

]
. (3)

Then U transforms the regular unit hexagonal lattice into the
square lattice with sites k, k ∈ Z2. See Fig. 2.

For a hexagonal �lter H(ω) = 1
4

∑
g∈G Hge−ig·ω with its

(real) impulse response Hg (in this paper a factor 1
4 is added

for the convenience), by the transformation with the matrix U ,
we have a corresponding �lter h(ω) = 1

4

∑
k∈Z2 hke−ik·ω for

square data (squarely sampled data) with its impulse response
hk = HU−1k. Conversely, corresponding to a square �lter
(�lter for square data) h(ω) = 1

4

∑
k∈Z2 hke−ik·ω , we have a

hexagonal �lter H(ω) = 1
4

∑
g∈G hUge−ig·ω. In the frequency

domain, the relationship between H(ω) and h(ω) (with hk =
HU−1k) are given by

H(ω) = h(U−T ω).

The matrix U also transforms the scaling functions and
wavelets along the hexagonal lattice to those along the square
lattice Z2. For example, if Φ is the scaling function associated
with a lowpass hexagonal �lter H(ω) = 1

4

∑
g∈G Hge−ig·ω ,

namely, it satis�es

Φ(x) =
∑

g∈G
HgΦ(2x− g), x ∈ IR2,

then φ de�ned by

φ(x) = Φ(U−1x)

is the scaling function associated with square �lter h(ω) =
1
4

∑
k∈Z2 hke−ik·ω, where hk = HU−1k. Therefore, to design

hexagonal �lters, we need only to construct �lters along the
traditional lattice Z2. Then the matrix U will transform the
�lters, scaling functions and wavelets along the lattice Z2 into
those along the hexagonal lattice.
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Fig. 3. Lines S1, S2, S3 in hexagonal lattice

B. Symmetry of �lter banks
Since the hexagonal lattice has the highest degree of sym-

metry, it is desirable that hexagonal �lter banks designed also
have certain symmetry pertinent to the symmetric structure of
the hexagonal lattice. In this paper, we consider two types
of symmetry: 3-fold rotational symmetry and 3-fold axial
symmetry which are de�ned below.

De�nition 1: A hexagonal �lter bank {P,Q(1), Q(2), Q(3)}
is said to have 3-fold rotational symmetry if its lowpass �lter
P (ω) is invariant under the 2

3π and 4
3π rotations, and its high-

pass �lters Q(2) and Q(3) are the 2
3π and 4

3π (anticlockwise)
rotations of highpass �lter Q(1), respectively.

Let S1, S2 and S3 be the lines in the regular unit hexagonal
lattice shown in Fig. 3. Namely, S1, S2 and S3 are the lines
passing through the origin with slopes

√
3, 0 and −√3,

respectively.
De�nition 2: A hexagonal �lter bank {P,Q(1), Q(2), Q(3)}

is said to have 3-fold axial symmetry (or 3-fold line symmetry)
if its lowpass �lter P (ω) is symmetric around S1, S2 and S3,
and its highpass �lter Q(1) is symmetric around the axis S1

and other two highpass �lters Q(2) and Q(3) are the 2
3π and

4
3π (anticlockwise) rotations of Q(1), respectively.

Let R̃1, R̃2, Ñe, W̃ and S̃e be the matrices de�ned by

R̃1 =

[
− 1

2

√
3

2

−
√

3
2 − 1

2

]
, R̃2 =

[
− 1

2 −
√

3
2√

3
2 − 1

2

]
,

Ñe =

[
− 1

2

√
3

2√
3

2
1
2

]
, W̃ =

[
1 0
0 −1

]
,

S̃e =

[
− 1

2 −
√

3
2

−
√

3
2

1
2

]
.

Then one can easily show that {P, Q(1), Q(2), Q(3)} has 3-fold
rotational symmetry if and only if for all g ∈ G,

P
R̃1g

= P
R̃2g

= Pg, Q(2)
g = Q

(1)

R̃1g
, Q(3)

g = Q
(1)

R̃2g
; (4)

and that {P, Q(1), Q(2), Q(3)} has 3-fold axial symmetry if
and only if for all g ∈ G,

{
P

Ñeg
= P

W̃g
= P

S̃eg
= Pg,

Q
(1)

Ñeg
= Q

(1)
g , Q

(2)
g = Q

(1)

R̃1g
, Q

(3)
g = Q

(1)

R̃2g
.

(5)

Observe that R̃1 = W̃ Ñe, R̃2 = S̃eÑe. Thus if
{P, Q(1), Q(2), Q(3)} satis�es (5), then it satis�es (4). There-
fore, if a hexagonal �lter bank has 3-fold axial symmetry, then
it has 3-fold rotational symmetry.

The 3-fold rotational symmetry is considered in [25], where
it is called the hexagonal symmetry. Both the 3-fold rotational
symmetry and the 3-fold axial symmetry are closely related to
the symmetry structure of the hexagonal lattice. In this paper
we consider �lter banks with these two types of symmetry.
Compared with �lter banks with 3-fold axial symmetry, �lter
banks with 3-fold rotational symmetry have less symmetry but
they provide more �exibility for the construction of �lters. It
should be up to one's speci�c application to choose �lter banks
with 3-fold rotational or axial symmetry.

For a hexagonal �lter bank {P,Q(1), Q(2), Q(3)}, let
{p, q(1), q(2), q(3)} be the corresponding square �lter bank
after the transformation by the matrix U in (3). Namely, the
impulse responses pk, q

(`)
k of p(ω), q(`)(ω), 1 ≤ ` ≤ 3 are

PU−1k, Q
(`)
U−1k, respectively. Let R1, R2, Ne,W and Se denote

the matrices UR̃1U
−1, UR̃2U

−1, UÑeU
−1, UW̃U−1 and

US̃eU
−1 respectively, namely,

R1 =
[ −1 1
−1 0

]
, R2 =

[
0 −1
1 −1

]
, (6)

Ne =
[

0 1
1 0

]
, W =

[
1 −1
0 −1

]
, Se =

[ −1 0
−1 1

]
. (7)

Then one can show that P,Q(1), Q(2), Q(3) satisfy (4) if and
only if

pR1k = pR2k = pk, q
(2)
k = q

(1)
R1k

, q
(3)
k = q

(1)
R2k

, k ∈ Z2; (8)

and that P, Q(1), Q(2), Q(3) satisfy (5) if and only if
{

pNek = pWk = pSek = pk,

q
(1)
Nek

= q
(1)
k , q

(2)
k = q

(1)
R1k

, q
(3)
k = q

(1)
R2k

, k ∈ Z2.
(9)

To summarize, we have the following proposition.
Proposition 1: Let {P, Q(1), Q(2), Q(3)} be a hexagonal

�lter bank and {p, q(1), q(2), q(3)} be its corresponding square
�lter bank. Then {P,Q(1), Q(2), Q(3)} has 3-fold rotational
symmetry if and only if {p, q(1), q(2), q(3)} satis�es (8); and
{P, Q(1), Q(2), Q(3)} has 3-fold axial symmetry if and only if
{p, q(1), q(2), q(3)} satis�es (9).

In the following, for the convenience, we say a square �lter
bank {p, q(1), q(2), q(3)} has 3-fold rotational symmetry (3-fold
axial symmetry resp.) if it satis�es (8) ( (9) resp.).

C. Biorthogonality, sum rule order and smoothness

In this subsection, we review some results on orthogo-
nal/biorthogonal (square) �lter banks. Denote

η0 = [0, 0]T , η1 = [π, π]T , η2 = [π, 0]T , η3 = [0, π]T . (10)

FIR �lter banks {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} are
said to be biorthogonal or they are perfect reconstruction �lter
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banks if
∑

0≤k≤3

p(ω + ηk)p̃(ω + ηk) = 1, (11)

∑

0≤k≤3

p(ω + ηk)q̃(`)(ω + ηk) = 0, 1 ≤ ` ≤ 3, (12)

∑

0≤k≤3

q(`′)(ω + ηk)q̃(`)(ω + ηk) = δ`′−`, (13)

for 1 ≤ `, `′ ≤ 3, ω ∈ IR2, where δ` is the kronecker-delta
sequence. A �lter bank {p, q(1), q(2), q(3)} is said to be orthog-
onal if it satis�es (11)-(13) with p̃ = p, q̃(`) = q(`), 1 ≤ ` ≤ 3.

Let φ and φ̃ be the scaling function associated with p and
p̃ respectively. Then (11) is the necessary condition for φ and
φ̃ to be biorthogonal duals:

∫

IR2
φ(x)φ̃(x− k) dx = δk1δk2 , (14)

for all k = [k1, k2]T ∈ Z2. We say φ is orthogonal if it
satis�es (14) with φ̃ = φ. Under certain mild conditions, the
condition (11) is also suf�cient for the biorthogonality of φ
and φ̃. For example, if the cascade algorithms associated with
p and p̃ are convergent, or under a stronger condition that
both φ and φ̃ are stable, then the biorthogonality of p and p̃
(orthogonality of p resp.) imply that φ and φ̃ are biorthogonal
duals (φ is orthogonal resp.) (see e.g. [28], [29]). One can
check the convergence of the cascade algorithm associated
with a given p by calculating the eigenvalues of the so-called
transition operator associated with p, see e.g. [30] for the
details. For biorthogonal FIR �lter banks {p, q(1), q(2), q(3)}
and {p̃, q̃(1), q̃(2), q̃(3)}, if the associated scaling functions φ
and φ̃ are biorthogonal duals, then ψ(`), ψ̃(`) de�ned by

ψ̂(`)(ω) = q(`)(
ω

2
)φ̂(

ω

2
), ̂̃

ψ(`)(ω) = q̃(`)(
ω

2
)̂̃φ(

ω

2
),

are biorthogonal wavelets, namely, {ψ(`)
j,k : 1 ≤ ` ≤ 3, j ∈

Z,k ∈ Z2} and {ψ̃(`)
j,k : 1 ≤ ` ≤ 3, j ∈ Z,k ∈ Z2} are

biorthogonal bases of L2(IR2), where

ψ
(`)
j,k(x) = 2jψ(`)(2jx− k), ψ̃

(`)
j,k(x) = 2jψ̃(`)(2jx− k).

Similarly, for an orthogonal �lter bank {p, q(1), q(2), q(3)},
if the associated scaling function φ is orthogonal, then ψ(`)

de�ned above are orthogonal wavelets, namely, {ψ(`)
j,k : 1 ≤

` ≤ 3, j ∈ Z,k ∈ Z2} is an orthogonal basis of L2(IR2). The
reader is referred to [31] and [32] for the multiscale analysis
theory and its applications.

For a (lowpass) �lter p(ω) = 1
4

∑
k∈Z2 pke−ik·ω , we say

that p(ω) has sum rules of order m if
∑

k pk = 4, and
∑

k

(2k1)α1(2k2)α2p(2k1,2k2)

=
∑

k

(2k1 + 1)α1(2k2)α2p(2k1+1,2k2)

=
∑

k

(2k1)α1(2k2 + 1)α2p(2k1,2k2+1)

=
∑

k

(2k1 + 1)α1(2k2 + 1)α2p(2k1+1,2k2+1),

for all nonnegative integers α1, α2 with 0 ≤ α1 + α2 < m.
Under certain mild conditions, sum rule order of p(ω) is
equivalent to the approximation order and accuracy of the
scaling function φ associated with p(ω). The reader sees [33]
for the details. High sum rule order of p(ω) is also a necessary
condition for the high smoothness order of φ under certain
conditions such as the stability of φ. For example, for a stable
φ, if it is in the Sobolev space Wn(IR2) (see the de�nition
of the Sobolev space below), then its associated lowpass �lter
p(ω) must have sum rules of order at least n + 1.

In the following two sections we obtain block structures
of orthogonal/biorthogonal FIR �lter banks with 3-fold ro-
tational symmetry and with 3-fold axial symmetry. These
orthogonal/biorthogonal �lter banks are given by some free
parameters. When a family of �lter banks is available (given by
free parameters), one can design the �lters with desirable prop-
erties for one's speci�c applications. For example, one may
consider to design �lters with the optimum time-frequency
localization (see [34] and [35] for the design of 1-D matrix-
valued �lters with the optimum time-frequency localization).
In this paper we consider the �lters based on the smoothness
of the associated scaling functions φ. The smoothness of the
associated wavelets ψ(1), ψ(2), ψ(3) is the same as φ since they
are �nite linear combinations of φ and its integer shifts. The
smoothness of φ and its associated wavelets is important for
some applications. For example, certain smoothness of them
is required for the image reconstruction. In addition, a scaling
function and its associated wavelets with poor smoothness
result in poor frequency localization of them.

In the consideration of smoothness, we will compute the
Sobolev smoothness of scaling functions. For s ≥ 0, denote
by W s(IR2) the Sobolev space consisting of functions f(x)
on IR2 with ∫

IR2
(1 + |ω|2)s|f̂(ω)|2dω < ∞.

If f ∈ W s(IR2) with s > k + 1 for some positive integer k,
then f ∈ Ck(IR2). We use the smoothness formula in [36] to
compute the Sobolev smoothness order of scaling functions.
See [37] for the detailed formulas for the Sobolev smooth-
ness of scaling functions/vectors and [38] for algorithms and
Matlab routines to �nd the Sobolev smoothness order.

For an FIR lowpass �lter p(ω) given by some free pa-
rameters, the procedures to construct the scaling function φ
with the (locally) optimal Sobolev smoothness are described as
follows: (1) Solve the linear equations for the sum rule orders
such that p(ω) has the desired sum rule order. The resulting
p(ω) is still given by some (but less) free parameters. (2)
Adjust the free parameters for the resulting p(ω) by applying
the algorithms/software in [37]/[38] to achieve the optimal
Sobolev smoothness for φ.

III. ORTHOGONAL AND BIORTHOGONAL FIR FILTER
BANKS WITH 3-FOLD ROTATIONAL SYMMETRY

In this section we consider the construction of orthogonal
and biorthogonal �lter banks with 3-fold rotational symmetry.
The 3-fold rotational symmetry of �lter banks is discussed in
§III. A, and block structures of orthogonal and biorthogonal
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FIR �lter banks with 3-fold rotational symmetry are presented
in §III. B and §III. C, respectively.

A. FIR �lter banks with 3-fold rotational symmetry
Suppose p(ω), q(1)(ω), q(2)(ω), q(3)(ω) are FIR �lters with

impulse response coef�cients pk, q
(1)
k , q

(2)
k , q

(3)
k . Then �l-

ter bank {p, q(1), q(2), q(3)} has 3-fold rotational symmetry,
namely it satis�es (8), if and only if

{
p(ω) = p(R−T

1 ω) = p(R−T
2 ω),

q(2)(ω) = q(1)(R−T
1 ω), q(3)(ω) = q(1)(R−T

2 ω).

This, together with the facts that R2 = R2
1, R

3
1 = I2, leads to

the following proposition.
Proposition 2: A �lter bank {p, q(1), q(2), q(3)} has 3-fold

rotational symmetry if and only if it satis�es
[
p, q(1), q(2), q(3)

]T

(R−T
1 ω) =

M0

[
p(ω), q(1)(ω), q(2)(ω), q(3)(ω)

]T

,

where

M0 =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 . (15)

Next, we consider the �lter bank {p, q(1), q(2), q(3)}
to be given by the product of block matrices. As-
sume that we can write [p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T

as A(2ω)[p0(ω), q(1)
0 (ω), q(2)

0 (ω), q(3)
0 (ω)]T , where A(ω) is

a 4 × 4 matrix with trigonometric polynomial entries,
and {p0, q

(1)
0 , q

(2)
0 , q

(3)
0 } is another FIR �lter bank. If both

{p, q(1), q(2), q(3)} and {p0, q
(1)
0 , q

(2)
0 , q

(3)
0 } have 3-fold rota-

tional symmetry, then Proposition 2 leads to that A(ω) satis�es
A(R−T

1 ω) = M0A(ω)M−1
0 , (16)

where M0 is the matrix de�ned by (15). Clearly
{1, ei(ω1+ω2), e−iω1 , e−iω2}

has 3-fold rotational symmetry and it could be used as the
initial symmetric �lter bank, while both

diag(1, ei(ω1+ω2), e−iω1 , e−iω2)

and
diag(1, e−i(ω1+ω2), eiω1 , eiω2)

satisfy (16) and they could be used to build the block matrices.
Next we use

A(ω) = A diag(1, ei(ω1+ω2), e−iω1 , e−iω2) (17)
and

A(ω) = A diag(1, e−i(ω1+ω2), eiω1 , eiω2) (18)
as the block matrices, where A is a 4×4 (real) constant matrix.
One can verify that for A(ω) de�ned by (17) or by (18), A(ω)
satis�es (16) if and only if A has the form:

A =




a11 a12 a12 a12

a21 a22 a23 a24

a21 a24 a22 a23

a21 a23 a24 a22


 . (19)

Based on the above discussion, we reach the following result
on the �lter banks with 3-fold rotational symmetry.

Theorem 1: If {p, q(1), q(2), q(3)} is given by



p(ω)
q(1)(ω)
q(2)(ω)
q(3)(ω)


 =

1
2
An(2ω) · · ·A1(2ω)A0




1
ei(ω1+ω2)

e−iω1

e−iω2




(20)
for some n ∈ Z+, where A0 is a constant matrix of
the form (19), and each Ak(ω) is given by (17) or (18)
with A being a constant matrix Ak of the form (19), then
{p(ω), q(1)(ω), q(2)(ω), q(3)(ω)} is an FIR �lter bank with 3-
fold rotational symmetry.

In the next two subsections, we show that the block structure
in (20) will yield orthogonal and biorthogonal FIR �lter banks
with 3-fold rotational symmetry.

B. Orthogonal �lter banks with 3-fold rotational symmetry
In this subsection, we provide a block structure of orthog-

onal �lter banks with 3-fold rotational symmetry. For an FIR
�lter bank {p, q(1), q(2), q(3)}, denote

U(ω) =


p(ω) p(ω + η1) p(ω + η2) p(ω + η3)
q(1)(ω) q(1)(ω + η1) q(1)(ω + η2) q(1)(ω + η3)
q(2)(ω) q(2)(ω + η1) q(2)(ω + η2) q(2)(ω + η3)
q(3)(ω) q(3)(ω + η1) q(3)(ω + η2) q(3)(ω + η3)


 ,

where η1, η2, η3 are given in (10). Then {p, q(1), q(2), q(3)} is
orthogonal if and only if U(ω) satis�es

U(ω)U(ω)∗ = I4, ω ∈ IR2. (21)

Write p(ω), q(1)(ω), q(2)(ω), q(3)(ω) as

p(ω) =
1
2

(
pee(2ω) + poo(2ω)ei(ω1+ω2) +

poe(2ω)e−iω1 + peo(2ω)e−iω2

)
,

q(`)(ω) =
1
2

(
q(`)
ee (2ω) + q(`)

oo (2ω)ei(ω1+ω2) +

q(`)
oe (2ω)e−iω1 + q(`)

eo (2ω)e−iω2

)
, 1 ≤ ` ≤ 3.

Let V (ω) denote the polyphase matrix of {p(ω), q(1)(ω),
q(2)(ω), q(3)(ω)}:

V (ω) =




pee(ω) poo(ω) poe(ω) peo(ω)
q
(1)
ee (ω) q

(1)
oo (ω) q

(1)
oe (ω) q

(1)
eo (ω)

q
(2)
ee (ω) q

(2)
oo (ω) q

(2)
oe (ω) q

(2)
eo (ω)

q
(3)
ee (ω) q

(3)
oo (ω) q

(3)
oe (ω) q

(3)
eo (ω)


 . (22)

Clearly,

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T =
1
2
V (2ω)[1, ei(ω1+ω2), e−iω1 , e−iω2 ]T ,

and one can show that (21) is equivalent to

V (ω)V (ω)∗ = I4, ω ∈ IR2. (23)
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Therefore, to construct orthogonal {p, q(1), q(2), q(3)}, we need
only to construct V (ω) such that it satis�es (23).

If {p, q(1), q(2), q(3)} is given by (20), then V (ω) =
An(ω)An−1(ω) · · ·A1(ω)A0. Furthermore, if the constant ma-
trices Ak, 0 ≤ k ≤ n, are orthogonal, then V (ω) sat-
is�es (23). One can obtain that if a constant matrix Ak

of the form (19) is orthogonal, then it can be written as
diag(s1, s2, s2, s2)Ckdiag(s3, s4, s4, s4), where s` = ±1, 1 ≤
` ≤ 4, and

Ck =




αk βk βk βk

βk γk ηk ζk

βk ζk γk ηk

βk ηk ζk γk


 , (24)

with

αk =
3t2k − 1
1 + 3t2k

, βk =
2tk

1 + 3t2k
, γk = −αk − ηk − ζk,

ηk =
1
2
(−ζk − αk ±

√
α2

k + 4β2
k − 3ζ2

k − 2ζkαk). (25)

Thus an orthogonal matrix Ck of the form (19) is given by
two free parameters tk and ζk.

Theorem 2: If {p, q(1), q(2), q(3)} is given by (20), where
each Ak(ω) is given by (17) or (18) with A being
diag(s1, s2, s2, s2)Ckdiag(s3, s4, s4, s4) for some Ck given in
(24), then {p, q(1), q(2), q(3)} is an orthogonal FIR �lter bank
with 3-fold rotational symmetry.

Transforming {p, q(1), q(2), q(3)} given in Theorem 2 with
the matrix U to �lter banks on the hexagonal lattice, we have
a family of orthogonal FIR hexagonal �lter banks with 3-fold
rotational symmetry given by a block structure. For this family
of orthogonal �lter banks given by free parameters tk, ζk, 0 ≤
k ≤ n, one can design the �lters with desirable properties for
one's speci�c applications. Here we consider the �lters based
on the smoothness of the associated scaling functions φ. Next
we consider two examples based on this structure.

Example 1: Let {p, q(1), q(2), q(3)} be the orthogonal �lter
bank with 3-fold rotational symmetry given by

C1diag(1, e−2i(ω1+ω2), e2iω1 , e2iω2)C0




1
ei(ω1+ω2)

e−iω1

e−iω2


 , (26)

where C0 and C1 are given by (24) for some t0, ζ0, t1, ζ1. The
lowpass �lter p(ω) is given by three free parameters t0, ζ0 and
t1. With the choice of + in ± for η0 in (25), and

t0 =
2 +

√
13

3
, ζ0 =

5−√13
24

, t1 = −4 +
√

13
3

,

the corresponding p(ω) has sum rule order 2, and the scaling
function φ is in W 0.9425(IR2). For p(ω) given by (26), the
maximum order of sum rules it can have is 2. From the
numerical calculations, we also �nd that 0.94254 is almost
the highest Sobolev smoothness order φ can gain.

Example 2: Let {p, q(1), q(2), q(3)} be the orthogonal �lter
bank with 3-fold rotational symmetry given by

C2diag(1, e2i(ω1+ω2), e−2iω1 , e−2iω2) ·
C1diag(1, e−2i(ω1+ω2), e2iω1 , e2iω2) ·
C0[1, ei(ω1+ω2), e−iω1 , e−iω2 ]T ,

where C0, C1, C2 are matrices de�ned by (17) with free
parameters tk, ζk, k = 0, 1, 2. With the choice + in ± for
ηk in (25), and

t0 = 2.22285908185090, ζ0 = 0.02319874938139,

t1 = 0.18471231877448, ζ1 = 0.60189976981183,

t2 = 0.04160159358460

(ζ2 is a free parameter), we get the smoothest φ with φ ∈
W 1.1388(IR2).

We have considered orthogonal �lters with more non-zero
impulse response coef�cients by using more blocks Ak(ω)
in (20). Unfortunately, in term of the smoothness of the
scaling functions, using a few more blocks Ak(ω) does not
yield orthogonal scaling functions with signi�cantly higher
smoothness order. In the next section, we consider 3-fold
rotational symmetric biorthogonal �lter banks, which give us
more �exility for the construction of perfect reconstruction
�lter banks.

C. Biorthogonal �lter banks with 3-fold rotational symmetry
Let {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} be two �lter

banks, V (ω) and Ṽ (ω) be their polyphase matrices de�ned by
(22). Then one can shows as in §III.B that {p, q(1), q(2), q(3)}
and {p̃, q̃(1), q̃(2), q̃(3)} are biorthogonal to each other if and
only if V (ω) and Ṽ (ω) satisfy

V (ω)Ṽ (ω)∗ = I4, ω ∈ IR2.

If {p, q(1), q(2), q(3)} is the FIR �lter bank given by (20)
with Ak(ω) given by (17) or (18) for A to be some 4 × 4
real matrix Ak, then V (ω) = An(ω)An−1(ω) · · ·A1(ω)A0.
Suppose Ak, 0 ≤ k ≤ n are nonsingular. Then (V (ω)∗)−1 =
Ãn(ω)Ãn−1(ω) · · · Ã1(ω)Ã0 with Ã0 = A−T

0 and

Ãk(ω) = A−T
k (1, ei(ω1+ω2), e−iω1 , e−iω2) (27)

or
Ãk(ω) = A−T

k (1, e−i(ω1+ω2), eiω1 , eiω2). (28)

One can easily show that if Ak has the form of (19), then so
dose A−T

k . Thus, by Proposition 1, {p̃, q̃(1), q̃(2), q̃(3)} with
its polyphase matrix Ṽ (ω) = (V (ω)∗)−1 also has 3-fold
rotational symmetry. Therefore, we have the following result.

Theorem 3: Let {p, q(1), q(2), q(3)} be the FIR �lter bank
given by (20) with

Ak(ω) = Ak(1, ei(ω1+ω2), e−iω1 , e−iω2) (29)

or
Ak(ω) = Ak(1, e−i(ω1+ω2), eiω1 , eiω2), (30)

where Ak, 0 ≤ k ≤ n are 4 × 4 nonsingular real matrices of
the form (19). Suppose {p̃, q̃(1), q̃(2), q̃(3)} is given by




p̃(ω)
q̃(1)(ω)
q̃(2)(ω)
q̃(3)(ω)


 =

1
2
Ãn(2ω) · · · Ã1(2ω)Ã0




1
ei(ω1+ω2)

e−iω1

e−iω2


 ,

(31)
where Ã0 = A−T

0 , Ãk(ω) is given by (27) (if Ak(ω) is
given by (29)) or by (28) (if Ak(ω) is given by (30)).
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Then {p̃, q̃(1), q̃(2), q̃(3)} is an FIR �lter bank biorthogonal to
{p, q(1), q(2), q(3)} and it has 3-fold rotational symmetry.

Theorem 3 provides a family of biorthogonal FIR �lter
banks with 3-fold rotational symmetry. Compared with the
orthogonal �lter banks given in Theorem 2, this family of
biorthogonal �lter banks has more �exibility for the design of
desired �lters.

Example 3: Let {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)}
be the biorthogonal �lter banks with 3-fold rotational symme-
try given by Theorem 3 with n = 1, namely,

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T =
A1diag(1, e−2i(ω1+ω2), e2iω1 , e2iω2) ·
A0[1, ei(ω1+ω2), e−iω1 , e−iω2 ]T ,

[p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)]T =
A−T

1 diag(1, e−2i(ω1+ω2), e2iω1 , e2iω2) ·
A−T

0 [1, ei(ω1+ω2), e−iω1 , e−iω2 ]T ,

where A0 and A1 are nonsingular matrices of the form (19).
We can choose the free parameters for A0 and A1 such
that the resulting scaling functions φ ∈ W 1.1860(IR2), φ̃ ∈
W 0.5212(IR2) and the lowpass �lters p(ω) and p̃(ω) have sum
rules of order 2 and order 1 respectively. Since smoothness or-
der of the scaling functions is still low, the selected parameters
are not provided here.

Here and in the next example, we intently construct the
scaling functions with one smoother than the other so that
one �lter bank can be used as the analysis �lter bank and the
other can be used as the synthesis �lter bank which requires
smoother scaling function and wavelets.

Example 4: Let {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)}
be the biorthogonal �lter banks with 3-fold rotational symme-
try given by Theorem 3 with n = 2:

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T =
A2diag(1, e2i(ω1+ω2), e−2iω1 , e−2iω2) ·
A1diag(1, e−2i(ω1+ω2), e2iω1 , e2iω2) ·
A0[1, ei(ω1+ω2), e−iω1 , e−iω2 ]T ,

[p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)]T =
A−T

2 diag(1, e2i(ω1+ω2), e−2iω1 , e−2iω2) ·
A−T

1 diag(1, e−2i(ω1+ω2), e2iω1 , e2iω2) ·
A−T

0 [1, ei(ω1+ω2), e−iω1 , e−iω2 ]T ,

where A0, A1 and A2 are nonsingular matrices of the form
(19). In this case, we can select the free parameters for A0,
A1 and A2 such that the resulting scaling functions φ ∈
W 1.5294(IR2), φ̃ ∈ W 0.3859(IR2) and the lowpass �lters p(ω)
and p̃(ω) have sum rules of order 2 and order 1 respectively.
The selected parameters are provided in Appendix A.

IV. ORTHOGONAL AND BIORTHOGONAL FIR FILTER
BANKS WITH 3-FOLD AXIAL SYMMETRY

In this section we study the construction of orthogonal and
biorthogonal �lter banks with 3-fold axial symmetry. The 3-
fold axial symmetry of �lter banks is discussed in §VI.A,
and block structures of orthogonal and biorthogonal FIR �lter

banks with 3-fold axial symmetry are presented in §VI.B and
§VI.C, respectively.

A. FIR �lter banks with 3-fold axial symmetry
Let {p, q(1), q(2), q(3)} be an FIR �lter bank. Then it has

3-fold axial symmetry, that is it satis�es (9), if and only if
{

p(ω) = p(Neω) = p(W−T ω) = p(Se
−T ω),

q(1)(ω) = q(1)(Neω) = q(2)(RT
1 ω) = q(3)(RT

2 ω).
(32)

Before we derive a block structure of �lter banks with 3-fold
axial symmetry, we �rst have the following proposition about
the 3-fold axial symmetry property of a �lter bank.

Proposition 3: A �lter bank {p, q(1), q(2), q(3)} has 3-fold
axial symmetry if and only if it satis�es

[
p, q(1), q(2), q(3)

]T

(Neω) = (33)

M1

[
p(ω), q(1)(ω), q(2)(ω), q(3)(ω)

]T

,
[
p, q(1), q(2), q(3)

]T

(W−T ω) = (34)

M2

[
p(ω), q(1)(ω), q(2)(ω), q(3)(ω)

]T

,
[
p, q(1), q(2), q(3)

]T

(Se
−T ω) = (35)

M3

[
p(ω), q(1)(ω), q(2)(ω), q(3)(ω)

]T

,

where

M1 =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 , M2 =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 ,

M3 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 . (36)

The proof of Proposition 3 is given in Appendix B.
Next, we consider the �lter bank {p, q(1), q(2), q(3)} which
can be given by the product of block matrices. As-
sume that [p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T can be writ-
ten as B(2ω)[p0(ω), q(1)

0 (ω), q(2)
0 (ω), q(3)

0 (ω)]T , where B(ω)
is a 4 × 4 matrix with trigonometric polynomial entries
and {p0, q

(1)
0 , q

(2)
0 , q

(3)
0 } is another FIR �lter bank. If both

{p, q(1), q(2), q(3)} and {p0, q
(1)
0 , q

(2)
0 , q

(3)
0 } have 3-fold axial

symmetry, then Proposition 3 implies that B(ω) satis�es
{

B(Neω) = M1B(ω)M1, B(W−T ω) = M2B(ω)M2,

B(Se
−T ω) = M3B(ω)M3,

(37)

where M1,M2 and M3 are the matrices de�ned by
(36). Since both diag(1, ei(ω1+ω2), e−iω1 , e−iω2) and
diag(1, e−i(ω1+ω2), eiω1 , eiω2) satisfy (37), they could
be used to build the block matrices. Next we will use

B(ω) = B diag(1, ei(ω1+ω2), e−iω1 , e−iω2) (38)

and
B(ω) = B diag(1, e−i(ω1+ω2), eiω1 , eiω2) (39)
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as the block matrices, where B is a 4×4 (real) constant matrix.
One can verify that for B(ω) de�ned by (38) or by (39), B(ω)
satis�es (37) if and only if B has the form:

B =




b11 b12 b12 b12

b21 b22 b23 b23

b21 b23 b22 b23

b21 b23 b23 b22


 . (40)

Based on the above discussion, we reach the following
theorem on the �lter banks with 3-fold axial symmetry.

Theorem 4: If {p, q(1), q(2), q(3)} is given by



p(ω)
q(1)(ω)
q(2)(ω)
q(3)(ω)


 =

1
2
Bn(2ω) · · ·B1(2ω)B0




1
ei(ω1+ω2)

e−iω1

e−iω2




(41)
for some n ∈ Z+, where B0 is a 4× 4 constant matrix of the
form (40), each Bk(ω) is given by (38) or (39) for some 4×4
constant matrix Bk of the form (40), then {p, q(1), q(2), q(3)}
has 3-fold axial symmetry.

B. Allen's orthogonal �lter banks
In this subsection, we show that the block structure in

(41) will yield 3-fold axial symmetric orthogonal FIR �lter
banks, which were studied in [4], [26]. For an FIR �lter
bank {p, q(1), q(2), q(3)}, let V (ω) denote its polyphase matrix
de�ned in (22). If {p, q(1), q(2), q(3)} is given by (41), then
V (ω) = Bn(ω)Bn−1(ω) · · ·B1(ω)B0. Thus, if the constant
matrices Bk are orthogonal, then V (ω) satis�es (23), and
hence, (41) gives a family of orthogonal �lter banks. One
can check that if a constant matrix Bk of the form (40) is
orthogonal, then it can be written as (refer to [4])

Bk =
1

1 + 3b2
k




3b2
k − 1 2bk 2bk 2bk

2bk 1 + b2
k −2b2

k −2b2
k

2bk −2b2
k 1 + b2

k −2b2
k

2bk −2b2
k −2b2

k 1 + b2
k




(42)
or it can be written as

Bk =
1

1 + 3b2
k

· (43)



±(1− 3b2
k) 2bk 2bk 2bk

±2bk −(1 + b2
k) 2b2

k 2b2
k

±2bk 2b2
k −(1 + b2

k) 2b2
k

±2bk 2b2
k 2b2

k −(1 + b2
k)




with bk ∈ IR.
Theorem 5: If {p, q(1), q(2), q(3)} is given by (41) with

Bk(ω) = Bkdiag(1, ei(ω1+ω2), e−iω1 , e−iω2),

or
Bk(ω) = Bkdiag(1, e−i(ω1+ω2), eiω1 , eiω2),

where Bk, 0 ≤ k ≤ n are given by (42) or (43), then
{p, q(1), q(2), q(3)} is an orthogonal �lter bank with 3-fold
axial symmetry.

Transforming {p, q(1), q(2), q(3)} given in Theorem 5 with
the matrix U to hexagonal �lter banks, we have a family of

orthogonal hexagonal �lter banks with 3-fold axial symmetry
given by a block structure. This structure is the one given by
Allen in [4], and it is referred here as Allen's structure. [4]
and [26] constructed several orthogonal �lter banks based on
the compaction of �lters. Here we consider the �lters based
on the smoothness of the associated scaling functions.

Example 5: Let {p(ω), q(1)(ω), q(2)(ω), q(3)(ω)} be the or-
thogonal �lter bank given by

B1diag(1, e−2i(ω1+ω2), e2iω1 , e2iω2)B0




1
ei(ω1+ω2)

e−iω1

e−iω2


 ,

(44)
with B0, B1 given by (42) for some b0, b1 ∈ IR. The hexagonal
�lter bank corresponding to this �lter bank is called the L-
Trigon of the R-Trigon in [4]. One can show that with the
choices of

b0 =
1
9
(2−

√
13), b1 =

1
3
(4−

√
13),

the resulting lowpass �lter p(ω) has sum rule order 2, and the
scaling function φ is in W 0.9425(IR2). Actually, this resulting
p(ω) is the lowpass �lter of sum rule order 2 in Example
1. The non-zero impulse response coef�cients pk, q

(`)
k of the

�lters are

p00 =
13 + 3

√
13

16
, p10 = p01 = p−1−1 =

13−√13
16

,

p11 = p0−1 = p−10 =
19 +

√
13

48
,

p22 = p0−2 = p−20 =
1−√13

16
,

p23 = p32 = p1−2 = p−21 = p−1−3 = p−3−1 =
−5 +

√
13

48
,

q
(1)
00 = −3 +

√
13

16
, q

(1)
11 =

55 + 9
√

13
48

,

q
(1)
10 = q

(1)
01 = q

(1)
−1−1 =

1−√13
16

,

q
(1)
0−1 = q

(1)
−10 =

−21 + 5
√

13
48

, q
(1)
22 = −5 + 7

√
13

48
,

q
(1)
0−2 = q

(1)
−20 =

−17 + 5
√

13
48

,

q
(1)
32 = q

(1)
23 =

−9 +
√

13
48

,

q
(1)
1−2 = q

(1)
−21 = q

(1)
−1−3 = q

(1)
−3−1 =

11− 3
√

13
48

,

and q
(2)
k , q

(3)
k are given by (8).

We have also considered orthogonal �lters with more non-
zero impulse response coef�cients by using more blocks
Bk(ω) in (41). Again, we �nd that using a few more blocks
Bk(ω) does not yield orthogonal scaling functions with sig-
ni�cantly higher smoothness order.

Let {p, q(1), q(2), q(3)} be the FIR �lter bank given by
(41) with Bk(ω) = Bkdiag(1, z−1

1 z−1
2 , z1, z2) (or Bk(ω) =

Bkdiag(1, z1z2, z
−1
1 , z−1

2 )), where Bk, 0 ≤ k ≤ n are 4 × 4
nonsingular constant real matrices of the form (40), and z1, z2
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Fig. 4. Non-zero impulse response coef�cients of �lters with Allen's
structure (left) and those with new structure (right)

are de�ned by (1). Then {p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)}
given by

1
2
B̃n(2ω) · · · B̃1(2ω)B−T

0 [1, z−1
1 z−1

2 , z1, z2]T ,

where B̃k(ω) = B−T
k diag(1, z−1

1 z−1
2 , z1, z2) (or B̃k(ω) =

B−T
k diag(1, z1z2, z

−1
1 , z−1

2 ) correspondingly), is biorthogonal
to {p, q(1), q(2), q(3)} and it has 3-fold axial symmetry. There-
fore, by choosing nonsingular matrices Bk of the form (40),
one has a family of biorthogonal FIR �lter banks given by
free parameters. Compared with the orthogonal �lter banks of
3-fold axial symmetry given in Theorem 5, these biorthogonal
�lter banks give us more �exibility for the design of desired
�lters. However, in terms of the smoothness of the scaling
functions φ and φ̃, they do not yield smooth φ, φ̃ with
reasonable supports. Because of this, we introduce in the next
subsection another family of biorthogonal �lter banks with 3-
fold axial symmetry.

C. Biorthogonal �lter banks with 3-fold axial symmetry
In this subsection we introduce another family of biorthog-

onal �lter banks with 3-fold axial symmetry which is based
on the following block matrix:

D(ω) =
1
2




a b + cz1z2 b + cz−1
1 b + cz−1

2

t1 t5 + t3z1z2 t2 + t4z
−1
1 t2 + t4z

−1
2

t1 t2 + t4z1z2 t5 + t3z
−1
1 t2 + t4z

−1
2

t1 t2 + t4z1z2 t2 + t4z
−1
1 t5 + t3z

−1
2


 ,

(45)
where a, b, c, tj , 1 ≤ j ≤ 5, are real numbers, and
z1, z2 are given by (1). One can verify that D(ω) satis-
�es (37). D(ω) yields primal �lter banks {p, q(1), q(2), q(3)}
with denser non-zero impulse response coef�cients (and
hence, they will produce smoother scaling functions and
wavelets). For example, the black dots in the left part of
Fig. 4 indicate the non-zero impulse response coef�cients
of p(ω) from B1(2ω)B0[1, eiω1eiω2 , e−iω1 , e−iω2 ]T , while
the non-zero impulse response coef�cients of p(ω) from
D2(2ω)D1(2ω)[1, eiω1eiω2 , e−iω1 , e−iω2 ]T are shown in the
right part of Fig. 4 as the black dots.

We can choose some special tj such that det(D(ω)) is a
constant and hence D̃(ω) = (D(ω)∗)−1 is a matrix with each
entry being a (Laurent) polynomial of z1, z2. The possible
choices are

t2 = t5 =
bt1
a

, (46)

or
t3 = t4 =

ct1
a

. (47)

In these two cases, det(D(ω)) is 1
16 (t3 − t4)2(at3 + 2at4 −

3ct1). With t2, t5 given in (46), D̃(ω) = (D(ω)∗)−1 is

D̃(ω) =
2

(t3 − t4)(at3 + 2at4 − 3ct1)
· (48)




ã− bb̃
a (z1z2 + 1

z1
+ 1

z2
) b̃z1z2

b̃
z1

b̃
z2

ẽ− b
a (c̃z1z2 + d̃

z1
+ d̃

z2
) c̃z1z2

d̃
z1

d̃
z2

ẽ− b
a (d̃z1z2 + c̃

z1
+ d̃

z2
) d̃z1z2

c̃
z1

d̃
z2

ẽ− b
a (d̃z1z2 + d̃

z1
+ c̃

z2
) d̃z1z2

d̃
z1

c̃
z2




,

where

ã = (t3 + 2t4)(t3 − t4), b̃ = −t1(t3 − t4),
c̃ = at3 + at4 − 2ct1, d̃ = ct1 − at4, ẽ = −c(t3 − t4),

while if t3, t4 are given by (47), then D̃(ω) = (D(ω)∗)−1 is

D̃(ω) =
2

(t5 − t2)(at5 + 2at2 − 3bt1)
· (49)




ã1 − cb̃1
a (z−1

1 z−1
2 + z1 + z2) b̃1 b̃1 b̃1

ẽ1 − c
a (c̃1z

−1
1 z−1

2 + d̃1z1 + d̃1z2) c̃1 d̃1 d̃1

ẽ1 − c
a (d̃1z

−1
1 z−1

2 + c̃1z1 + d̃1z2) d̃1 c̃1 d̃1

ẽ1 − c
a (d̃1z

−1
1 z−1

2 + d̃1z1 + c̃1z2) d̃1 d̃1 c̃1


 ,

where

ã1 = (t5 + 2t2)(t5 − t2), c̃1 = at2 + at5 − 2bt1,

b̃1 = −t1(t5 − t2), d̃1 = bt1 − at2, ẽ1 = −b(t5 − t2).

Theorem 6: Let {p, q(1), q(2), q(3)} be the �lter bank given
by




p(ω)
q(1)(ω)
q(2)(ω)
q(3)(ω)


 =

1
2
Dn(±2ω) · · ·D0(±2ω)




1
ei(ω1+ω2)

e−iω1

e−iω2




(50)
for some n ∈ Z+, where Dk(ω), 0 ≤ k ≤ n are given by (45)
with parameters satisfying (46) or (47). If {p̃, q̃(1), q̃(2), q̃(3)}
is the �lter bank given by




p̃(ω)
q̃(1)(ω)
q̃(2)(ω)
q̃(3)(ω)


 =

1
2
D̃n(±2ω) · · · D̃0(±2ω)




1
ei(ω1+ω2)

e−iω1

e−iω2


 ,

(51)
where D̃k(ω) = (Dk(ω)∗)−1, 0 ≤ k ≤ n, are given by (48)
or by (49), then {p, q(1), q(2), q(3)} and {p̃, q̃(1), q̃(2), q̃(3)} are
FIR �lter banks with 3-fold axial symmetry and they are
biorthogonal to each other.

Again, with a family of symmetric biorthogonal FIR �lter
banks available in Theorem 6, one can design biorthogonal
�lter banks for one's particular applications. Here we provide
two �lter banks based on the smoothness of the associated
scaling functions φ and φ̃. In the following two examples, as in
Examples 3 and 4, we intently construct the scaling functions
with one smoother than the other.
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Example 6: Let

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T =
1
2
D1(−2ω)D0(2ω)[1, ei(ω1+ω2), e−iω1 , e−iω2 ]T ,

[p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)]T =
1
2
D̃1(−2ω)D̃0(2ω)[1, ei(ω1+ω2), e−iω1 , e−iω2 ]T ,

be the biorthogonal FIR �lter banks given in Theorem 6 with
n = 1 and the parameters satisfying (46). Then we can
choose free parameters such that the resulting scaling functions
φ ∈ W 1.5105(IR2), φ̃ ∈ W 0.4067(IR2) and the lowpass �lters
p(ω), p̃(ω) have sum rules of order 2 and order 1 respectively.
The impulse response coef�cients of the resulting �lter banks
are provided in Appendix C.

Example 7: Let

[p(ω), q(1)(ω), q(2)(ω), q(3)(ω)]T =
1
2
D2(2ω)D1(−2ω)D0(2ω)[1, ei(ω1+ω2), e−iω1 , e−iω2 ]T ,

[p̃(ω), q̃(1)(ω), q̃(2)(ω), q̃(3)(ω)]T =
1
2
D̃2(2ω)D̃1(−2ω)D̃0(2ω)[1, ei(ω1+ω2), e−iω1 , e−iω2 ]T ,

be the biorthogonal FIR �lter banks given in Theorem 6 with
n = 2 and the parameters satisfying (46). Then we can choose
free parameters such that the corresponding scaling functions
φ ∈ W 1.7055(IR2), φ̃ ∈ W 0.5869(IR2), and the lowpass �lters
p(ω), p̃(ω) have sum rules of order 2 and order 1 respectively.
The impulse response coef�cients of these two resulting �lter
banks are provided in provided in Appendix D.

V. CONCLUSION

In this paper we obtain block structures of FIR �lter
banks with 3-fold rotational symmetry and FIR �lter banks
with 3-fold axial symmetry. These block structures yield
orthogonal/biorthogonal hexagonal �lter banks with 3-fold
rotational symmetry and orthogonal/biorthogonal hexagonal
�lter banks with 3-fold axial symmetry. The construction of
orthogonal and biorthogonal FIR �lters with scaling functions
having optimal smoothness is discussed and several orthogo-
nal/biorthogonal �lters banks are presented. Our future work
is to apply these hexagonal �lter banks for hexagonal image
processing applications such as image enhancement and edge
detection. In this paper we just consider the hexagonal �lters
with the dyadic re�nement. In the future, we will also consider
the hexagonal �lters with the

√
3 and

√
7 re�nements and

study the construction of idealized hexagonal tight frame �lter
banks which contain the �idealized� highpass �lters with nice
frequency localizations.

APPENDIX A
Selected parameters in Example 4: selected aij for A0 are

a11 = 0.53418431122656, a12 = 0.26151738104791,

a21 = 0.01459363514388, a22 = 1.24160756693777,

a23 = 0.03247147746833, a24 = 0.03247589636386;

select parameters aij for A1 are

a11 = 1.74210812926244, a12 = 0.41721745109326,

a21 = −2.18192416765921, a22 = 2.51403080377387,

a23 = 0.55679974918931, a24 = 0.55661861238169;

and select parameters aij for A2 are

a11 = 0.51226668946537, a12 = −0.00417155767962,

a21 = −0.83390119661419, a22 = −0.33354163795606,

a23 = 1.76565003212551, a24 = 0.28836976159098.

APPENDIX B

Proof of Proposition 3. Using R1 = WNe, R2 = SeNe, one
can easily show that (33)-(35) imply (32). On the other hand,
using the following facts (i)-(v) about relationship among the
matrices Ne,W, Se, R1 and R2, one can show that (32) leads
to (33)-(35):

(i). Ne = RT
1 NeR

−T
2 ; (ii). R−T

2 = NeW
−T ;

(iii). R−T
1 = NeSe

−T ; (iv). R−T
1 W−T = NeR

−T
1 ;

(v). R−T
2 W−T = NeR

−T
2 .

Here we just show the formulas in (33)-(35) for q(2). The proof
of other formulas in (33)-(35) for p, q(1) and q(3) is similar.
For q(2), we have

q(2)(Neω) = q(1)(R−T
1 Neω)

= q(1)(NeR
−T
2 ω)(by (i)) = q(1)(R−T

2 ω) = q(3)(ω);
q(2)(W−T ω) = q(1)(R−T

1 W−T ω)
= q(1)(NeR

−T
1 ω)(by (iv)) = q(1)(R−T

1 ω) = q(2)(ω);
q(2)(Se

−T ω) = q(1)(R−T
1 Se

−T ω)
= q(1)(NeR

−T
2 ω)(by (iii)) = q(1)(R−T

2 ω) = q(3)(ω),

as desired.

APPENDIX C

The biorthogonal �lters in Example 5 with φ ∈
W 1.5105(IR2), φ̃ ∈ W 0.4067(IR2): the non-zero impulse re-
sponses of p(ω) are

p00 = 0.98832654285769,
p01 = p10 = p−1−1 = 0.49156433996017,

p−10 = p0−1 = p11 = 0.50750780089008,

p−2−2 = p02 = p20 = 0.00389115238077,

p−3−2 = p−2−3 = p13 = p31 =
p−12 = p2−1 = −0.00250260029669,

p−3−3 = p30 = p03 = p−2−1 = p−1−2 = p−11 = p1−1

= p21 = p12 = 0.00197768658105;
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the non-zero impulse responses of q(1)(ω) are

q
(1)
00 = 0.03511796779580,

q
(1)
01 = q

(1)
10 = 0.29863493249023,

q
(1)
−1−1 = −0.80239194082786,

q
(1)
11 = q

(1)
−10 = q

(1)
0−1 = 0.01803315183284,

q
(1)
02 = q

(1)
20 = −0.10159057223583,

q
(1)
−2−2 = 0.29676935480645,

q
(1)
1−1 = q

(1)
12 = q

(1)
21 = q

(1)
−11

= q
(1)
03 = q

(1)
30 = −0.05163362721657,

q
(1)
31 = q

(1)
13 = q

(1)
2−1 = q

(1)
−12 = 0.06533812386146,

q
(1)
−2−1 = q

(1)
−1−2 = q

(1)
−3−3 = 0.15083366397237,

q
(1)
−3−2 = q

(1)
−2−3 = −0.19086764092259;

and q
(2)
k , q

(3)
k are given by (8); the non-zero impulse responses

of p̃(ω) are

p̃00 = 2.07524327772965,

p̃01 = p̃10 = p̃−1−1 = 0.57048205301141,
p̃−10 = p̃0−1 = p̃11 = 0.72714621546633,
p̃20 = p̃02 = p̃−2−2 = −0.14011100395303,

p̃22 = p̃−20 = p̃0−2 = −0.36957363065319,

p̃13 = p̃31 = p̃2−1 = p̃−12 =
p̃−3−2 = p̃−2−3 = −0.14881413423887,

p̃2−2 = p̃−22 = p̃24 = p̃42 =
p̃−4−2 = p̃−2−4 = 0.07563510434817;

the non-zero impulse responses of q̃(1)(ω) are

q̃
(1)
00 = 8.03759108770683, q̃

(1)
−1−1 = −7.85514652959852,

q̃
(1)
01 = q̃

(1)
10 = −4.09997773834547,

q̃
(1)
−10 = q̃

(1)
0−1 = q̃

(1)
11 = −0.03023283293225,

q̃
(1)
02 = q̃

(1)
20 = 1.00695892898345,

q̃
(1)
−2−2 = 1.92923241081903,

q̃
(1)
22 = q̃

(1)
−20 = q̃

(1)
0−2 = 0.0153659024747,

q̃
(1)
31 = q̃

(1)
13 = q̃

(1)
2−1 = q̃

(1)
−12 = 1.06950715506265,

q̃
(1)
2−2 = q̃

(1)
−22 = q̃

(1)
24 = q̃

(1)
42 = −0.54357931582244,

q̃
(1)
−3−2 = q̃

(1)
−2−3 = 2.04906854466516,

q̃
(1)
−2−4 = q̃

(1)
−4−2 = −1.04144350256089;

and q̃
(2)
k , q̃

(3)
k are given by (8).

APPENDIX D

The biorthogonal �lters in Example 6 with φ ∈
W 1.5105(IR2), φ̃ ∈ W 0.4067(IR2): the non-zero impulse re-

sponse coef�cients of p(ω) are

p00 = 0.98832654285769,
p01 = p10 = p−1−1 = 0.49156433996017,

p−10 = p0−1 = p11 = 0.50750780089008,

p−2−2 = p02 = p20 = 0.00389115238077,

p−3−2 = p−2−3 = p13 = p31 =
p−12 = p2−1 = −0.00250260029669,

p−3−3 = p30 = p03 = p−2−1 = p−1−2 = p−11 = p1−1

= p21 = p12 = 0.00197768658105;

the non-zero impulse response coef�cients of q(1)(ω) are

q
(1)
00 = 0.03511796779580,

q
(1)
01 = q

(1)
10 = 0.29863493249023,

q
(1)
−1−1 = −0.80239194082786,

q
(1)
11 = q

(1)
−10 = q

(1)
0−1 = 0.01803315183284,

q
(1)
02 = q

(1)
20 = −0.10159057223583,

q
(1)
−2−2 = 0.29676935480645,

q
(1)
1−1 = q

(1)
12 = q

(1)
21 = q

(1)
−11

= q
(1)
03 = q

(1)
30 = −0.05163362721657,

q
(1)
31 = q

(1)
13 = q

(1)
2−1 = q

(1)
−12 = 0.06533812386146,

q
(1)
−2−1 = q

(1)
−1−2 = q

(1)
−3−3 = 0.15083366397237,

q
(1)
−3−2 = q

(1)
−2−3 = −0.19086764092259,

and q
(2)
k , q

(3)
k are given by (8); the non-zero impulse response

coef�cients of p̃(ω) are

p̃00 = 2.07524327772965,

p̃01 = p̃10 = p̃−1−1 = 0.57048205301141,

p̃−10 = p̃0−1 = p̃11 = 0.72714621546633,

p̃20 = p̃02 = p̃−2−2 = −0.14011100395303,

p̃22 = p̃−20 = p̃0−2 = −0.36957363065319,

p̃13 = p̃31 = p̃2−1 = p̃−12 =
p̃−3−2 = p̃−2−3 = −0.14881413423887,

p̃2−2 = p̃−22 = p̃24 = p̃42 =
p̃−4−2 = p̃−2−4 = 0.07563510434817;

the non-zero impulse response coef�cients of q̃(1)(ω) are

q̃
(1)
00 = 8.03759108770683, q̃

(1)
−1−1 = −7.85514652959852,

q̃
(1)
01 = q̃

(1)
10 = −4.09997773834547,

q̃
(1)
−10 = q̃

(1)
0−1 = q̃

(1)
11 = −0.03023283293225,

q̃
(1)
02 = q̃

(1)
20 = 1.00695892898345,

q̃
(1)
−2−2 = 1.92923241081903,

q̃
(1)
22 = q̃

(1)
−20 = q̃

(1)
0−2 = 0.0153659024747,

q̃
(1)
31 = q̃

(1)
13 = q̃

(1)
2−1 = q̃

(1)
−12 = 1.06950715506265,

q̃
(1)
2−2 = q̃

(1)
−22 = q̃

(1)
24 = q̃

(1)
42 = −0.54357931582244,

q̃
(1)
−3−2 = q̃

(1)
−2−3 = 2.04906854466516,

q̃
(1)
−2−4 = q̃

(1)
−4−2 = −1.04144350256089,
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and q̃
(2)
k = q̃

(1)
R1k

, q̃
(3)
k = q̃

(1)
R2k

.
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